

Optimization under uncertainty for the Helmholtz equation with application to PNJ configuration

Amal Alghamdi¹, Peng Chen², Poul-Erik Hansen³, and Mirza Karamehmedović¹

¹ DTU Compute, The Technical University of Denmark

² School of Computational Science and Engineering, Georgia Institute of Technology

³ The Danish National Metrology Institute

Outline

• What is a PNJ, background, and motivation

- The deterministic PNJ design
- PNJ design under manufacturing uncertainty
- Towards topology optimization of PNJ lens design

What is a photonic nanojet (PNJ)

 A PNJ is a highly focused light beam formed in the near field of a micrometer-sized dielectric lens illuminated by a light wave

What is a photonic nanojet (PNJ)

- A PNJ is a highly focused light beam formed in the near field of a micrometer-sized dielectric lens illuminated by a light wave
- PNJ enables imaging of particles beyond the diffraction limit d_{limit} = λ/(2NA), Numerical Aperture (NA) ≤ 1.6

What is a photonic nanojet (PNJ)

- A PNJ is a highly focused light beam formed in the near field of a micrometer-sized dielectric lens illuminated by a light wave
- PNJ enables imaging of particles beyond the diffraction limit d_{limit} = λ/(2NA), Numerical Aperture (NA) ≤ 1.6
- Numerous applications [Karamehmedović and Glückstad, 2023, Darafsheh, 2021]:
 - super-resolution optical microscopy
 - nanoparticle detection, counting, and manipulation (optical tweezers) [Hansen et al., 2023]

Design of PNJ with desired properties (e.g. position, size and shape) has been investigated in numerous studies

• Most studies consider homogeneous lenses and achieve control via changing the lens shape [Chen et al., 2021b, Hengyu et al., 2015]

Design of PNJ with desired properties (e.g. position, size and shape) has been investigated in numerous studies

- Most studies consider homogeneous lenses and achieve control via changing the lens shape [Chen et al., 2021b, Hengyu et al., 2015]
- Some studies considered limited heterogeneity in the lens refractive index (e.g. layered spheres) [Geints et al., 2011]

Design of PNJ with desired properties (e.g. position, size and shape) has been investigated in numerous studies

- Most studies consider homogeneous lenses and achieve control via changing the lens shape [Chen et al., 2021b, Hengyu et al., 2015]
- Some studies considered limited heterogeneity in the lens refractive index (e.g. layered spheres) [Geints et al., 2011]
- PNJ steering and nano-particle detection in the literature [Karamehmedović et al., 2022, Karamehmedović and Glückstad, 2023, Karamehmedovic and Hansen, 2023]

Design of PNJ with desired properties (e.g. position, size and shape) has been investigated in numerous studies

- Most studies consider homogeneous lenses and achieve control via changing the lens shape [Chen et al., 2021b, Hengyu et al., 2015]
- Some studies considered limited heterogeneity in the lens refractive index (e.g. layered spheres) [Geints et al., 2011]
- PNJ steering and nano-particle detection in the literature [Karamehmedović et al., 2022, Karamehmedović and Glückstad, 2023, Karamehmedovic and Hansen, 2023]
- Limited (possibly non-existent) studies that account for the lens manufacturing/illumination imprecision

• Systematic approach to design/control PNJ properties (location & intensity)

- Systematic approach to design/control PNJ properties (location & intensity)
- Achieved via finding optimal heterogeneous lens profile
 - This provides flexibility in design
 - Simple lens shape can be used (cylindrical/sphere)
 - Simple illumination (no need for expensive spatial light modulator, SLM)

- Systematic approach to design/control PNJ properties (location & intensity)
- Achieved via finding optimal heterogeneous lens profile
 - This provides flexibility in design
 - Simple lens shape can be used (cylindrical/sphere)
 - Simple illumination (no need for expensive spatial light modulator, SLM)
- Computationally feasible due to applying scalable high-dimensional optimization techniques for PDE-based problems

- Systematic approach to design/control PNJ properties (location & intensity)
- Achieved via finding optimal heterogeneous lens profile
 - This provides flexibility in design
 - Simple lens shape can be used (cylindrical/sphere)
 - Simple illumination (no need for expensive spatial light modulator, SLM)
- Computationally feasible due to applying scalable high-dimensional optimization techniques for PDE-based problems
- Quantify and mitigate the effect of possible manufacturing error (e.g., thermal effect, and air bubbles)
 - Use OUU framework (acoustic metamaterial cloaks [Chen et al., 2021a])

- Systematic approach to design/control PNJ properties (location & intensity)
- Achieved via finding optimal heterogeneous lens profile
 - This provides flexibility in design
 - Simple lens shape can be used (cylindrical/sphere)
 - Simple illumination (no need for expensive spatial light modulator, SLM)
- Computationally feasible due to applying scalable high-dimensional optimization techniques for PDE-based problems
- Quantify and mitigate the effect of possible manufacturing error (e.g., thermal effect, and air bubbles)
 - Use OUU framework (acoustic metamaterial cloaks [Chen et al., 2021a])
- Manufacturable lens realization?

- Systematic approach to design/control PNJ properties (location & intensity)
- Achieved via finding optimal heterogeneous lens profile
 - This provides flexibility in design
 - Simple lens shape can be used (cylindrical/sphere)
 - Simple illumination (no need for expensive spatial light modulator, SLM)
- Computationally feasible due to applying scalable high-dimensional optimization techniques for PDE-based problems
- Quantify and mitigate the effect of possible manufacturing error (e.g., thermal effect, and air bubbles)
 - Use OUU framework (acoustic metamaterial cloaks [Chen et al., 2021a])
- Manufacturable lens realization?
- Applied to PNJ design and steering (many lenses)

Outline

- What is a PNJ, background, and motivation
- The deterministic PNJ design
- PNJ design under manufacturing uncertainty
- Towards topology optimization of PNJ lens design

Outline

- What is a PNJ, background, and motivation
- The deterministic PNJ design
- PNJ design under manufacturing uncertainty
- Towards topology optimization of PNJ lens design

Helmholtz (Forward)

Helmholtz equation

$$\Delta u^{
m sca} + k^2(x)u^{
m sca} = (k_0^2 - k(x)^2)u^{
m inc}$$
 in \mathbb{R}^d (1)

+ Sommerfeld radiation condition (approximately modeled by PML)

- *d* = 2,3
- Incident wave $u^{inc} = e^{ik_0x.b}$, *b* is the wave direction.
- u^{sca} is the scattered wave
- $k_0 = \omega/c_0$ is the background medium wave number
- k(x) = ω/c(x) = k₀n(x) is the spatially varying wave number (= k₀ outside the lens)
- *n*(*x*) is the refractive index (= 1 outside the lens)

Design Problem Formulation

Design objective \mathcal{Q}

$$\mathcal{Q}(u^{\mathrm{tot}}(\tau)) = rac{1}{2} \int_{\mathbb{R}^d} \delta_{x_{\mathsf{PNJ}}}(x) \left(|u^{\mathrm{tot}}(\tau)|^2 - A_{\mathsf{PNJ}}^2
ight)^2$$

- $u^{\text{tot}} = u^{\text{sca}} + u^{\text{inc}}$
- *u*^{tot} is the total wave field
- $\delta_{x_{\mathsf{PNJ}}}(x)$ is the Dirac delta at $x_{\mathsf{PNJ}} \in \mathbb{R}^d$
- A_{PNJ} is the desired PNJ amplitude
- $\tau(x)$ is the design variable $(k(x) = k_0 + e^{\tau(x)}\chi_D(x))$
- $\chi_{\mathcal{D}}$ is the characteristic function with support on the lens $\mathcal D$

(2)

• Use Broyden–Fletcher–Goldfarb–Shanno (BFGS) for optimization

- Use Broyden–Fletcher–Goldfarb–Shanno (BFGS) for optimization
- Finite Element Method (FEM) for solving Helmholtz

- Use Broyden–Fletcher–Goldfarb–Shanno (BFGS) for optimization
- Finite Element Method (FEM) for solving Helmholtz
- The gradient is computed using the adjoint based method
 - Relatively cheap
 - · Costs one forward and one adjoint Helmholtz solves

- Use Broyden–Fletcher–Goldfarb–Shanno (BFGS) for optimization
- Finite Element Method (FEM) for solving Helmholtz
- The gradient is computed using the adjoint based method
 - Relatively cheap
 - Costs one forward and one adjoint Helmholtz solves
- We use the software tool: Stochastic Optimization under high-dimensional Uncertainty in Python (SOUPy)

DTU

Results: Setup and Incident Wave

Results: Deterministic Optimization

DTU

Results: Deterministic Optimization (Angular Shift)

(a) k (optimal)
(b)
$$|u^{tot}|^2$$
 (optimal)
 $10^{-10^{-18^{-15^{-12}}}}_{12^{-15^{-12}}}_{12^{-15^{-12}}}_{12^{-15^{-12}}}_{12^{-15^{-12}}}_{10^{-15^{-10^{-15^{-12}}}}}_{10^{-5^{-10^{-15}}}}}_{10^{-5^{-10^{-15}}}}}_{10^{-5^{-10^{-15}}}}_{10^{-5^{-10^{-15}}}}}_{10^{-5^{-10^{-15}}}}_{10^{-5^{-10^{-15}}}}}}_{10^{-5^{-10^{-15}}}}}_{10^{-5^{-15}}}}}_{10^{-5^{-15}}}}}_{10^{-5^{-15}}}}}_{10^{-5^{-15}}}}}_{10^{-5^{-15}}}}}_{10^{-5^{-15}}}}}_{10^{-5^{-15}}}}}_{10^{-5^{-15}}}}}_{10^{-5^{-15}}}}}_{10^{-5^{-15}}}}}$

$$A_{\rm PNJ} = 20, \, x_{\rm PNJ} = (9.5, 6)$$

. . .

Outline

- What is a PNJ, background, and motivation
- The deterministic PNJ design
- PNJ design under manufacturing uncertainty
- Towards topology optimization of PNJ lens design

Design Problem Formulation (Uncertainty)

Design objective $\ensuremath{\mathcal{Q}}$

$$\mathcal{Q}(u^{\mathrm{tot}}(\tau,\zeta)) = rac{1}{2} \int_{\mathbb{R}^d} \delta_{x_{\mathsf{PNJ}}}(x) \left(|u^{\mathrm{tot}}(\tau,\zeta)|^2 - A_{\mathsf{PNJ}}^2
ight)^2$$

• ζ is the manufacturing noise (random field)

•
$$\mathbf{k} = \mathbf{k}_0 + \mathbf{e}^{\tau+\zeta} \chi_D$$

(3)

Manufacturing Error

Matérn class Gaussian random field ζ

•
$$\zeta \sim \mathcal{N}(\mathbf{0}, \mathcal{C})$$

•
$$(\delta I - \gamma \Delta)^{\alpha/2} \zeta(x) = w(x)$$
 in \mathcal{D}

•
$$\nabla \zeta \cdot \boldsymbol{n} = \boldsymbol{0} \text{ on } \delta \mathcal{D}$$

- w(x) is white noise
- The choice of δ and γ dictates the variance and the correlation length
- \mathcal{C} is the covariance operator
- α > d/2
- Here, $\alpha =$ 2, $\gamma =$ 2.5, and $\delta =$ 25

Results: Deterministic Optimization (Effect of Noise)

DTU

Results: Deterministic Optimization (Effect of Noise)

Optimization under Manufacturing Uncertainty

design objective revisited, risk-averse mean-variance formulation

$$\mathcal{J}(\tau) = \mathbb{E}_{\zeta}[\mathcal{Q}(\tau,\zeta)] + \beta_V \operatorname{Var}_{\zeta}[\mathcal{Q}(\tau,\zeta)] + \beta_P P(\tau)$$
(4)

- \mathbb{E}_{ζ} and Var_{ζ} denotes expected value and variance, respectively.
- $P(\tau) = \int_{\mathcal{D}} |\tau(x)| dx \approx \int_{\mathcal{D}} (\tau^2(x) + \epsilon)^{\frac{1}{2}} dx$, L1 penalty term
- β_V and β_P are weights for the variance and the regularization terms.

Approximation of the Optimization Problem (SAA)

- Sample average approximation (SAA)
- Taylor approximation

Mean and variance approximation

$$\mathbb{E}_{\zeta}[\mathcal{Q}(\tau,\zeta)] \approx \bar{\mathcal{Q}} \coloneqq \frac{1}{M} \sum_{m=1}^{M} \mathcal{Q}(\tau,\zeta_m)$$
(5)

$$\operatorname{Var}_{\zeta}[\mathcal{Q}(\tau,\zeta)] = \mathbb{E}_{\zeta}[\mathcal{Q}^{2}(\tau,\zeta)] - \mathbb{E}_{\zeta}[\mathcal{Q}(\tau,\zeta)]^{2} \approx \frac{1}{M} \sum_{m=1}^{M} \mathcal{Q}^{2}(\tau,\zeta_{m}) - \bar{\mathcal{Q}}^{2} \quad (6)$$

• *M* is the number of samples used in the SAA

The Lagrangian Formulation of the Objective

Ĺ

$$(\tau) = \frac{1}{M} \sum_{m=1}^{M} \mathcal{Q}(\tau, \zeta_m) + \beta_V \frac{1}{M} \sum_{m=1}^{M} \mathcal{Q}^2(\tau, \zeta_m) - \bar{\mathcal{Q}}^2 + \beta_P P(\tau) + \sum_{m=1}^{M} \left(a(u_m^{\text{sca}}, v_m; \tau, \zeta_m) - b(v_m) \right).$$
(7)

a(u_m^{sca}, v_m; τ, ζ_m) = b(v_m), ∀ test function v_m is the weak form of the Helmholtz equation (v_m are also Lagrange multipliers)

Results: OUU using SAA

DTU

Results: OUU using SAA

DTU

Results: Effect of Manufacturing Error

Effect of Manufacturing Error, Cont.

	X	У	max amp
mean (const.)	9.61	6.01	20.93
variance (const.)	0.0083	0.0015	0.112
mean (SAA)	9.59	5.99	21.76
variance (SAA)	0.0023	0.00015	0.078

Double the manufacturing error:

	X	У	max amp
mean (const.)	9.6	6.02	19.4
variance (const.)	0.02	0.005	1.27
mean (SAA)	9.61	6.01	21.76
variance (SAA)	0.008	0.0017	0.33

DTU

Outline

- What is a PNJ, background, and motivation
- The deterministic PNJ design
- PNJ design under manufacturing uncertainty
- Towards topology optimization of PNJ lens design

Practicality of manufacturing the result lens profile

• One way to build such profiles is 3D printing in liquid

DTU

- One way to build such profiles is 3D printing in liquid
- Optically clear polymers (and void)

- One way to build such profiles is 3D printing in liquid
- Optically clear polymers (and void)
- Printing resolution: 200 nm laterally and 400 nm vertically,

- One way to build such profiles is 3D printing in liquid
- Optically clear polymers (and void)
- Printing resolution: 200 nm laterally and 400 nm vertically,
- About 1.9% and 3.8% respectively of the free-space wavelength of a CO₂ laser

- One way to build such profiles is 3D printing in liquid
- Optically clear polymers (and void)
- Printing resolution: 200 nm laterally and 400 nm vertically,
- About 1.9% and 3.8% respectively of the free-space wavelength of a CO₂ laser
- Errors
 - Sub-voxel-sized air bubbles
 - Material impurities
 - Deformations due to thermal expansion

- One way to build such profiles is 3D printing in liquid
- Optically clear polymers (and void)
- Printing resolution: 200 nm laterally and 400 nm vertically,
- About 1.9% and 3.8% respectively of the free-space wavelength of a CO₂ laser
- Errors
 - Sub-voxel-sized air bubbles
 - Material impurities
 - Deformations due to thermal expansion
- Can achieve higher relative resolution in e.g., microwave regimes (wavelength 1 cm)

Towards topology optimization of PNJ lens

In [Deng and Korvink, 2016]

- Enforce feature resolution by Helmholtz filter $\tau_f = H(\tau)$
- Projection to enforce binary material $P_{\beta}(\tau_f)$
- Here we apply the projection only directly on τ , $P_{\beta}(\tau)$

Threshold method (enforce binary material)

$$P_{\beta}(\tau) = \tau_{p} = \frac{\tanh(\beta\xi) + \tanh(\beta(\tau - \xi))}{\tanh(\beta\xi) + \tanh(\beta(1 - \xi))}$$
(8)

- $\xi \in [0, 1]$ and β are the threshold and projection parameters
- τ_p is the projected design

The optimization, revisited

- Objective: $\mathcal{Q}(u^{\text{tot}}(P_{\beta}(\tau)))$
- Optimization by continuation $\beta = 1, 5, 6, 6.5$
- Hard thresholding at last iteration
- $\max(|u^{\text{tot}}(K(P_{\beta}(\tau)))|^2) = 17.33 \text{ and } \max(|u^{\text{tot}}(K(H(P_{\beta}(\tau))))|^2) = 17.22$

• We presented a framework for OUU for PNJ design

- We presented a framework for OUU for PNJ design
- The obtained heterogeneous lens profile can achieve desired radial and angular shift in PNJ location and increase its amplitude

- We presented a framework for OUU for PNJ design
- The obtained heterogeneous lens profile can achieve desired radial and angular shift in PNJ location and increase its amplitude
- Taking manufacturing uncertainty into account results in a non-trivial optimal profile that achieves more robust PNJ design

- We presented a framework for OUU for PNJ design
- The obtained heterogeneous lens profile can achieve desired radial and angular shift in PNJ location and increase its amplitude
- Taking manufacturing uncertainty into account results in a non-trivial optimal profile that achieves more robust PNJ design
- Preliminary results using topology optimization techniques to obtain attainable lens profiles

References

Darafsheh, A. (2021). Photonic nanojets and their applications. *Journal of Physics: Photonics*, 3(2):022001 Karamehmedović, M., Scheel, K., Pedersen, F. L.-S., Villegas, A., and Hansen, P.-E. (2022). Steerable photonic jet for super-resolution microscopy. *Optics Express*, 30(23):41757–41773

Hansen, P. E., Rehn, N. M. B., Karamehmedovi'c, M., and Rømer, A. T. (2023). Near- and far-field simulations of 2d particles with photonic structure. submitted

Chen, P., Haberman, M. R., and Ghattas, O. (2021a). Optimal design of acoustic metamaterial cloaks under uncertainty. *Journal of Computational Physics*. 431:110114

Deng, Y. and Korvink, J. G. (2016). Topology optimization for three-dimensional electromagnetic waves using an edge element-based

finite-element method. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2189):20150835

Thank you!