How to sample from a posterior like you sample from a prior

Goal-Oriented UQ for Inverse Problems via VEDs

Inverse Problems

Inverse problem formulation

$$\mathbf{b} = F(\mathbf{y}) + \mathbf{e}$$

- \rightarrow **b** $\in \mathbb{R}^m$ is the measurement
- \rightarrow y $\in \mathbb{R}^n$ is the unknown true parameters
- $ightharpoonup F: \mathbb{R}^n \to \mathbb{R}^m$ is the parameter to observation map
- \rightarrow e $\in \mathbb{R}^m$ is the additive noise

Quantity of Interest in an Inverse Problem

CT:

optimal design:

A. Attia, et al. (2018)

de-blurring:

Goal-Oriented Inverse Problems (goIP)

- Quantity of interest (according to the current literature):
 - maximum, minimum, average, integral, ...
 - Not even well-defined, e.g. expert's opinion
- In many applications we are only interested in Qol

$$\mathbf{b} = F(\mathbf{y}) + \mathbf{e}$$

$$\mathbf{x} = G(\mathbf{y})$$

- $ightharpoonup G: \mathbb{R}^n
 ightharpoonup \mathbb{R}^q$ prediction operator
- \rightarrow x is low dimensional, dim(x) \ll dim(y)

Latent Variables

• Suppose that we we find a hidden random variable Z that describes X:

$$\pi(X|Z) = \delta$$

Latent variables and Inverse Problems

Now suppose that we have an observation b

Bayesian Assumption

• We assume that Z parameterizes X such that X and Z are indistinguishable to B, i.e.,

$$\pi(B | X) = \pi(B | X, Z) = \pi(B | Z)$$

Bayesian Assumption and the Latent Variable

Proposition:

$$\pi(X|B,Z) = \frac{\pi(Z|X)(Z|X)}{\pi(X|B)} \qquad \pi(X|B)$$

$$\pi(X|B,Z) = \frac{\pi(Z|X)(Z|X)}{\pi(Z|B)(Z|B)} \qquad \pi(X|B)$$
parameterization bias

$$(B)$$
 (Z) (Z)

Variation Encoder-Decoders

Encoder-Decoder networks:

Loss function:

$$\mathcal{L}(\mathbf{b}, \mathbf{x} \mid e, d) = D_{\mathsf{KL}}(\pi_d(\mathbf{Z} \mid \mathbf{X}) \mid | \pi_e(\mathbf{Z} \mid \mathbf{B}))$$

Simplification of the Loss

Proposition (simplified):

$$\mathcal{L}(\mathbf{b}, \mathbf{x} \mid e, d) = D_{\mathsf{KL}}(\pi(\mathbf{Z} \mid B) \mid |\mathcal{N}(0, 1)) + \mathbb{E} \lambda ||\mathbf{x} - \bar{\mathbf{x}}||_{2}^{2}$$

Example

Deterministic X-ray CT

Edge preserving reconstruction:

$$\mathbf{y}(x) = \text{argmin} ||F(\mathbf{y}) - \mathbf{b}||_2^2 + x||D\mathbf{y}||_1$$

BMA, M&J Chung [2021]: Learning regularization parameters of inverse problems via deep neural networks

Training VEDs for the X-ray CT

- Training data: Randomized Shepp-Logan phantoms.
 [M. Chung]
- x is obtained through a bi-level optimization problem.
- 2×10^4 data points
- Fixed forward problem.
- Training over 10^4 epochs.

Results

Uncertain view angles

Resutls Out-of-prior sample

• The Walnut phantom: [FIPS, 2015]

mean reconstruction

pixel-wise variance

Example

Hydraulic Tomography

Hydraulic Tomography problem

Mathematical model

and

Mathematical model for the Hydraulic head

$$\nabla \cdot (\kappa \nabla h) = q_i \delta(x_i^{\text{well}})$$

$$\kappa \nabla h(x) \cdot n = 0$$
 $x \text{ on top}$
$$h = 0$$
 $x \text{ not on top}$

Hydraulic Tomography problem

Prior model - levelset prior

• We assume there is an underlying Gaussian random function:

$$X \sim (0,C)$$
, $C = (\sigma I + \Delta)^2$

where

• The Porosity parameter κ is then piecewise constant with

$$\kappa = \frac{c^+}{2}(1 + \text{sign}(X)) + \frac{c^-}{2}(1 - \text{sign}(X))$$

Hydraulic Tomography problem Goal

• We can expand X in the basis of Eigen vectors of C:

$$X = \sum_{i=1}^{\infty} x_i \sqrt{\lambda_i} e_i$$

• The goal is to recover the first q coefficients, i.e. x_1, \ldots, x_q

Hydraulic Tomography problem

Training VED network

• We collect 10^4 data $\{\mathbf{b}, \mathbf{x}\}$ from the prior

(a) samples from prior distribution visualized on the conductivity field

- We have a fully-connected feed-forward (3 hidden layers) encoder and
 - decoder (1 hidden layer)
- True conductivity is out of prior
- Comparing with MCMC with 10^6 samples.

Results Comparing to pCN-MCMC

Samples from the posterior:

(c) MCMC samples from posterior predictive visualized on the conductivity field

Results Comparing to pCN-MCMC

Mean and variance of the posterior

Figure 13: Means and variances of the conductivity fields for samples from the VED posterior predictive (left) and MCMC samples from the posterior predictive (right).

Results Comparing to MCMC

Comparing coefficients

MCMC diagnostics

	Elapsed time (s) for comput-	Elapsed time (s) for comput-
	ing 1000 samples	ing 10 independent samples
MCMC (pCN)	270	2.5×10^{5}
VED sampling	20	0.02
speed-up	13.5	1.2×10^{8}

Table 1: CPU times for sampling from the posterior predictive using MCM versus using VED sampling. The speed-up in terms of obtaining independent samples is significant.

Conclusions:

- Efficient tool for UQ for inverse problem.
- We can achieve UQ for deterministic problems using data.
- Can we use sampling data to train a network?
- Unlocking larger dimensions

References:

- Goal-oriented Uncertainty Quantification for Inverse Problems via Variational Encoder-Decoder Networkse. BMA, T&J Chung. (Preprint)
- Learning regularization parameters of inverse problems via deep neural networks. BMA, T&J Chung. Inverse Problems, IOPScience, 2021.