\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Flux through parametric surfaces

Given a vector field

$$\mV(x,y,z)=(\cos(x),\cos(x)+\cos(z),0)$$

and a surface $\mathcal F$ given by the parametric representation

$$\mr(u,v)=(u,0,v), \quad u\in\left[ 0,\pi\right] ,\, v\in\left[ 0,2\right] .$$
A

Determine the normal vector $\,\mathbf n_{\mathcal F}\,$ corresponding to the parametric representation and compute the flux of the vector field through the surface.

B

What is the meaning of the sign of the flux? Can you change the sign of the flux by changing the parametric representation of the suface?

Given a vectorfield

$$\mV(x,y,z)=(yz,-xz,x^2+y^2)$$

and a surface $\,\mathcal F\,$ given by the parametric representation

$$\mr(u,v)=(u\sin(v),-u\cos( v),uv), \quad u\in\left[ 0,1\right] ,\, v\in\left[ 0,1\right] .$$
C

Determine the normal vector $\,\mathbf n_{\mathcal F}\,$ corresponding to the parametric representation and compute the flux of the vector field through the surface.

Exercise 2: Fluxthrough an open and a closed surface

A function $\,h:\reel^2 \rightarrow \reel\,$ is given by the expression

$$\,h(x,y)=1-x^3\,.$$

We consider a rectangle in the $(x,y)$-plane given by $\,0\leq x\leq 1\,$ and $\,-\frac{\pi}2\leq y\leq \frac{\pi}2\,.$ Let the surface $\,\mathcal F\,$ be the part of the graph for $\,h\,$ that lies vertically above the rectangle.

x3graf.png

A

Determine a parametric representation for $\mathcal F\,.$

The vector field $\,\mV\,$ is given by

$$\,\displaystyle{\mV(x,y,z)=\begin{matr}{c}xz\\\\x\cos(y)\\\\3x^2\end{matr}\,.}$$
B

Determine the flux of $\mV$ through $\mathcal F\,.$

Now let $\Omega$ denote the solid spatial region that lies vertically between the rectangle $(x,y)$-plane and $\mathcal F\,.$

C

Determine a parametric representaion for $\Omega\,.$

D

Ues Gauss’ theorem to determine the flux of $\mV$ out through the surface of $\Omega\,.$


Exercise 3: Optimization of a flux. Maple

This exercise is solved using Maple.

Given the vector field

$$\mV(x,y,z)=(xyz\,,x+y+z\,,\frac{z}2\,)\,.$$

and the plane $\,\alpha\,$ with the equation $\,z+x=2\,.$

E

Determine a paramteric representation for the part of $\,\alpha\,$ that lies vertically above the the squater spanned byt the points $\,(1,1,0),(-1,1,0),(-1,-1,0)\,$ and $\,(1,-1,0)\,$. The parametric representation is chosen such that the corresponding normal vector has a positive $\,z$-coordinate.

F

Determine the flux through the parametrized part of $\,\alpha\,.$

A surface $\mathcal F$ consists of two parts: $\,\mathcal F_1$ that is the part of $\alpha$ that lies (vertically) above the $(x,y)$-planen circular disc $x^2+y^2\leq 1\,$ in the $(x,y)$-plane. $\mathcal F_2$ is the (vertical) cylindrical surface that is bounded below by the unit circle $x^2+y^2=1$ in the $(x,y)$-plane and above by the plane $\alpha\,.$

Cyl2.png

Open surface consisting of two parts

G

Determine a parametric representation for $\,\mathcal F\,$, cuch that the$\,z$coordinate for the normal vector corresponding to $\,\mathcal F_1\,$ has a positive $\,z$-coordinate and such the the normal vector corresponding to $\,\mathcal F_2\,$ is pointing away from the $\,z$-axis.

H

Determine the flux of $\,\mV\,$ through $\,\mathcal F\,$.

Advanced: $\mathcal F\,$ is now rotated the angle $\,w\,$ about the $\,z\,$-axis counter-clockwise as seen from the positive end of the $\,z$n-axis.

I

Determine a value of $\,w\,$ that gives maximum flux, and a value that gives minimum flux. State the maximum value and the minimum value.

Exercise 4: Flux using Gauss’ theorem

A spatial region is given by the cube

$$\Omega=\left\{\,(x,y,z)\,|\,\,x \in\left[ 0,1\right],\,y\in \left[ 0,1\right],\,z\in \left[ 0,1\right]\,\right\}$$

equipped with an outward pointing normal vector field.

A

Determine the flux out through the surface of $\Omega$ of the vector field

$$\mV(x,y,z)=(2x-\sqrt{1+z^2}\,,\,x^2y\,,\,-xz^2)\,.$$

B

Determine the flux out through through the surface of $\Omega$ of the vector field

$$\mW(x,y,z)=(2x-\sqrt[3]{y^2+z^2}\,,\,xz-\cos(y)\,,\,\sin(xy)+2z)\,.$$

C

It is stated that

$$\displaystyle{\int_0^1\int_0^1\int_0^1(x+y+z)\,\mathrm dx\,\mathrm dy\,\mathrm dz=\frac 32}\,.$$

Determine a vector field whose flux out through the surface of $\,\Omega$ is $\,\displaystyle{\frac 32}\,.$