
AIR Tools

A MATLAB Package of Algebraic

Iterative Reconstruction Techniques

Version 1.3 for Matlab 8.0

Per Christian Hansen

Maria Saxild-Hansen

Department of Applied Mathematics and Computer Science
Building 324, Technical University of Denmark

DK-2800 Lyngby, Denmark

July 2015

Abstract

This collection of MATLAB software contains implementations of several Algebraic Itera-
tive Reconstruction methods for tomographic reconstruction (and other imaging problems).
These so-called row action methods rely on semi-convergence for achieving the necessary
regularization of the problem. Two classes of methods are implemented:

ART The class of algebraic reconstruction techniques includes Kaczmarz’s classical method,
the symmetric Kaczmarz method, and randomized Kaczmarz.

SIRT The class of simultaneous iterative reconstruction techniques includes Landweber’s
and Cimmino’s classical methods plus CAV, DROP, and SART.

In addition we provide a few simplified test problems from medical and seismic tomography.
For each iterative method, a number of strategies are available for choosing the relaxation
parameter and the stopping rule. The relaxation parameter can be fixed, or chosen adaptively
in each iteration; in the former case we provide a new “training” algorithm that finds the
optimal parameter for a given test problem. The stopping rules provided are the discrepancy
principle, the monotone error rule, and the NCP criterion; for the first two methods “training”
can be used to find the optimal discrepancy parameter. The corresponding manuscript is:

• P. C. Hansen and M. Saxild-Hansen, AIR Tools – A MATLAB Package of Algebraic Ite-
rative Reconstruction Techniques, Journal of Computational and Applied Mathematics,
236 (2012), pp. 2167–2178; doi:10.1016/j.cam.2011.09.039.

We have included the most common algebraic iterative reconstruction methods in the package
– but we left out block versions of the methods, which are better suited for other programming
languages than MATLAB. Our main contribution is the design of new training algorithms
for the optimal relaxation parameter, and the “packaging” of all the methods with identical
calling sequences and functionality plus strategies for the various parameters and suitable
stopping rules. We are not aware of other MATLAB packages with this functionality.

Notation

All vectors are column vectors, aj is the jth column of A, ai is the transposed of the ith row
of A, ⟨x, y⟩ = xT y is the standard inner product, and ρ(·) is the spectral radius (the largest
positive eigenvalue).

Acknowledgements

This work is part of the project CSI: Computational Science in Imaging, supported by grant
no. 274-07-0065 from the Danish Research Council for Technology and Production Sciences.
We are grateful to Jakob Sauer Jørgensen for providing efficient MATLAB code to compute
the sparse matrix in the test problems, and to Klaus Mosegaard for suggesting the seismic
travel-time tomography test problem. We also thank Tommy Elfving for encouragement
and advice during the development of the package, Jim Nagy for pointing out the need for
nonnegativity constraints, and the referee for constructive comments and suggestions.

Mikkel Brettschneider, Knud Cordua, Jacob Frøsig, Jakob Sauer Jørgensen, Martin Ple-
šinger, Mikhail Romanov, and Nicolai Riis helped to prepare Version 1.3 with code and
revisions.

Revisions Since Version 1.0

• All iterative methods run faster and use less memory, and include box constraints.

• Functions fanbeamtomo and paralleltomo now return the correct variable d.

• Function rzr allows input b with multiple columns.

• All ART methods now allow a damping factor to avoid division by very small norms.

• All SIRT methods had some of the stopping rules changed:

– The discrepancy principle ’DP’ now always uses the standard residual vector
rk = b−Axk,

– The monotone error rule ’ME’ now always uses 1/2(rk)T (rk+1 + rk)/∥rk||2.

• The default value for lambda was changed to 1 in kaczmarz and symkaczmarz.

• The default value for lambda was changed to 1.9/∥ATMA∥2 in all SIRT methods.

• The following new functions were added:

– fbp – filtered back project which is similar to MATLAB’s iradon but conforms
to AIR Tools’s use of matrices and vectors.

– cart – columnwise version of Kaczmarz’s method,

– phantomgallery – a collection of 2D phantoms,

– seismicwavetomo – similar to seismictomo but without an underlying high-
frequency assumption, i.e., no ray model.

Note: for all ART methods NCP is implemented correct but it is not recommended as it often
leads to a very early termination. CART with a random choice of columns converges very
slowly and is not included.

3

Overview of the Package

Iterative ART Methods

cart Columnwise version of Kaczmarz’s method
kaczmarz Kaczmarz’s method, aka the Algebraic Reconstruction Technique (ART)
randkaczmarz The randomized Kaczmarz method
symkaczmarz The symmetric Kaczmarz method

Iterative SIRT Methods

cav Component Averaging (CAV) method
cimmino Cimmino’s method
drop Diagonally Relaxed Orthogonal Projections (DROP) method
landweber Landweber’s method
sart Simultaneous Algebraic Reconstruction Technique (SART)

Training Routines

trainDPME Training strategy to find the best parameter τ when discrepancy prin-
ciple or monotone error rule is used as stopping rule

trainLambdaART Training strategy to find the best constant relaxation parameter λ for a
given ART method

trainLambdaSIRT Training strategy to find the best constant relaxation parameter λ for a
given SIRT method

Test Problems

fanbeamtomo Creates a 2-D fan-beam tomography problem
paralleltomo Creates a 2-D parallel-beam tomography problem
phantomgallery A collection of different 2D phantoms
seismictomo Creates a 2-D seismic tomography problem
seismicwavetomo Similar to seismictomo but without a ray assumption

Demo Scripts

ARTdemo Illustrates the simple use of the ART methods
nonnegdemo Illustrates the use of nonnegativity constraints
SIRTdemo Illustrates the simple use of the SIRT methods
trainingdemo Illustrates the use of the training routines as pre-processors for the SIRT

and the ART methods

Auxiliary Routines

calczeta Calculates a specific root of a certain polynomial
fbp Similar to iradon bur confirms with AIR Tools variables.
rzr Removes zero rows from A and corresponding elements of b

4

The Demo Scripts

The demo ARTdemo illustrates the use of the three ART methods kaczmarz, symkaczmarz
and randkaczmarz. First the demo creates a parallel-beam tomography test problem using
the test problem paralleltomo. Then noise is added to the right-hand side, and the noisy
problem is solved using the ART methods with 10 iterations. The result is shown as four
images, where one contains the exact image and the remaining images show the solutions
computed by means of the three ART methods.

The demo nonnegdemo illustrates the use of nonnegativity constraints in the cimmino

and kaczmarz methods. The demo creates a parallel-beam test problem, then adds noise and
solves the problem with and without the constraints.

The demo SIRTdemo illustrates the use of the five SIRT methods landweber, cimmino,
cav, drop, and sart. First the demo creates a parallel-beam tomography test problem using
the test problem paralleltomo. Then noise is added to the right-hand side, and the noisy
problem is solved using the SIRT methods with 50 iterations. The result is shown as seven
images, where one contains the exact image and the remaining images show the solutions
computed by means of the five SIRT methods.

The demo trainingdemo illustrates the use of the training functions trainLambdaART,
trainLambdaSIRT, and trainDPME followed by the use of an ART or a SIRT method. In
this demo the used SIRT method is cimmino and the used ART method is kaczmarz. First
the demo function creates a parallel-beam tomography test problem using the test prob-
lem paralleltomo, and noise is added to the right-hand side. Then the training strategy
trainLambdaSIRT is used to find the relaxation parameter for cimmino and trainLambdaART

is used to find the relaxation parameter for kaczmarz. Including this information the stop-
ping parameter is found for each of the methods, where cimmino uses the ME stopping rule
and kaczmarz uses the DP stopping rule. After this we solve the problem with the specified
relaxation parameter and stopping rule. The exact image and the results from the methods
are shown.

The Use of the restart Parameter

The parameter restart allows one to continue the iterations of an iterative method, contin-
uing from the last iteration of a previous call:

[X,info,restart] = landweber(A,b,1:k); % First call.

% Other code lines here.

options.testart = restart; % Second call with iterations

moreX = landweber(A,b,1:k2,X(:,end),options); % from k+1 to k+k2.

If the same matrix A is involved in repeated calls to the same iterative method, restart can
be used to avoid re-computation of the spectral radius:

options.lambda = lambda; % Fixed lambda.

[X,info,restart] = landweber(A,b1,k,[],options); % First call.

options.restart = restart;

[X,info] = landweber(A,b2,k,[],options); % Second call.

The above example is for a fixed λ; the same technique can be applied when using a relaxation-
parameter rule that involves the use of the spectral radius.

5

calczeta

Purpose:

Calculates a specific root of a certain polynomial (used in the SIRT methods).

Synopsis:

z = calczeta(k)

Description:

This function uses Newton’s method to compute the unique root in the interval (0, 1) of the
polynomial equation:

(2k − 1)zk−1 − (zk−2 + ...+ z + 1) = 0, k ≥ 2.

The input k can be given as both a scalar or a vector, and the corresponding root or roots
are returned in the output z.

The function calczeta is used in the functions cav, cimmino, drop, landweber, sart,
and symkaczmarz.

Example:

Calculate the roots for k from 2 up to 100 and plot the found roots.

k = 2:100;

z = calczeta(k);

figure, plot(k,z,’bo’)

See also:

cav, cimmino, drop, landweber, sart, symkaczmarz.

6

cart

Purpose:

Columnwise version of Kaczmarz’s method.

Synopsis:

[X info] = cart(A,b,K)

[X info] = cart(A,b,K,x0)

[X info] = cart(A,b,K,x0,options)

Algorithm:

For arbitrary starting vector x0 ∈ Rn one iteration of the algorithm cart consists of the
following steps:

xj ← xj + λ
aT:j(b−Ax)

∥a:j∥22
j = 1, . . . , n,

where a:j is the jth columns of A.

Description:

The function implements the columnwise version of Kaczmarz’s iterative method for solving
the linear system Ax = b. The starting vector is x0; if no starting vector is given then x0 = 0
is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the putput matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options as a constant.
As default lambda is set to 0.25.

The second output info is a vector with two elements. The first element is an indicator
that denotes why the iterations were stopped. The number 0 denotes that the iterations
were stopped because the maximum number of iterations were reached, 1 denotes that the
NCP-rule stopped the iterations and 2 denotes that the DP-rule stopped the iterations. The
second element in info is the number of used iterations.

Use of options:

The following fields in options are used in this function:

- options.lambda = c, a constant satisfying 0 < c < 2. A warning is given if this
requirement is estimated to be violated.

- options.nonneg Logical; if true then nonnegativity in enforced in each step.

- options.box Double; upper bound L in box constraint [0, L] on pixel values.

7

- options.damping Double; a parameter D to avoid division by very small row norms
by adding D ·maxi{∥a:j∥22} to ∥a:j∥22.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule type DP.

Example:

Generate a “noisy” 50× 50 parallel beam tomography problem, compute 10 cart iterations,
and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = cart(A,b,1:10);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

kaczmarz, randkaczmarz, symkaczmarz.

8

cav

Purpose:

Component Averaging (CAV) iterative method.

Synopsis:

[X info restart] = cav(A,b,K)

[X info restart] = cav(A,b,K,x0)

[X info restart] = cav(A,b,K,x0,options)

Algorithm:

For arbitrary x0 ∈ Rn the algorithm for cav takes the following form:

xk+1 = xk + λk A
TDS(b− Axk), DS = diag

(
wi∑n

j=1 sja
2
ij

)
,

where sj is the number of nonzero elements in column j of A, and wi are user specified weights
(default: wi = 1).

Description:

The function implements the Component Averaging (CAV) iterative method for solving the
linear system Ax = b. The starting vector is x0; if no starting vector is given then x0 = 0 is
used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. As default lambda

is set to 1/σ̃2
1, where σ̃1 is an estimate of the largest singular value of D

1/2
S A.

The second output info is a vector with two elements. The first element is an indicator,
that denotes why the iterations were stopped. The number 0 denotes that the iterations were
stopped because the maximum number of iterations were reached, 1 denotes that the NCP-
rule stopped the iterations, 2 denotes that the DP-rule stopped the iteration and 3 denotes
that the ME-rule stopped the iterations. The second element in info is the number of used
iterations.

The struct restart, which can be given as output, contains in the field s1 the estimated
largest singular value. restart also returns a vector containing the diagonal of the matrix
DS in the field M and an empty vector in the field T. The struct restart can also be given as
input in the struct options such that the program does not have to recompute the contained
values. We recommend only to use this, if the user has good knowledge of MATLAB and is
completely sure of the use of restart as input.

9

Use of options:

The following fields in options are used in this function:

- options.lambda:

- options.lambda = c, where c is a constant, satisfying 0 < c < 2/σ̃2
1. A warning

is given if this requirement is estimated to be violated.

- options.lambda = ’line’, where the line search method is used to compute the
value for λk in each iteration.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi1mod’, where the method psi1mod computes the values
for λk using the modified Ψ1-based relaxation with ν = 2. The parameter ν can
be changed in the code.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.lambda = ’psi2mod’, where the method psi2mod computes the values
for λk using the modified Ψ2-based relaxation with ν = 1.5. The parameter ν can
be changed in the code.

- options.nonneg Logical; if true then nonnegativity in enforced in each iteration.

- options.box Double; upper bound L in box constraint [0, L] on pixel values.

- options.restart

- options.restart.M = a vector with the diagonal of DS .

- options.restart.s1 = σ̃1, the estimated largest singular value of D
1/2
S A.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index k∗ is determined
according to the discrepancy principle (DP).

- options.stoprule.type = ’ME’, where the stopping index k∗ is determined
according to the monotone error rule (ME).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule types DP and ME.

- options.w, an m-dimensional vector of weights.

10

Example:

Generate a “noisy” 50 × 50 parallel beam tomography problem, compute 50 cav iterations,
and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = cav(A,b,1:50);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cimmino, drop, landweber, sart.

References:

1. Y. Censor, D. Gordon, and R. Gordon, Component averaging: An efficient iterative
parallel algorithm for large sparse unstructured problems, Parallel Computing, 27 (2001),
pp. 777–808.

11

cimmino

Purpose:

Cimmino’s iterative projection method.

Synopsis:

[X info restart] = cimmino(A,b,K)

[X info restart] = cimmino(A,b,K,x0)

[X info restart] = cimmino(A,b,K,x0,options)

Algorithm:

For arbitrary x0 ∈ Rn the algorithm for cimmino take the following form:

xk+1 = xk + λk A
TD(b− Axk), D =

1

m
diag

(
wi

∥A(i, :)∥22

)
,

where wi are use specified weights (default: wi = 1).

Description:

The function implements Cimmino’s iterative projection method for solving linear systems
Ax = b. The starting vector is x0; if no starting vector is given, then x0 = 0 is used.

The numbers given in the vector K are iteration numbers that specify which iterations are
stored in the output matric K. If a stopping rule us selected (see below) and K = [], then X

contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. As default lambda
is set to 1/σ̃2

1, where σ̃1 is an estimate of the largest singular value of D1/2A.

The second output info is a vector with two elements. The first element is an indicator
that denotes why the iterations were stopped. The number 0 denotes that the iterations were
stopped because the maximum number of iterations were reached, 1 denotes that the NCP-
rule stopped the iterations, 2 denotes that the DP-rule stopped the iteration and 3 denotes
that the ME-rule stopped the iterations. The second element in info is the number of used
iterations.

The struct restart, which can be given as output, contains in the field s1 the estimated
largest singular value. restart also returns a vector containing the diagonal of the matrix
M in the field M and an empty vector in the field T. The struct restart can also be given as
input in the struct options, such that the program do not have to recompute the contained
values. We recommend only to use this, if the user has good knowledge of MATLAB and is
completely sure of the use of restart as input.

12

Use of options

The following fields in options are used in this function:

- options.lambda:

- options.lambda = c, where c is a constant, satisfying 0 < c < 2/σ̃2
1. A warning

is given if this requirement is estimated to be violated.

- options.lambda = ’line’, where the line search method is used to compute the
value for λk in each iteration.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi1mod’, where the method psi1mod computes the values
for λk using the modified Ψ1-based relaxation with ν = 2. The parameter ν can
be changed in the code.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.lambda = ’psi2mod’, where the method psi2mod computes the values
for λk using the modified Ψ2-based relaxation with ν = 1.5. The parameter ν can
be changed in the code.

- options.nonneg Logical; if true then nonnegativity in enforced in each iteration.

- options.box Double; upper bound L in box constraint [0, L] on pixel values.

- options.restart

- options.restart.M = a vector with the diagonal of M .

- options.restart.s1 = σ̃1, the estimated largest singular value of M1/2A.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index k∗ is determined
according to the discrepancy principle (DP).

- options.stoprule.type = ’ME’, where the stopping index k∗ is determined
according to the monotone error rule (ME).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule types DP and ME.

- options.w, an m-dimensional vector of weights.

13

Example:

Generate a “noisy” 50 × 50 parallel beam tomography problem, compute 50 cimmino itera-
tions, and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = cimmino(A,b,1:50);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cav, drop, landweber, sart.

References:

1. G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La
Ricerca Scientifica, XVI, Series II, Anno IX, 1 (1938), pp. 326–333.

2. C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.

14

drop

Purpose:

Diagonally Relaxed Orthogonal Projections (DROP) iterative method.

Synopsis:

[X info restart] = drop(A,b,K)

[X info restart] = drop(A,b,K,x0)

[X info restart] = drop(A,b,K,x0,options)

Algorithm:

For arbitrary x0 ∈ Rn the algorithm for the drop method takes the following form:

xk+1 = xk + λkS
−1ATM(b− Axk), M = diag

(
wi

∥A(i, :)∥22

)
,

where S = diag (sj) and sj is the number of nonzero elements in column j of A for i = 1, . . . , m.
Moreover, wi are user specified weights (default wi = 1).

Description:

The function implements the Diagonally Relaxed Orthogonal Projections (DROP) iterative
method for solving the linear system Ax = b. The starting vector is x0; if no starting vector
is given, then x0 = 0 is used.

The numbers given in the vector K are the iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. As default lambda
is set to 1/ρ̃, where ρ̃ is an estimate of the spectral radius of S−1ATM A.

The second output info is a vector with two elements. The first element is an indicator,
that denotes why the iterations were stopped. The number 0 denotes that the iterations were
stopped because the maximum number of iterations were reached, denotes that the NCP-
rule stopped the iterations, 2 denotes that the DP-rule stopped the iterations and 3 denotes
that the ME-rule stopped the iterations. The second element in info is the number of used
iterations.

The struct restart, which can be given as output, contains in the field s1 the estimated
largest singular value. restart also returns a vector containing the diagonal of the matrix
M in the field M and the diagonal of the matrix S in the field T. The struct restart can also
be given as input in the struct options, such that the program do not have to recompute
the contained values. We recommend only to use this, if the user has good knowledge of
MATLAB and is completely sure of the use of restart as input.

15

Use of options

The following fields in options are used in this function:

- options.lambda:

- options.lambda = c, where c is a constant, satisfying 0 < c < 2/ρ̃. A warning
is given if this requirement is estimated to be violated.

- options.lambda = ’line’, where the line search method is used to compute the
value for λk in each iteration.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi1mod’, where the method psi1mod computes the values
for λk using the modified Ψ1-based relaxation with ν = 2. The parameter ν can
be changed in the code.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.lambda = ’psi2mod’, where the method psi2mod computes the values
for λk using the modified Ψ2-based relaxation with ν = 1.5. The parameter ν can
be changed in the code.

- options.nonneg Logical; if true then nonnegativity in enforced in each iteration.

- options.box Double; upper bound L in box constraint [0, L] on pixel values.

- options.restart

- options.restart.M = a vector containing the diagonal of M .

- options.restart.T = a vector containing the diagonal of S−1.

- options.restart.s1 = σ̃1, where σ̃1 =
√
ρ̃.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.type = ’ME’, where the stopping index is determined ac-
cording to the monotone error rule (ME).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule types DP and ME.

- options.w, an m-dimensional vector of weights.

16

Example:

Generate a “noisy” 50× 50 parallel beam tomography problem, compute 50 drop iterations,
and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = drop(A,b,1:50);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cav, cimmino, landweber, sart.

References:

1. Y. Censor, T. Elfving, G. Herman, and T. Nikazad, On diagonally relaxed orthogonal
projection methods, SIAM J. Sci. Comput., 30 (2007/08), pp. 473–504.

17

fanbeamtomo

Purpose:

Creates a two-dimensional fan-beam tomography test problem.

Synopsis:

[A b x theta p R w] = fanbeamtomo(N)

[A b x theta p R w] = fanbeamtomo(N,theta)

[A b x theta p R w] = fanbeamtomo(N,theta,p)

[A b x theta p R w] = fanbeamtomo(N,theta,p,R)

[A b x theta p R w] = fanbeamtomo(N,theta,p,R,w)

[A b x theta p R w] = fanbeamtomo(N,theta,p,R,w,isDisp)

Description:

This function creates a two-dimensional tomography test problem using fan beams.

• A 2-dimensional domain is divided into N equally spaced intervals in both dimension
creating N2 cells.

• For each specified angle theta, given in degrees, a source is located with distance R to
the center of the domain. The default values for the angles is theta = 0:359. The
distance from the center of the domain to the sources is given in the unit of side lengths
and the default value of R is 2.

• From each source p equiangular rays penetrate the domain with a span of w between
the first and the last ray. The number of rays p has default value equal to round(

√
2N).

The default value of the span w is calculated such that from (0,RN) the first ray hits the
point (−N/2,N/2) and the last hits (N/2,N/2).

If the input isDisp is different from 0 then the function also creates an illustration of the
problem with the used angles and rays etc. As default isDisp is 0.

The function returns a coefficient matrix A with the dimension length(theta) · p × N2,
the right hand side b, and the phantom head reshaped as a vector x with elements between 0
and 1. The figure below illustrates the phantom head for N = 100. In case that default values
are used the function also returns the used angles theta, the number of used rays for each
angle p, the used distance from the source to the center of the domain given in side lengths
R and the used span of the rays w.

Algorithm:

The matrix element aij is defined as the length of the ith ray through the jth cell, with aij = 0
if ray i does not go through cell j. The exact solution of the head phantom is reshaped as a
vector x, and the ith element in the right hand side b is

bi =
N2∑
j=1

aij xj , i = 1, . . . , length(theta) · p.

18

Example:

Create a test problem and visualize the exact image:

N = 64; theta = 0:5:359; p = 2*N; R = 2;

[A b x] = fanbeamtomo(N,theta,p,R);

imagesc(reshape(x,N,N))

colormap gray, axis image off

See also:

paralleltomo, seismictomo.

References:

1. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, SIAM,
Philadelphia, 2001.

19

fbp

Purpose:

Filtered back projection.

Synopsis:

x = kaczmarz(A,b,theta)

x = kaczmarz(A,b,theta,filter)

Algorithm:

The algorithm consists of two steps: a filtering which is identical to that in MATLAB’s iradon
and a back projection which is implemented as a multiplication with the transposed of the
system matrix A.

Description:

This function in quite similar to MATLAB’s iradon, but it is designed to conform with AIR
Tools. The input parameters are the system matrix A from paralleltomo, the right-hand
side vector b (corresponding to the sinogram), the vector theta of projection angles, and the
optional string filter (see the documentation for iradon for details). The output vector x
is the computed reconstruction.

Example:

Generate a 256 × 256 parallel-beam tomography problem, and compute the filtered back
projection reconstruction using the standard Ram-Lak filter:

N = 256;

theta = 1:180;

[A,b] = paralleltomo(N,theta);

x = fbp(A,b,theta);

imagesc(reshape(x,N,N))

colormap gray, axis image off

See also:

MATLAB’s iradon.

References:

1. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, SIAM,
Philadelphia, 2001.

20

kaczmarz

Purpose:

Kaczmarz’s method also known as the algebraic reconstruction technique (ART).

Synopsis:

[X info] = kaczmarz(A,b,K)

[X info] = kaczmarz(A,b,K,x0)

[X info] = kaczmarz(A,b,K,x0,options)

Algorithm:

For arbitrary starting vector x0 ∈ Rn one iteration of the algorithm kaczmarz consists of the
following steps:

x← x+ λk
bi −

⟨
ai, x

⟩
∥ai∥22

ai, i = 1, . . . ,m.

Description:

The function implements Kaczmarz’s iterative method for solving the linear system Ax = b.
The starting vector is x0; if no starting vector is given then x0 = 0 is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the putput matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options as a constant.
As default lambda is set to 0.25.

The second output info is a vector with two elements. The first element is an indicator
that denotes why the iterations were stopped. The number 0 denotes that the iterations
were stopped because the maximum number of iterations were reached, 1 denotes that the
NCP-rule stopped the iterations and 2 denotes that the DP-rule stopped the iterations. The
second element in info is the number of used iterations.

Use of options:

The following fields in options are used in this function:

- options.lambda = c, a constant satisfying 0 < c < 2. A warning is given if this
requirement is estimated to be violated.

- options.nonneg Logical; if true then nonnegativity in enforced in each step.

- options.box Double; upper bound L in box constraint [0, L] on pixel values.

- options.damping Double; a parameter D to avoid division by very small row norms
by adding D ·maxi{∥ai∥22} to ∥ai∥22.

21

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule type DP.

Example:

Generate a “noisy” 50× 50 parallel beam tomography problem, compute 10 kaczmarz itera-
tions, and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = kaczmarz(A,b,1:10);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cart, randkaczmarz, symkaczmarz.

References:

1. G. T. Herman, Fundamentals of Computerized Tomography, Image Reconstruction from
Projections, Springer, New York, 2009.

2. S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin de
l’Académie Polonaise des Sciences et Lettres, A35 (1937), pp. 355–357.

22

landweber

Purpose:

The Landweber iterative method.

Synopsis:

[X info restart] = landweber(A,b,K)

[X info restart] = landweber(A,b,K,x0)

[X info restart] = landweber(A,b,K,x0,options)

Algorithm:

For arbitrary x0 ∈ Rn the algorithm for landweber takes the following form:

xk+1 = xk + λk A
T (b− Axk).

Description:

The function implements the classical Landweber iterative method for solving the linear
system Ax = b. The starting vector is x0; if no starting vector is given then x0 = 0 is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. As default lambda
is set to 1/σ̃2

1, where σ̃1 is an estimate of the largest singular value of A.

The second output is a vector with two elements. The first element is an indicator, that
denotes why the iterations were stopped. The number 0 denotes that the iterations were
stopped because the maximum number of iterations were reached, 1 denotes that the NCP-
rule stopped the iterations, 2 denotes that the DP-rule stopped the iterations and 3 denotes
that the ME-rule stopped the iterations. The second element is info is the number of used
iterations.

The struct restart, which can be given as output, contains in the field s1 the estimated
largest singular value. restart also returns an empty vector in both the fields M and T. The
struct restart can also be given as input in the struct options, such that the program does
not have to recompute the contained values. We recommend only to use this, if the user has
good knowledge of MATLAB and is completely sure of the use of restart as input.

Use of options:

The following fields in options are used in this function:

- options.lambda:

23

- options.lambda = c, where c is a constant, satisfying 0 < c < 2/σ̃2
1. A warning

is given if this requirement is estimated to be violated.

- options.lambda = ’line’, where the line search method is used to compute the
value for λk in each iteration.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi1mod’, where the method psi1mod computes the values
for λk using the modified Ψ1-based relaxation with ν = 2. The parameter ν can
be changed in the code.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.lambda = ’psi2mod’, where the method psi2mod computes the values
for λk using the modified Ψ2-based relaxation with ν = 1.5. The parameter ν can
be changed in the code.

- options.nonneg Logical; if true then nonnegativity in enforced in each iteration.

- options.box Double; upper bound L in box constraint [0, L] on pixel values.

- options.restart

- options.restart.s1 = σ̃1, where σ̃1 is the estimated largest singular value of A.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index k∗ is determined
according to the discrepancy principle (DP).

- options.stoprule.type = ’ME’, where the stopping index k∗ is determined
according to the monotone error rule (ME).

options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule types DP and ME.

Example:

We generate a “noisy” 50 × 50 parallel beam tomography problem, compute 50 landweber

iterations, and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = landweber(A,b,1:50);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

24

See also:

cav, cimmino, drop, sart

References:

1. L. Landweber, An iteration formula for Fredholm integral equations of the first kind,
American Journal of Mathematics, 73 (1951), pp. 615–624.

25

paralleltomo

Purpose:

Creates a two-dimensional parallel-beam tomography test problem.

Synopsis:

[A b x theta p w] = paralleltomo(N)

[A b x theta p w] = paralleltomo(N,theta)

[A b x theta p w] = paralleltomo(N,theta,p)

[A b x theta p w] = paralleltomo(N,theta,p,w)

[A b x theta p w] = paralleltomo(N,theta,p,w,isDisp)

Description:

This function creates a two-dimensional tomography test problem using parallel beams.

• A 2-dimensional domain is divided into N equally spaced intervals in both dimensions
creating N2 cells.

• For each specified angle theta, given in degrees, p parallel rays penetrate the domain.
The default values for the angles are theta = 0:179. The rays are arranged symmet-
rically around the center of the domain, such that the width from the first to the last
ray is w. The default value of w is

√
2N.

• The number of rays p has the default value equal to round(
√
2N).

If the input isDisp is different from 0 then the function also creates an illustration of the
problem with the used angles and rays etc. As default isDisp is 0.

The function returns a coefficient matrix A with the dimension length(theta) · p × N2,
the right hand side b, and the phantom head reshaped as a vector x with elements between 0
and 1. The figure below illustrates the phantom head for N = 100. In case the default values
are used, the function also returns the used angles theta, the number of used rays for each
angle p, and the used width of the rays w.

Algorithm:

The matrix element aij is defined as the length of the ith ray through the jth cell, with aij = 0
if ray i does not go through cell j. The exact solution of the head phantom is reshaped as a
vector x, and the ith element in the right hand side b is

bi =
N2∑
j=1

aijxj , i = 1, . . . , length(theta) · p.

Example:

Create a test problem and visualize the exact image:

26

N = 64; theta = 0:5:179; p = 2*N;

[A b x] = paralleltomo(N,theta,p);

imagesc(reshape(x,N,N))

colormap gray, axis image off

See also:

fanbeamtomo, seismictomo.

References:

1. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, SIAM,
Philadelphia, 2001.

27

phantomgallery

Purpose:

Creates different two-dimensional phantoms for use in tomography test problem.

Synopsis:

im = paralleltomo(name,N)

im = paralleltomo(name,N,P1)

im = paralleltomo(name,N,P1,P2)

im = paralleltomo(name,N,P1,P2,P3)

Description:

This function creates several different two-dimensional phantoms for use in tomography test
problem. The size is N× N and the pixel values are between 0 and 1. The type of phantom is
specified by name and the characteristics are controlled by optional parameters. The following
phantoms are available (for examples see the figure below).

• name = ’smooth’: a smooth image

im = phantomgallery(’smooth’,N,P1)

P1 = 1, 2, 3 or 4 defines four different smooth functions (default = 4)

The image is constructed by adding four different Gaussian functions.

• name = ’binary’: a random image with binary pixel values arranged in domains

im = phantomgallery(’binary’,N,P1)

P1 = seed for random number generator

The image is dominated by horizontal structures.

• name = ’threephases’: a random image with pixel values 0, 0.5, 1 arranged in do-
mains

im = phantomgallery(’threephases’,N,P1,P2)

P1 controls the number of domains (default = 100)
P2 = seed for random number generator

The image is a model of a three-phase object.

• name = ’threephasessmooth’: similar to ’threephases’, but the domains have smoothly
varying pixel values and there is a smooth background

im = phantomgallery(’threephasessmooth’,N,P1,P2,P3)

P1 controls the number of domains (default = 100)
P2 controls the intensity variation within each domain (default = 1.5)
P3 = seed for random number generator

• name = ’fourphases’: a random image similar to ’binary’ but with three phases
separated by (thin) structures that form the fourth phase

28

im = phantomgallery(’fourphases’,N,P1)

P1 = seed for random number generator

• name = ’grains’: a random image with Voronoi cells

im = phantomgallery(’grains’,N,P1,P2)

P1 = number of cells in the image (default = 3*sqrt(N))
P2 = seed for random number generator

The image is a model of grains with different pixel intensities.

• name = ’ppower’: a random image with patterns of nonzero pixels

im = phantomgallery(’ppower’,P1,P2)

P1 = the ratio of nonzero pixels, between 0 and 1 (default = 0.3)
P2 = the smoothness of the image, greater than 0 (default = 2)
P3 = seed for random number generator

The larger the P2 the larger the domains of nonzero pixels.

Example:

To use these images in connection with fanbeamtomo, paralleltomo, semismictomo and
semismicwavetomo, use the commands:

im = phantomgallery(name,N,...);

x = im(:);

A = matrix generated, e.g., by paralleltomo

b = A*x;

29

randkaczmarz

Purpose:

The randomized Kaczmarz method.

Synopsis:

[X info] = randkaczmarz(A,b,K)

[X info] = randkaczmarz(A,b,K,x0)

[X info] = randkaczmarz(A,b,K,x0,options)

Algorithm:

For arbitrary starting vector x0 ∈ Rn one iteration of the algorithm for randkaczmarz consists
of m steps of the form:

x← x+ λ
br(i) −

⟨
ar(i), x

⟩
∥ar(i)∥22

ar(i), i = 1, . . . ,m,

where the index r(i) is chosen from the set {1, . . . ,m} randomly with probability proportional
with ∥ai∥22.

Description:

The function implements the randomized Kaczmarz iterative method for solving the linear
system Ax = b. The starting vector is x0; if no starting vector is given then x0 = 0 is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options as a constant.
As default lambda is set to 1, since this corresponds to the original method.

The second output info is a vector with two elements. The first element is an indicator
that denotes why the iterations were stopped. The number 0 denotes that the iterations
were stopped because the maximum number of iterations were reached, 1 denotes that the
NCP-rule stopped the iterations, and 2 denotes that the DP-rule stopped the iterations. The
second element is info is the number of used iterations.

Use of options:

The following fields in options are used in this function:

- options.lambda = c, a constant satisfying 0 < c < 2. A warning is given if this
requirement is estimated to be violated.

- options.nonneg Logical; if true then nonnegativity in enforced in each step.

- options.box Double; upper bound L in box constraint [0, L] on pixel values.

30

- options.damping Double; a parameter D to avoid division by very small row norms
by adding D ·maxi{∥ai∥22} to ∥ai∥22.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule type DP.

Example:

Generate a “noisy” 50 × 50 parallel beam tomography problem, compute 10 randkaczmarz

iterations, and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = randkaczmarz(A,b,1:10);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cart, kaczmarz, symkaczmarz.

References:

1. T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm for linear systems
with exponential convergence, J. Fourier Analysis Appl., 15 (2009), pp. 262–278.

31

rzr

Purpose:

Removes zero rows of A and the corresponding elements of b.

Synopsis:

[A b] = rzr(A,b)

[A b] = rzr(A,b,Nthr)

Description:

This function identifies zero rows of the coefficient matrix A and removes them. If a right-
hand side b is present, the corresponding elements of b are also removed (b can be a matrix
of several right hand sides).

If a positive Nthr is given as the third argument, then all rows with less than or equal to
Nthr nonzero elements are removed.

Use this function to “clean up” a discretized tomography problem. Zero rows do not
contribute to the reconstruction. Rows with few nonzero elements correspond to pixels near
the corners of the image, whose reconstructions are highly sensitive to noise.

Example:

Generate a small parallel-beam test problem and remove the zero rows from the system.

[A b] = paralleltomo(16);

[A b] = rzr(A,b)

Generate a small parallel-beam test matrix and remove all rows of A that have 5 or less
nonzero elements.

A = paralleltomo(16);

A = rzr(A,[],5)

32

sart

Purpose:

The Simultaneous Algebraic Reconstruction Technique (SART) iterative method.

Synopsis:

[X info restart] = sart(A,b,K)

[X info restart] = sart(A,b,K,x0)

[X info restart] = sart(A,b,K,x0,options)

Algorithm:

For arbitrary x0 ∈ Rn the algorithm for sart takes the following form:

xk+1 = xk + λkV
−1ATW−1(b− Axk),

where V = diag
(
∥ai∥1

)
and W = diag (∥aj∥1).

Description:

The function implements the SART (Simultaneous Algebraic Reconstruction Technique) it-
erative method for solving the linear system Ax = b. The starting vector is x0; if no starting
vector is given then x0 = 0 is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. The spectral radius
is ρ(V −1ATW−1A) = 1, and as default lambda is set to 1.

The second output info is a vector with two elements. The first element is an indicator,
that denotes why the iterations were stopped. The number 0 denotes that the iterations were
stopped because the maximum number of iterations were reached 1 denotes that the NCP-
rule stopped the iterations, 2 denotes that the DP-rule stopped the iterations, and 3 denote
that the ME-rule stopped the iterations. The second element in info is the number of used
iterations.

The struct restart, which can be given as output, contains in the field s1 the estimated
largest singular value. restart also returns a vector containing the diagonal of the matrix
W−1 in the field M and the diagonal of the matrix V −1 in the field T. The struct restart can
also be given as input in the struct options, such that the program do not have to recompute
the contained values. We recommend only to use this, if the user has good knowledge of
MATLAB and is completely sure of the use of restart as input.

33

Use of options:

The following fields in options are used in this function:

- options.lambda:

- options.lambda = c, where c is a constant, satisfying 0 < c < 2. A warning is
given if this requirement is estimated to be violated.

- options.lambda = ’line’, where the line search method is used to compute the
value for λk in each iteration.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi1mod’, where the method psi1mod computes the values
for λk using the modified Ψ1-based relaxation with ν = 2. The parameter ν can
be changed in the code.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.lambda = ’psi2mod’, where the method psi2mod computes the values
for λk using the modified Ψ2-based relaxation with ν = 1.5. The parameter ν can
be changed in the code.

- options.nonneg Logical; if true then nonnegativity in enforced in each iteration.

- options.restart

- options.restart.M = a vector containing the diagonal of W−1.

- options.restart.T = a vector containing the diagonal of V −1.

- options.restart.s1 = 1.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to the Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.type = ’ME’, where the stopping index is determined ac-
cording to the monotone error rule (ME).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user chosen.
This parameter is only needed for the stoprule types DP and ME.

34

Example:

Generate a “noisy” 50× 50 parallel beam tomography problem, compute 50 sart iterations,
and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = sart(A,b,1:50);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cav, cimmino, drop, landweber.

References:

1. A. H. Andersen and A. C. Kak, Simultaneous algebraic reconstruction technique (SART):
A superior implementation of the ART algorithm, Ultrasonic Imaging, 6 (1984), pp. 81–
94.

35

seismictomo

Purpose:

Creates a two-dimensional seismic tomography test problem.

Synopsis:

[A b x s p] = seismictomo(N)

[A b x s p] = seismictomo(N,s)

[A b x s p] = seismictomo(N,s,p)

[A b x s p] = seismictomo(N,s,p,isDisp)

Description:

This function creates a two-dimensional seismic tomography test problem.

• A two-dimensional domain illustrating a cross section of the subsurface is divided into
N equally spaced intervals in both dimensions creating N2 cells.

• On the right boundary s sources are located and each source transmits waves to the p
seismographs or receivers, which are scattered on the surface and on the left boundary.

• As default s = N sources and p = 2N receivers are chosen.

If the input isDisp is different from 0 then the function also creates an illustration of the
problem with the used angles and rays etc. As default isDisp is 0.

The function returns a coefficient matrix A with the dimensions p · s× N2, the right hand
side b, and the phantom subsurface reshaped as a vector x with elements between 0 and 1.
The figure below illustrates the subsurface created when N = 100. In case the default values
are used, the function also returns the used number of sources s and the used number of
receivers p.

Algorithm:

The matrix element aij is defined as the length of the ith ray through the jth cell, with
aij = 0 if ray i does not go through cell j. The exact solution of the subsurface phantom is
reshaped as a vector x, and the ith element in the right hand side b is

bi =

N2∑
j=1

aijxj , i = 1, . . . , s · p.

Example:

Create a test problem and visualize the exact image:

N = 100; s = N; p = 2*N;

[A b x] = seismictomo(N,s,p);

imagesc(reshape(x,N,N))

colormap gray, axis image off

36

See also:

fanbeamtomo, paralleltomo, seismicwavetomo.

Seismic Phantom, N = 100

37

seismicwavetomo

Purpose:

Seismic tomography problem without the ray assumption.

Synopsis:

[A b x s p] = seismicwavetomo(N)

[A b x s p] = seismicwavetomo(N,s)

[A b x s p] = seismicwavetomo(N,s,p)

[A b x s p] = seismicwavetomo(N,s,p,isDisp)

Description:

This function creates a two-dimensional seismic tomography test problem.

• A two-dimensional domain illustrating a cross section of the subsurface is divided into
N equally spaced intervals in both dimensions creating N2 cells.

• On the right boundary s sources are located and each source transmits waves to the p
seismographs or receivers, which are scattered on the surface and on the left boundary.

• As default s = N sources and p = 2N receivers are chosen.

• If the frequency of the wave is very high then the path of the wave can be approximated
by a straight-line ray, as done in seismictomo. For lower frequencies this is not a good
approxmation, and this function assumes instead that the wave travels within the first
Fresnel zone. The wave frequency is determined by omega, and the higher the frequency
the narrower the Fresnel zone (but note that A and b produced here do not converge to
those from seismictomo as omega→∞).

If the input isDisp is different from 0 then the function also creates an illustration of the
problem with the used angles and rays etc. As default isDisp is 0.

The function returns a coefficient matrix A with the dimensions p · s× N2, the right hand
side b, and the phantom subsurface reshaped as a vector x with elements between 0 and 1.
The figure below illustrates the subsurface created when N = 100. In case the default values
are used, the function also returns the used number of sources s and the used number of
receivers p.

Algorithm:

The matrix element aij is defined as the length of the ith ray through the jth cell, with
aij = 0 if ray i does not go through cell j. The exact solution of the subsurface phantom is
reshaped as a vector x, and the ith element in the right hand side b is

bi =
N2∑
j=1

aijxj , i = 1, . . . , s · p.

38

Example:

Create a test problem and visualize the exact image:

N = 100; s = N; p = 2*N;

[A b x] = seismictomo(N,s,p);

imagesc(reshape(x,N,N))

colormap gray, axis image off

See also:

fanbeamtomo, paralleltomo.

References:

1. J. M. Jensen, B. H. Jacobsen, and J. Christensen-Dalsgaard, Sensitivity kernels for
time-distance inversion, Solar Physics, 192 (2000), pp. 231–239.

Seismic Phantom, N = 100

39

symkaczmarz

Purpose:

The symmetric Kaczmarz iterative method.

Synopsis:

[X info] = symkaczmarz(A,b,K)

[X info] = symkaczmarz(A,b,K,x0)

[X info] = symkaczmarz(A,b,K,x0,options)

Algorithm:

For arbitrary starting vector x0 ∈ Rn one iteration of the algorithm for symkaczmarz consists
of a Kaczmarz sweep followed by a Kaczmarz sweep with the equations in reverse order, i.e.,
the following steps:

x← x+ λk
bi −

⟨
ai, x

⟩
∥ai∥22

ai, i = 1, . . . ,m− 1,m,m− 1, . . . , 2.

Description:

The function implements the symmetric Kaczmarz iterative method for solving the linear
system Ax = b. The starting vector is x0; if no vector is given then x0 = 0 is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. As default lambda
is set to 0.25.

The second output info is a vector with two elements. The first element is an indicator,
that denotes why the iterations were stopped. The number 0 denotes that the iterations
were stopped because the maximum number of iterations were reached, 1 denotes that the
NCP-rule stopped the iterations, and 2 denotes that the DP-rule stopped the iterations. The
second element in info is the number of used iterations.

Use of options:

The following fields in options are used in this function:

- options.lambda:

- options.lambda = c, where c is a constant, satisfying 0 < c < 2. A warning is
given if this requirement is estimated to be violated.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

40

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.nonneg Logical; if true then nonnegativity in enforced in each step.

- options.box Double; upper bound L in box constraint [0, L] on pixel values.

- options.damping Double; a parameter D to avoid division by very small row norms
by adding D ·maxi{∥ai∥22} to ∥ai∥22.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule type DP.

Example:

Generate a “noisy” 50 × 50 parallel beam tomography problem, compute 10 symkaczmarz

iterations, and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = symkaczmarz(A,b,1:10);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cart, kaczmarz, randkaczmarz.

References:

1. Å. Björck and T. Elfving, Accelerated projection methods for computing pseudoinverse
solutions of systems of linear equations, BIT, 19 (1979), pp. 145–163.

41

trainDPME

Purpose:

Training strategy to estimate the best parameter when the discrepancy principle
or the monotone error rule is used as stopping rule.

Synopsis:

tau = trainlambda(A,b,x exact,method,type,delta,s)

tau = trainlambda(A,b,x exact,method,type,delta,s,options)

Description:

This function implements the training strategy for estimation of the parameter τ , when using
the discrepancy principle or the monotone error rule as stopping rule. From the test solution
x exact and the corresponding noise free right-hand side b, we generate s noisy samples
with noise level delta, i.e., we add a noise vector e with ∥e∥2 = delta. From each sample
the solutions for the given method method are calculated, and according to which type of
stopping rule is chosen in type an estimate of tau is calculated and returned.

A default maximum number of iterations is chosen for the SIRT methods to be 1000 and
for the ART methods to 100. If this is not enough it can be changed in line 74 for the SIRT
methods and in line 87 for the ART methods.

Use of options:

The following fields in options are used in this function.

- options.lambda: See the chosen method method for the choices of this parameter.

- options.restart: Only available when method is a SIRT method. See the specific
method for correct use.

- options.w: If the chosen method allows weights this parameter can be set.

Example:

Generate a “noisy” 50 × 50 parallel beam tomography problem. Then the parameter tau

is found using training for DP, and this parameter is used with DP to stop the iterations.
Finally the last iterate is shown.

[A b x] = paralleltomo(50,0:5:179,150);

delta = 0.05;

tau = trainDPME(A,b,x,@cimmino,’ME’,delta,20);

e = randn(size(b)); e = e/norm(e);

b = b + delta*norm(b)*e;

options.stoprule.type = ’ME’;

options.stoprule.taudelta = tau*delta;

[X info] = cimmino(A,b,200,[],options);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

42

See also:

cav, cimmino, drop, kaczmarz, landweber, randkaczmar, sart, symkaczmarz.

References:

1. T. Elfving and T. Nikazad, Stopping rules for Landweber-type iteration, Inverse Prob-
lems, 23 (2007), pp. 1417–1432.

43

trainLambdaART

Purpose:

Strategy to find the best constant relaxation parameter λ for a given ART method.

Synopsis:

lambda = trainLambdaART(A,b,x exact,method)

lambda = trainLambdaART(A,b,x exact,method,kmax)

Description:

This function implements a training strategy for finding the optimal constant relaxation
parameter λ for a given ART method that solves the linear system Ax = b, as given as a
function handle in method. The training strategy builds on a two-part strategy.

1. In the first part the resolution limit is calculated using kmax iterations of the ART
method. If kmax is not given or empty, the default value is 100. The first part of the
strategy is to determine the resolution limit for the a specific value of λ.

2. The second part is a modified version of a golden section search in which the optimal
value of λ is found within the convergence interval of the specified iterative method.

The method returns the optimal value in the output lambda.

Example:

Generate a “noisy” 50 × 50 parallel beam tomography problem, train to find the optimal
value of λ for the ART method kaczmarz, and use the found value to perform 10 iterations
of this method. Finally the last iterate is shown:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

lambda = trainLambdaART(A,b,x,@kaczmarz);

options.lambda = lambda;

X = kaczmarz(A,b,1:10,[],options);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

trainLambdaSIRT

44

trainLambdaSIRT

Purpose:

Strategy to find best constant relaxation parameter λ for a given SIRT method.

Synopsis:

lambda = trainLambdaSIRT(A,b,x exact,method)

lambda = trainLambdaSIRT(A,b,x exact,method,kmax)

lambda = trainLambdaSIRT(A,b,x exact,method,kmax,options)

Description:

This function implements a training strategy for finding the optimal constant relaxation
parameter λ for a given SIRT method that solves the linear system Ax = b, as given as a
function handle in method. The training strategy builds on a two part strategy.

1. In the first step the resolution limit is calculated using kmax iterations of the SIRT
method. If kmax is not given or empty, the default value is 1000. To determine the
resolution limit the default value of λ is used together with the contents of options.

2. The second part is a modified version of a golden section search in which the optimal
value of λ is found within the convergence interval of the specified iterative method.

The method returns the optimal value in the output lambda.

Use of options:

The following fields in options are used in this function.

- options.restart: See the specific method for correct use.

- options.w: If the chosen method allows weigths this parameter can be set.

Example:

Generate a “noisy” 50 × 50 parallel beam tomography problem, train to find the optimal
value of λ for the SIRT method cimmino, and use the found value to perform 50 iterations
of this method. Finally the last iterate is shown:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

lambda = trainLambdaSIRT(A,b,x,@cimmino);

options.lambda = lambda;

X = cimmino(A,b,1:50,[],options);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

trainLambdaART

45

