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Inverse Problems

* |nverse problem formulation
b=F(y)+e

= b c R"is the measurement

= y € R" is the unknown true parameters

m [ R" - R" is the parameter to observation map

= ¢ & R is the additive noise



Quantity of Interest in an Inverse Problem
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optimal design:

A. Attia, et al. (2018)
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Goal-Oriented Inverse Problems (golP)

* Quantity of interest (according to the current literature):
- maximum, minimum, average, integral, ...
- Not even well-defined, e.g. expert’s opinion

* |n many applications we are only interested in Qol
b=F(y) +e

X = G(y)

= (G : R" - R4 prediction operator

= X is low dimensional, dim(x) << dim(y)



Latent Variables

» Suppose that we we find a hidden random variable Z that describes X:
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Latent variables and Inverse Problems

« Now suppose that we have an observation b

ATTN: Since d is an approximation, we cannot ensure that
n(X|Z,B) = n(X|B)



Bayesian Assumption

« We assume that Z parameterizes X such that X and Z are indistinguishable to
B, i.e.,

7(B|X) = n(B|X,Z) = n(B|Z)



Bayesian Assumption and the Latent Variable

* Proposition:

_ a(Z| XA(Z| X)
n(X|B,Z) = 2| B B ) m(X|B)

parameterization bias




Variation Encoder-Decoders

e Encoder-Decoder networks:

//

Z(b,x|e,d) = Dy (n(Z]X) || n(Z| B))

e Loss function:



Simplification of the Loss

* Proposition (simplified):

Z(b,x|e,d) = DKL(JZ(Z\B)\ | A(0,1)) + E 1||x — )‘(H%

E(Zl.‘




Example

Deterministic X-ray CT

* Edge preserving reconstruction:

Original Phantom Sinogram (stacked projections)

.
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y(x) = argmin||F(y) — bl|3 + x|| Dyl

y

BMA, M&J Chung [2021]: Learning regularization parameters of inverse problems via
deep neural networks



Training VEDs for the X-ray CT

* Training data: Randomized Shepp-Logan phantoms.
M. Chung]

e X IS obtained through a bi-level optimization problem.

. 2 % 10* data points

encoder decoder

* Fixed forward problem. - - —
. . 4 conv. layer \d
 Training over 10™ epochs. ‘ .
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Results

Uncertain view angles

true 1Image Yirue sinogram b

mean reconstruction  pixel-wise variance



Resutls

Out-of-prior sample

+ The Walnut phantom: q
[FIPS, 2015] -

true iImage Yirue sinogram b

mean reconstruction  pixel-wise variance



Example

Hydraulic Tomography




Hydraulic Tomography problem

Mathematical model

 Mathematical model for the Hydraulic head
V- (kVh) = g5V
and
KVh(x)-n=0 X ontop

h=0 X not on top



Hydraulic Tomography problem

Prior model - levelset prior

* We assume there is an underlying Gaussian random function:

X~ (0,0), C=(cl+A)°

where

 The Porosity parame:crer K IS then piecewise constant with

= %(1 + sign(X)) + %(1 _ sign(X))



Hydraulic Tomography problem

Goal

» We can expand X in the basis of Eigen vectors of C:

X = i xi\ﬁiel-
i=1

« The goal is to recover the first g coefficients, i.e. X, s Xy



Hydraulic Tomography problem

Training VED network

» We collect 10* data {b, x} from the prior LS T7A8 Vgt %
(a) samples from prior distribution visualized on the conductivity field

 We have a fully-connected feed-forward (3 hidden layers) encoder and
decoder (1 hidden layer)
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* [rue conductivity is out of prior

. Comparing with MCMC with 10°
samples.




Results
Comparing to pCN-MCMC

Samples from the posterior:

(b) samples from the VED posterior predictive visualized on the conductivity field

(¢) MCMC samples from posterior predictive visualized on the conductivity field




Results
Comparing to pCN-MCMC

« Mean and variance of the posterior

VED mean VED variance MCMC mean MCMC variance

Figure 13: Means and variances of the conductivity fields for samples from the VED posterior
predictive (left) and MCMC samples from the posterior predictive (right).



Results
Comparing to MCMC MCMC diagnostics
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MCMC (pCN) | 270 2.5 x 10”
VED sampling | 20 0.02
speed-up 13.5 1.2 x 10°
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sampling. The speed-up in terms of obtaining independent samples is significant.
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Conclusions:

» Efficient tool for UQ for inverse problem.
 We can achieve UQ for deterministic problems using data.
 Can we use sampling data to train a network?

* Unlocking larger dimensions
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