\\\\(
\nonumber
\newcommand{\bevisslut}{$\blacksquare$}
\newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}}
\newcommand{\transp}{\hspace{-.6mm}^{\top}}
\newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace}
\newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}}
\newcommand{\eqnl}{}
\newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}}
\newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}}
\newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}}
\newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}}
\newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}}
\newcommand{\am}{\mathrm{am}}
\newcommand{\gm}{\mathrm{gm}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\mU}{\mathbf{U}}
\newcommand{\mA}{\mathbf{A}}
\newcommand{\mB}{\mathbf{B}}
\newcommand{\mC}{\mathbf{C}}
\newcommand{\mD}{\mathbf{D}}
\newcommand{\mE}{\mathbf{E}}
\newcommand{\mF}{\mathbf{F}}
\newcommand{\mK}{\mathbf{K}}
\newcommand{\mI}{\mathbf{I}}
\newcommand{\mM}{\mathbf{M}}
\newcommand{\mN}{\mathbf{N}}
\newcommand{\mQ}{\mathbf{Q}}
\newcommand{\mT}{\mathbf{T}}
\newcommand{\mV}{\mathbf{V}}
\newcommand{\mW}{\mathbf{W}}
\newcommand{\mX}{\mathbf{X}}
\newcommand{\ma}{\mathbf{a}}
\newcommand{\mb}{\mathbf{b}}
\newcommand{\mc}{\mathbf{c}}
\newcommand{\md}{\mathbf{d}}
\newcommand{\me}{\mathbf{e}}
\newcommand{\mn}{\mathbf{n}}
\newcommand{\mr}{\mathbf{r}}
\newcommand{\mv}{\mathbf{v}}
\newcommand{\mw}{\mathbf{w}}
\newcommand{\mx}{\mathbf{x}}
\newcommand{\mxb}{\mathbf{x_{bet}}}
\newcommand{\my}{\mathbf{y}}
\newcommand{\mz}{\mathbf{z}}
\newcommand{\reel}{\mathbb{R}}
\newcommand{\mL}{\bm{\Lambda}}
\newcommand{\mnul}{\mathbf{0}}
\newcommand{\trap}[1]{\mathrm{trap}(#1)}
\newcommand{\Det}{\operatorname{Det}}
\newcommand{\adj}{\operatorname{adj}}
\newcommand{\Ar}{\operatorname{Areal}}
\newcommand{\Vol}{\operatorname{Vol}}
\newcommand{\Rum}{\operatorname{Rum}}
\newcommand{\diag}{\operatorname{\bf{diag}}}
\newcommand{\bidiag}{\operatorname{\bf{bidiag}}}
\newcommand{\spanVec}[1]{\mathrm{span}{#1}}
\newcommand{\Div}{\operatorname{Div}}
\newcommand{\Rot}{\operatorname{\mathbf{Rot}}}
\newcommand{\Jac}{\operatorname{Jacobi}}
\newcommand{\Tan}{\operatorname{Tan}}
\newcommand{\Ort}{\operatorname{Ort}}
\newcommand{\Flux}{\operatorname{Flux}}
\newcommand{\Cmass}{\operatorname{Cm}}
\newcommand{\Imom}{\operatorname{Im}}
\newcommand{\Pmom}{\operatorname{Pm}}
\newcommand{\IS}{\operatorname{I}}
\newcommand{\IIS}{\operatorname{II}}
\newcommand{\IIIS}{\operatorname{III}}
\newcommand{\Le}{\operatorname{L}}
\newcommand{\app}{\operatorname{app}}
\newcommand{\M}{\operatorname{M}}
\newcommand{\re}{\mathrm{Re}}
\newcommand{\im}{\mathrm{Im}}
\newcommand{\compl}{\mathbb{C}}
\newcommand{\e}{\mathrm{e}}
\\\\)
Exercise 1: Repetition with Orthogonal Substitution
A symmetric matrix is given:
$$
\mathbf A= \begin{matr}{cc}
\displaystyle{\frac{288}{25}}&\displaystyle{\frac{84}{25}}\\\\\\\\
\displaystyle{\frac{84}{25}}&\displaystyle{\frac{337}{25}}
\end{matr}\,.$$
A
Find in $\,\mathbb R^{2\times 2}\,$ a positive orthogonal matrix $\,\mathbf Q\,$ and a diagonal matrix $\,\Lambda\,$ such that
$$
\Lambda=\mathbf Q^{-1} \mathbf A\, \mathbf Q\,.$$
An ellipse $\,\mathcal E\,$ is in the standard orthogonal $\,(x, y)$-coordinate system in the plane given by the matrix equation
$$
\begin{matr}{cc} x&y \end{matr} \,\mathbf A\,
\begin{matr}{c} x \\\\ y \end{matr}=144\,.$$
B
Determine the semi-axes for $\,\mathcal E\,.$
Exercise 2: Repetition with Function of Two Variables
For a smooth function $\,f:\mathbb R^2 \rightarrow \mathbb R\,$ with $\,f(0,0)=0\,$ a vector field $\,\mathbf V\,$ in the $\,(x,y)$-plane is given by
$$\mathbf V(x,y)=\nabla f(x,y)=(x-y^2+1,-2\,x\,y)\,.$$
A
Find all stationary points for $\,f\,.$
B
Determine the Hessian matrix of $\,f\,,$ and explain that $\,f\,$ has exactly one proper local minimum and no proper local maxima.
C
Determine the tangential curve integral of $\,\mathbf V\,$ along a curve $\,\mathcal K\,$ of your own choice from the origin to an arbitrary point $\,(x,y).$ Hint: You may use the formula
$$
(x,y)\cdot \int_0^1 \mathbf V(ux,uy)\,\mathrm{d}u\,.
$$
Or you can integrate along the broken line in the $\,(x,y)$-plane that connects $\,( 0,0)\,$ and $\,( x,0)\,$ and $\,( x,0)\,$ and $\,( x,y)\,.$
D
Determine the value of $\,f\,$ at the proper local minimum point you found in Question B).
Exercise 3: Repetition with Gauss and Stokes
In the $\,(x,y)$-plane in the $\,(x,y,z)$-space, a set
$$\,A=\left\{\,(x,y)\,|\,0\leq x \leq2\,\,\mathrm{and} -\frac{\pi}{2}\leq y \leq\frac{\pi}{2}\,\right\}\,$$
and a function
$$h(x,y)=x\cos(y)\,$$
are given. Let $\,\mathcal F\,$ denote the part of the graph of $\,h\,$ that is vertically above $\,A,$ see the figure.
A
Determine a parametrization $\,\mathbf r(u,v)\,$ for $\,\mathcal F,$ and determine the nomal vector
$$\mathbf N(u,v)=\mathbf r'_u(u,v) \times \mathbf r'_v(u,v)\,$$
corresponding to $\,\mathbf r(u,v)\,$.
Suppose $\,\mathbf V\,$ is a vector field int the $\,(x,y,z)$-space and that
$$\,\mathrm{Div}(\mathbf V)(x,y,z)=x+y+z\,\,\,\,\mathrm{and}\,\,\,\,\mathbf{Curl}(\mathbf V)(x,y,z)=(3z,3x,3y)\,.$$
B
Find the tangential curve integral (circulation) of $\,\mathbf V\,$ along the closed boundary curve $\,\partial \mathcal F\,$ of $\,\mathcal F\,$ where the orientation of $\,\partial \mathcal F\,$ is as shown in the figure above.
C
Let $\, \Omega\,$ denote the 3-dimensional solid region that lies vertically between $\,A\,$ and $\,\mathcal F\,.$ Determine the flux of $\,\mathbf V\,$ out of the closed surface $\,\partial \Omega\,$ of $\, \Omega\,.$