\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Repetition with Orthogonal Substitution

A symmetric matrix is given:

$$ \mathbf A= \begin{matr}{cc} \displaystyle{\frac{288}{25}}&\displaystyle{\frac{84}{25}}\\\\\\\\ \displaystyle{\frac{84}{25}}&\displaystyle{\frac{337}{25}} \end{matr}\,.$$
A

Find in $\,\mathbb R^{2\times 2}\,$ a positive orthogonal matrix $\,\mathbf Q\,$ and a diagonal matrix $\,\Lambda\,$ such that

$$ \Lambda=\mathbf Q^{-1} \mathbf A\, \mathbf Q\,.$$

An ellipse $\,\mathcal E\,$ is in the standard orthogonal $\,(x, y)$-coordinate system in the plane given by the matrix equation

$$ \begin{matr}{cc} x&y \end{matr} \,\mathbf A\, \begin{matr}{c} x \\\\ y \end{matr}=144\,.$$
B

Determine the semi-axes for $\,\mathcal E\,.$

Exercise 2: Repetition with Function of Two Variables

For a smooth function $\,f:\mathbb R^2 \rightarrow \mathbb R\,$ with $\,f(0,0)=0\,$ a vector field $\,\mathbf V\,$ in the $\,(x,y)$-plane is given by

$$\mathbf V(x,y)=\nabla f(x,y)=(x-y^2+1,-2\,x\,y)\,.$$
A

Find all stationary points for $\,f\,.$

B

Determine the Hessian matrix of $\,f\,,$ and explain that $\,f\,$ has exactly one proper local minimum and no proper local maxima.

C

Determine the tangential curve integral of $\,\mathbf V\,$ along a curve $\,\mathcal K\,$ of your own choice from the origin to an arbitrary point $\,(x,y).$ Hint: You may use the formula

$$ (x,y)\cdot \int_0^1 \mathbf V(ux,uy)\,\mathrm{d}u\,. $$

Or you can integrate along the broken line in the $\,(x,y)$-plane that connects $\,( 0,0)\,$ and $\,( x,0)\,$ and $\,( x,0)\,$ and $\,( x,y)\,.$

D

Determine the value of $\,f\,$ at the proper local minimum point you found in Question B).

Exercise 3: Repetition with Gauss and Stokes

In the $\,(x,y)$-plane in the $\,(x,y,z)$-space, a set

$$\,A=\left\{\,(x,y)\,|\,0\leq x \leq2\,\,\mathrm{and} -\frac{\pi}{2}\leq y \leq\frac{\pi}{2}\,\right\}\,$$

and a function

$$h(x,y)=x\cos(y)\,$$

are given. Let $\,\mathcal F\,$ denote the part of the graph of $\,h\,$ that is vertically above $\,A,$ see the figure.

g_flade.png

A

Determine a parametrization $\,\mathbf r(u,v)\,$ for $\,\mathcal F,$ and determine the nomal vector

$$\mathbf N(u,v)=\mathbf r'_u(u,v) \times \mathbf r'_v(u,v)\,$$

corresponding to $\,\mathbf r(u,v)\,$.

Suppose $\,\mathbf V\,$ is a vector field int the $\,(x,y,z)$-space and that

$$\,\mathrm{Div}(\mathbf V)(x,y,z)=x+y+z\,\,\,\,\mathrm{and}\,\,\,\,\mathbf{Curl}(\mathbf V)(x,y,z)=(3z,3x,3y)\,.$$
B

Find the tangential curve integral (circulation) of $\,\mathbf V\,$ along the closed boundary curve $\,\partial \mathcal F\,$ of $\,\mathcal F\,$ where the orientation of $\,\partial \mathcal F\,$ is as shown in the figure above.

C

Let $\, \Omega\,$ denote the 3-dimensional solid region that lies vertically between $\,A\,$ and $\,\mathcal F\,.$ Determine the flux of $\,\mathbf V\,$ out of the closed surface $\,\partial \Omega\,$ of $\, \Omega\,.$