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Introduction
Conductivity Reconstruction
Forward problem of Electrical Impedance Tomography (EIT) is defined as{

∇ · (σ∇u) = 0 in Ω
u = f on ∂Ω (1)

The forward Magnetic Resonance Electrical Impedance Tomography (MREIT) problem
employs MRI to detect the magnetic field induced by the interior current. Denoted

J = −σ∇u in Ω (2)

as the interior current density, from the Ampere law we have

J = 1
µ0

∇ × B in Ω (3)

The interior current density information (ICDI) J provides a resolution-sufficient number of
measurements when numerically solving the problem.
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Introduction
Linearization

Given measurements of ICDI as Je ∈ RM with

Je := F (σ) + e (4)

With a background conductivity σ∗, the linearized operator fσ∗ is defined as

fσ∗
σ = F (σ∗) + DF (σ∗)(σ − σ∗) (5)

where DF is the Fréchet derivative of F at σ∗. Given model error m(σ) = F (σ) − fσ∗
σ, the

forward problem is equivalent to

Je = fσ∗
σ + m(σ) + e (6)
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Introduction
Bayesian Formulation

Je = fσ∗
σ + m(σ) + e, s.t. m(σ) = F (σ) − fσ∗

σ

↓
π(σ|Je) ∝ π(Je|σ)π(σ)

↓
π(Je|σ) = πv|σ(Je − fσ∗

σ|σ), s.t. v = m + e

↓

πv|σ(Je − fσ∗
σ|σ) =

∫
π(m|σ)πe(Je − fσ∗

σ − m)dm

• Nonlinearity of m: Laplace approximation, Gaussian mixture model
• Trackable m: Enhanced Error Model, Iterative Update Error Model
• Sampling methods: MCMC, RTO
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Introduction
Previous works

1 Conventional Error Model:
Simply ignoring the model error m:

π(σ|Je) ∝ π(σ)πe(Je − fσ∗
σ) (7)
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Introduction
Previous works

1 Conventional Error Model

2 Enhanced Error Model1:
Incorporating the model error under Bayesian framework by

• Assuming m is independent from σ with Gaussian distribution of mean m̄ and covariance Γm

• Given samples of the prior σ0
i , i = 1, ..., N , m̄ and Γm are approximated upon samples of the

model error Mi = m(σ0
i ) = F (σ0

i ) − fσ∗
σ0

i , i = 1, ..., N as

m̄ = 1
N

N∑
l=1

Mi, Γm = 1
N

N∑
l=1

{
(Mi − m̄)(Mi − m̄)T

}
(8)

v is also independent from σ with Gaussian distribution with mean v̄ = m̄ and covariance
Γv = Γm + Γe:

π(σ|Je) ∝ π(σ)πv(Je − fσ∗
σ) (9)

1Jari Kaipio and Erkki Somersalo. “Statistical inverse problems: discretization, model reduction and inverse
crimes”. In: Journal of computational and applied mathematics 198.2 (2007), pp. 493–504.
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Introduction
Previous works

1 Conventional Error Model
2 Enhanced Error Model
3 Iterative Updated Error Model2:

Under nonlinear settings:

πv(Je − fσ∗
σ) = 1

N

N∑
i=1

πe(Je − fσ∗
σ − Mi) (10)

π(σ|Je) ∝ 1
N

N∑
i=1

π(σ)πe(Je − fσ∗
σ − Mi) (11)

Posterior samples are collected and mapped by m as model error samples for the next iteration:

Mk
i = F (σk−1

i ) − fσ∗
σk−1

i , πk(σ|Je) ∝ 1
N

N∑
i=1

π(σ)πe(Je − fσ∗
σ + Mk

i ), k = 1, 2, ... (12)

2Daniela Calvetti et al. “Iterative updating of model error for Bayesian inversion”. In: Inverse Problems 34.2
(2018), p. 025008.
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Refined Iterative Updated Error Model
RIUEM: Cluster Model Error with GMM
Assumed well-picked T components, the joint distribution of σ and m goes like

π(σ, m) ≈
T∑

i=1
ωiN

([
σ̄

m̄i

]
,

[
Γσ Γi

σ,m

Γi
m,σ Γi

m

])
,

T∑
i=1

ωi = 1 (13)

where {ωi}T
i=1 are weights of every components.

Ignoring all correlations between σ and m3:

π(σ, m) ≈
T∑

i=1
ωiN

([
σ̄

m̄i

]
,

[
Γσ 0
0 Γi

m

])
(14)

π̂(σ|Je) ∝
T∑

i=1
ωiπ(σ)πvi(Je − fσ∗

σ) (15)

where πvi ∼ N (m̄i, Γi
m + Γe).

3Junxiong Jia et al. “Recursive linearization method for inverse medium scattering problems with complex
mixture Gaussian error learning”. In: Inverse Problems 35.7 (2019), p. 075003.
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Refined Iterative Updated Error Model
RIUEM: Coefficients estimate and model selection in GMM

Given the number of components, we employ the expectation - maximization (EM) algorithm
to deduce coefficients of GMM:
1 Expectation Step (E Step): This step defines the expectation of the (penalised4) log likelihood w.r.t.

currently assumed coefficients.

2 Maximization Step (M Step): This step finds coefficients that maximize the previously defined value,
and take them as assumed coefficients for the next iteration.

We incorporate k-means clustering as a preliminary measurement that initialize coefficients.
As for the optimal number of components, we experiment with various component numbers,
and the best-fit model is selected based on minimizing the (high-dimensional5) Bayesian
information criterion (BIC).

4Tao Huang, Heng Peng, and Kun Zhang. “Model selection for Gaussian mixture models”. In: Statistica
Sinica (2017), pp. 147–169.

5Charles Bouveyron, Stéphane Girard, and Cordelia Schmid. “High-dimensional data clustering”. In:
Computational statistics & data analysis 52.1 (2007), pp. 502–519.
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Refined Iterative Updated Error Model
RIUEM: Positive constrains and projection

Given a positive box constraint C, we ascertain if a sample is within the domain. We take no
action if it is the case, otherwise we project the sample onto the boundary of the domain w.r.t
the minimum distance.
In terms of point estimation of the posterior, we gravitate towards the median.
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Refined Iterative Updated Error Model
RIUEM: Algorithm

Algorithm RIterative Update of Model Error with Constraints
1: Input Je, π(σ), e ∼ N (0, Γe), σ∗, C, number of samples N , maximum iteration L;
2: Sample σ0

i ∼ π(σ), then project σ0
i as onto C, i = 1, ..., N .

3: for l = 0, ..., L − 1 do
4: Calculate M l+1

i = F (Pσl
i) − fσ∗

Pσl
i, i = 1, ..., N ;

5: Get GMM of {M l+1
i }i=1,...,N . The corresponding weights, means and covariances of t

components are ωt, m̄t and Γt
m, t = 1, ..., T l+1;

6: Divide the the range [0, 1] into T l+1 in proportion to the weight ωt, t = 1, ..., T l+1;
7: for j = 1, ..., N do
8: Pick a random value r within [0, 1];
9: Determine the component k corresponding to the segment r falls into;

10: Sample σl+1
j ∼ π(σ)πvk

(
Je − fσ∗

σ
)

where πvk ∼ N (m̄k, Γk
m +Γe), then project σl+1

i

onto C;
11: end for
12: end for
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Numerical Results
Numerical Results: Problem Settings

Figure: The conductivity data used in numerical models.
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Numerical Results
Numerical Results: Problem Settings

Figure: ICDI and actually measurements with 5% relative noise. Left two: accurate ICDI and
measurements on x axis; Right two: accurate ICDI and measurements on y axis.
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Numerical Results
Numerical Results: Problem Settings

σ∗ 1
σ̄ σ∗

(Γσ)i,j γ exp
{

− ||ci−cj ||2
l

}
We assume value γ = 0.36 and l = 0.5 to ensure that the groundtruth conductivity value on
all elements of the mesh are within the 95% credible interval of the prior probability.
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Numerical Results
Numerical Results: Reference Posterior

Figure: Properties of the reference posterior. From left to right 1st: the sample median of the reference
posterior; 2nd: the coordinate-wise relative error of the sample median comparing to the groundtruth;
3rd: the coordinate-wise width of 95% CI. 4th: values of the groundtruth, the sample median and 95%
CI on the line y = x.

15 DTU Compute 7.9.2023



Numerical Results
Numerical Results: Comparisons

Figure: Posteriors and their comparison with the reference posterior in terms of sample medians.
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Numerical Results
Numerical Results: Comparisons

Figure: Posteriors and their comparison with the reference posterior in terms of relative errors w.r.t.
medians.

17 DTU Compute 7.9.2023



Numerical Results
Numerical Results: Comparisons

Figure: Posteriors and their comparison with the reference posterior in terms of coordinate-wise widths
of 95% CI.
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Numerical Results
Numerical Results: Comparisons

Figure: Posteriors and their comparison with the reference posterior in terms of values of the
groundtruth, corresponding sample medians and 95% CIs on the line y = x.

19 DTU Compute 7.9.2023



Numerical Results
Numerical Results: Comparisons

Figure: Relative errors and KL divergence. Left: relative errors of sample estimates comparing to the
reference posterior estimate w.r.t. update iterations for both IUEM and RIUEM. Right: approximated
KL divergence of posteriors and the reference posterior w.r.t. update iterations for both IUEM and
RIUEM.

20 DTU Compute 7.9.2023



Contribution and Future Work
Contribution and Future Work

Contribution:
• Numerically demonstrate the superior of a refined model error update scheme
• Discuss the influence of a well-picked Gaussian mixture model
• Implement a constraint to prevent the influence of unreasonable samples outside the domain of our

interest

Future work:
• Correct the approximated operator for better reconstruction
• Discuss the influence of the discarded correlation
• Implement our method on 3D reconstruction with partial data
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Thanks for you attention!
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