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spectral properties of radiation for the Helmholtz equation with a random

coefficient
dimension n = 2 or n = 3; free-space wavenumber kg = const. > 0; A = Ej 83]_

—f in R",
= 0 uniformly in x/|x| € S"~L.

() (A + (14 q(x,w)) k) utet
Iim|x\~>oo |X|(n—1)/2(8‘x‘utot _ ikoumt)

fix 0 < Rf < Rq < Ry, and write B, By, By for open balls in R" with radii Ry,

>
Rq and Ry, respectively
> fc L7(R"), T > n/2, is a deterministic source with supp f C By
> g(x,w) is a stochastic medium a.s. in L°(R") with supp q(-,w) C Bq \ Br
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The medium term g(x,w) is a real-valued, second-order, stationary Gaussian random
field on T = Bq \ Bf, a.s. bounded on T. This means that there is a probability space

(22, F,P) such that

>

vVvyyVvyy

for any d € N and any (x1,...,xq) € T9, the mapping
Q3w (g, w), ..., q(xq,w))

is a multivariate real-valued Gaussian random variable,

for each x € T, the expected value E, cq[q(x,w)] is a finite real constant,
llg(x; )l 2(q) < oo for each x € T (second-order),

Pw € Q, lla(;w)llLee()y = o0} =0, and

the covariance function

C(X: y) = EWEQ[(q(Xv w) - Ew'eQ[Q(X’ W/)])(q(}/7 w) - Eu/eﬂ[q(}/: w/)])],

defined for x,y € T, depends only on |x — y|, that is, q(x, ) is isotropic for

each x e T.
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By the Borel-TIS theorem!, we have Eyealllg(;w)llLoe ()] < 0o and, for each
positive t,

P{w € Q, llg(-;w)lloo(ry — Ewrealllat;w')lleo(ry) > t}]
<exp[-£?/(2 sup Voea(a(x,w))]

Each g(x,-), x € T, is a Gaussian random variable, so some realizations g(x,w)
may have (arbitrarily large) negative values. Thus, kg(l + q(x,w)) may well be
negative for some x € T, given a realization w € Q. In all our numerical
examples we have 1+ g(x,w) > 0.

The field 1 + |g(x,w)| is not Gaussian and we cannot use the Borell-TIS
theorem on it.

1Thec:rem 2.1.1 in Adler and Taylor, Random fields and geometry, Springer, 2007.
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> we are interested in the properties of the singular value spectrum of the
near-field source-to-near-field measurement map (forward map)

F:fw u‘aBM.

P LT

T Ry .

motivation: the robustness of solution of inverse source problems in the

presence of (random) media
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Robustness of solution of medium-free inverse source

problems
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Bounds on the 'bandwidth’ & of F

K. (2018). J Phys Commun:
Definition: % = argminm€N0{0m+n > Omtnt1 for all n € Ng}.

Theorem: % > argmin,,cn,{Uim1 > kRo}  (tight)
Conjecture: Z < argmin,, ¢y, {¥m,1 > kRo} (tight)

Theorem: For the source-to-far-field operator, om = O((kRop/2)™/m!) when
m > argmincn, {ym,1 > kRo}  (with explicit bound)

Kirkeby, Henriksen, & K. (2020). Inverse Probl:

Theorem: For the Helmholtz equation in R3, we have m n(x) o jm(k|x|)Y2(x/|x|)
and éum.n o Y (x/|x]).

Theorem: % > argmin ey, {im+1/2,1 > kRo}-

Kirkeby, Henriksen, & K. (2020); K., Kirkeby, & Knudsen (2018). Inverse Probl:

Stability of reconstruction from a finite number of measurements in the
multi-frequency ISP.
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Some related work

Griesmaier & Sylvester (2017). SIAM J Appl Math
Griesmaier & Sylvester (2016). SIAM J Appl Math
Griesmaier, Hanke, & Sylvester (2014). SIAM J Numer Anal
Griesmaier, Hanke, & Raasch (2012). SIAM J Sci Comput

> spectral cutoff of the source-to-far-field operator ("restricted Fourier
transform”) in R? and R3; the singular values decay rapidly when |m| > kRy.
» windowed Fourier transform

> far-field splitting and uncertainty principles for the inverse source problem

Pierri & Moretta (2020,2021). Electronics
Xu & Janaswamy (2006). IEEE Trans Antennas Propag

» spectral analysis of electromagnetic radiation operators

» applications in antenna design and measurements
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Robustness of solution of medium-free inverse source
problems

fl=FlU~Y <c om (U, ®m) 12(9p)¥m
kR = kRy = 10w
% > 26 (K. (2018). J Phys Commun)

Mpoise = 26 VS. Mpoise = 30, for same amplitude of noise component

vvyyy
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with a € L°°(Byy), the volume potential (the Lippmann-Schwinger operator) is

Vow) = [ o= ya)wln)dy, xR
YEBM

. 1
ol (x) = (i/4)H (ko)) x € R2\ {0}, n=2,

explikolx|)/(4lx)),  x € R3\ {0}, n=3,
is the unique outgoing fundamental solution of the Helmholtz operator in R"
(A+ K)ol = —5in R"
since 7 > n/2 > 1 and |law|| 7 (g,,) < llalle By IWlli7(By,). the mapping
w — Vaw is continuous from L7 (Bp) to W27 (Byy) (Lechleiter, Kazimierski, &
K., 2013, Lemma 1).

the Helmholtz problem (x) is equivalent with the Lippmann-Schwinger equation
(#%) (I = k3 Vg)u(x) = Vif(x), x€R",

which is uniquely solvable in L™ (By).

in particular, there is a unique solution u € W27 (Byy) of (x)
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Lemma. The Lippmann-Schwinger equation (xx) is uniquely solvable in L™(Byy).

Proof. The result follows as a special case of the analysis in Lechleiter, Kazimierski, &
K. (2013). Indeed, By is relatively compact and q € L°>°(By), so q € LP(By) for
every p > 1. Then, by Proposition 2(c) in Lechleiter et al. (2013) and the fact that
7> n/2 > 1, the mapping Vq : L™(Bm) — L7 (Bpum) is compact. Next, if v € L7 (By)
satisfies () with f =0 then v = k2 Vv in By so v € W27 (By), and since v is real
analytic in the complement of supp q, it can be extended uniquely to any Bz,

Ru < R < oo, such that v € W27 (Bg). By Lemma 3 in Lechleiter et al. (2013), we
therefore have v = 0 in R", and it remains to invoke the classical Riesz theory, for
example Corollary 3.5 in Kress, Linear Integral Equations, 2014.
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Define
Ch:swu/ & (x — y)],
x€Bp JyEsupp q
G = wp/" &0 (x — y)],
y€Esuppq JxeBy

and e = 1
c(ko, q, R, n) = K o' 7 C 7 |1qll oo s,)-

12/32



Main result: deterministic medium g(x)

Theorem. (K. & Linder-Steinlein, n = 2) If g € L°°(Bg) is deterministic and
f € L7(By) with 7 > 2 then

Ff = Fof + K2Fo(qV4f) + O (cnl/Tc,(,T VI 7 8y (ko G5 Ru, 2) )

as c(ko, g, Rm,2) — 0, where

Fof = > ol (F u o™
meZ

and

KFo(qvif) = S ol 3" Amu(a)(F, 0 el M.
meZ veZ

Note the 'spectral leakage.’ It occurs due to the presence of deterministic (as well as
random) media, and it makes the inverse source problem u|gg,, — f more ill-posed.

(Weak-source interpretation also possible: ¢ < 1 and ||f||.(g,) — 0.)
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Here
2% = 2Ry Rx|HY (koRu)| Am(koRx), m € Z,

,,{"2’X} (X) 7 Jm(kole)eiméx

= ——"—— f € By,
JiRxAm(koRx) oS
i2HY (ko Rpg) aim8
My ="~ 7° (o 9ecR meZ
om0 (0) NerTom or , meZ,

Am(koRx) = \/Im(koRx)? — Jm—1(koRx) Jms1(KoRx), m € Z,

and

Amw (@) = k3v/T R Au(koRr) / H (koly )€™ q(y) i (v)dy.

By \Bf
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Main result: deterministic medium g(x)

Theorem. (K. & Linder-Steinlein, n = 3) If g € L°°(Bq) is deterministic and
f € L™(Br) with 7 > 2 then

Ff = Fof + k2Fo(qVaf) + O (CA/T YY) 7 8,y ¢ (Kos @, R, 3)2)

as c(ko, q, Rm,3) — 0, where

Rf= 0 3 ol i s

meNg p=—m

and

KF(qVif) = > ofdad Z > Z Am,u (9)(F, wiif}) 3.

meNy p=—mveNyv'=—v

(Note the ’spectral leakage.’)
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Here

RxR k
13X _ MMS)(I‘ORM)WM’(ORX), mez.

24/ ki
{3 X}( ) = ﬂjm(kor)Y/,f(x/\xD forx€éBx, m&€Z, py=—-m,...,m,
Rxam(koRx)

i e pD
¢{3M}( )= | ! iarghy (koRm)Y,ﬁ(w) forweS?, meZ p=-m,...,m,

Rm
am(koRx) = Ams1/2(koRx),

and

ik .
M) = 8 hore) [ BV /DT )
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Lemma. (K. & Linder-Steinlein)
1/7 (T 1)/7

I Vallir Byy—L7(Br) < Ca llall e (8g) = c(kos G R, n)/ kG-

Proof. We have ¢{n} ¢ LE (R") for n =2 and n = 3: the Hankel function Hél) is real
analytic in R?\ {0}, has a log-type singularity at the origin, and

1
| = — =
/ngZ [ In|x]| 27r/;:0r|nr /2,

|x|<1

(3) s
(O] =4 _— = .
[ 190l = [ =2

|x|<1

while

Therefore, with R” = max{|x|, x € - supp q}(< Rum), we have
Ch < ||¢{"}||L1 (Bry, o) < oo and G, < Hq’{"}HLl(BR ) SO0 and the function

R" x R" 3 (x,y) — ®{"}(x — y)q(y) is measurable on By x Byy; indeed,
[ 101 = 0)a)] < Collalu oy, x € B,
YEBy

and
[ 19 x=y)aw)] < Colallie(zy ¥ € o
XEBy

The result now follows from Proposition 5.1 on p. 573 in Taylor, Partial Differential
Equations I: Basic Theory, 2011.
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The solution of (*x) is given by u = (I — k3Vy) "1 Vif. Thus, if

¢ = c(ko, q, Ru, n) = Kl qlloe (s, Co/ T I/ < 1

then the inverse of | — kg V4 is expressible in terms of a convergent Neumann series,
and

o

Il
o

KIVIVIF = if + IGVgVif + O (cnl/f 5£T*I>/*Hfum5f)c2) 1)
J

as ¢ — 0. In the following let 7 > 2 and define formally the trace operator vgr by
A = li 0B
Yo u(x0) Xl/‘n;0 u(x), xo € 0Bpy,
with the limit taken from By;. Application of 'ya' to (1) yields
Yo u= Fof + Fif + O(c?) = Fo(f + k3gVaf) + O(c?) as ¢ — 0,

with the 'medium-free’ source-to-measurement map Fy = ’Yo+ V4 and the 'first-order
medium’ source-to-measurement map F; = g'yar VoW1 = g'yar Vig\h = ngoqvl.
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We have already characterized spectrally Fy for n =2 (K., 2018) and for n = 3
(Kirkeby, Henriksen, & K., 2020). Our problem geometry is such that x € (supp q)°,
y € (supp f)° implies |x| > |y|, so, in case n = 2, the Graf addition theorem (Eq.
9.1.79 on p. 363 in Abramowitz and Stegun, 1972) gives

Vif(x) = Hl(/l)(kolxl)ei"éx/B Ju(koly|)e™ <Y f(y)dy
veZ f

= VAR 3 Au(koRe)H (kolx|)e” (£, ") for x € (supp g)°.
veZ

This, in turn, implies

Fi (qvif) = VrRe 30 > ol T AL (koRe)(F, 082 ™)

meZveZ

x < / H£”(koy|)qu<y)wff’q}(y)dy> oM.
Bq\Bs¢
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The analysis of the case n = 3 is similar. Since x € (supp q)°, y € (supp f)° implies
[x] > |y|, we have by Theorem 2.11 on p. 31 of Colton and Kress, Inverse Acoustic
and Electromagnetic Scattering Theory, 2013, that

Vif(x) =iko Y Z h (kolx) Y ( X/IXI)/ Jv(kolyl) Y (v /Iy f (y)dy

veNyv/=—v

= VTRRE S ST s )b Gols) Y (/6 for x € (suppa)

veNgv/=—v

This, in turn, implies

AP @n = VTR S S S S e e )

meNy u=—mveNy v/ =—v

x ( / WD (koly ) Y (v /Iy Da(y ) “"”(y)dy) .
Bq\Bf
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The case with random medium g(x,w)

If g is a centered Gaussian random field then the Borell-TIS theorem? implies

(Hq( W)HLoo ) < Cn—l/(ZT)gglff)/(%-)/ko)

= 1P (laC @)l (o) > Co 7 EFTT/G)

—1/7 ~(1—71)/7 2
>1—exp (— (e 77 /i —E [llaC @)l (8e)] ) /(2oéM)),

with ‘725,\,, = SUPycp,, E [qQ]. Also, realizations of g are L® a.s. on compact subsets
of R".

The assumption that the Neumann series for (/ — k2 V) ™1 converges puts constraints
on the variability of the random fields from which g(x,w) is allowed to originate.

2Thec:rem 2.1.1 in Adler and Taylor, Random fields and geometry. Springer, 2007.

21/32



The covariance function C of the medium g(x,w) is a positive definite function which
depends on the underlying physics of the problem at hand. The associated covariance

operator is defined by

() () 1= [ Cx)e)dy

Now g(x,w) is a second-order random field, and we use the eigensystem {q;, ¢;}72;

of the covariance operator for a Karhunen-Loéve expansion of g(x,w):

q(x,w) = n(x +ngoj(x)fj(w) x € Bg\ Br, w€ Q.

Jj=0

Here n(x) = Eyeq [g(x,w)], and &j(w) are pairwise uncorrelated N'(0, 1) random
variables given by

1
£j(w) = \/7071 (q(wa) = n(x), @j(x)) L2(Bg\By)

Our KL expansion converges in the L2 sense on the compact set Eq \ Bt.
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Remember that, in the deterministic case,

KFo(qvif) = 3" olb ™ 3" Amu(a)(F, 0 el M,

meZ veZ

with

Amw(q) = KT R Au(koRy) /B i HO (koly e a(y)2 (y)dy.

9 \Br

When q is stochastic, we compute the resulting stochastic integral above by inserting
the Karhunen-Logéve expansion for g in the integrand. Recall that g(-,w) is a.s. in
L>(Bg \ By).
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Main result: stochastic medium g(x,w)

Write sr{,fi(y) = HP (koly)e 44 % (y) and
shoh () = B (kaly)YZ (v /ly Do ()

Theorem. (K. & Linder-Steinlein, n = 2) For second order stationary Gaussian
random fields q, the forward operator satisfies Ff = Fof + ngo(qvl f)+e with Fof as
in the deterministic case, and where

K2 Fo(qVaf) =k /TRy Za{z ‘”ZA (koRe)(F, v pl2) - np M 4

={2
kofRon“’q}ZA (koRe)(F, 8> A (012)) (ﬁh{al> g™

(deterministic mean value + stochastic component; currently tractable only
numerically)

Randomness in the medium g causes randomness in the spectral leakage. The

eigenfunctions and eigenvalues of the covariance operator C determine the statistical
properties of the leakage.
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Here,

at2)
9:;,2,]; = arctan ( my >y > _,{,,2,1}, ~N (0, ,1572%, 2y b{2} 2)

a2} = i <@J7S§’23>L2(D):| bi) = Z Vs {<%’s'£’2£> 2(D)]

Jj=1
(msi),
{2} _ 2(D) (1
Pm,v {2} ) n (’)
T),Sm V

L2(D)

Idea of the proof. Under the assumptions on g, the random field, it is possible to

substitute the KLE for the general Gaussian setting and the modified spectral values
become

Am,v = VTR AL (Kr) [(77, sty l}/)LZ(D) k'Lm Z V& (%’S’" V)LZ(D):|

ik ? Ry 3} s (3}
)\m,u,l/ = fay(’ff) (777 sm,u,u) 12(D) + kll>moo 2; vV ajfj <<Pj1 Sm,/,L,l/) 2(D)
j=

Here & ~ N(0,1).
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(b) Stochastic setup, truncated white noise.

(a) Deterministic setup.

Fig. 2: Configuration of source and medium for numerical results in the deterministic case 2a
and stochastic case 2b. Here kg = 271, R,y = 5. Ry = Ru/1.1. Ry = Rg/2. llqalle = 0.0030,
llgslleo = 0.0045, cg = 0.442, and c; = 0.666.

dW(x)

q(x) = n(x) + S(X)T’ supps C Bg\ Br, x € By.

Here dW/(x)/dx is the formal derivative of the white noise, in the sense that it is the
derivative of the Karhunen-Loéve expansion of the Brownian sheet.

Covariance function: min{xi, x2}.

Figs. 2—7 from K. & Linder-Steinlein, Spectral properties of radiation for the Helmholtz equation with a random
coefficient (2022), to appear
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Fig. 3: Comparison of numerical solutions to the Helmholtz equation with deterministic
medium present, obtained for kg = 271, Ry = 5, Ry = R/ 1.1, Ry = Ry /2, ||q]le = 0.0030
and ¢ = 0.442. Black curve and spots indicates values from sampling. Stochasticity is
Brownian based.
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(a) Values of Mm'v{

v v v

() [y — B [ 235, ]] (© [y — B [y ]| ) [ZAm,y — 2825, ]]

Fig. 4: lustration of the 4, , for a truncation of |M| = 40, |N| = 40, kp = 2n, R,, = 5.
Ry = Ru/1.1. Ry = Ry /2. |lgallee = 0.0030, ||gg|lee = 0.0045, ¢4 = 0.442 and ¢y = 0.666.
Calculating the angle of the spectrum has been done by setting every element 2000 times
smaller than the absolute maximum to zero. The notation Ay, ,, is used for the case with
stochasticity. Figure 4b and 4¢ show the same information as figure 4a and 4d but with
enhanced details.
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Fig. 5: Contribution of the perturbation term arising when a medium ¢ is present. The
quadrants are those of the circle. Here kg = 2w, Ry, = 5. R; = Ry /1.1, Ry = R, /2.
[gllee = 0.0030 and ¢ = 0.442. See e.g. Figure 2a for source and medium configuration.
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Exponential covariance: C(x,y) = e -t
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Fig. 6: Comparison of numerical solutions to the Helmholtz equation with deterministic
medium present, obtained for kg = 27, Ry = 5. Ry = R /1.1, Ry = R, /2, |Iqll =~ 0.0030
and ¢ = 0.4412. Black curve and spots indicates values from sampling. Stochasticity with
exponential covariance.
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() | L, v|

v v v

() |y — B[, ]| © [ =B, ] 0| LAy = ZE (2, ||

Fig. 7: Nlustration of the A, , for a truncation of [M| = 40, |N| = 40, ky = 27, R, = 5.
Ry = R/ 1.1, Ry = Ry /2. llgalle = 0.0030, [lgsllew = 0.004, cg = 0.4412 and ¢, = 0.67.
Calculating the angle of the spectrum has been done by setting every element 2000 times
smaller than the absolute maximum to zero. The notation A7, ,, is used for the case with
stochasticity. Figure 7b and 7¢ show the same information as figure 7a and 7d but with
enhanced details.
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