Fourier method for inverse source problem using correlation of passive
measurements
The 11" Applied Inverse Problems Conference 2023

Author:
Kristoffer Linder-Steinlein

Supervisors: A
Per Christian Hansen, < (A% 8 ‘
f(x+Ax) 2 F ) OQ

~d

Aﬂt’m-)wwo’ﬁdwnék)\

Mirza Karamehmedovi¢ and
Faouzi Triki

DTU Compute




Outline

e Introduction
e Motivation/inspiration
e The model

e The inverse source problem in 1d
e Numerical experiments

e Conclusion and future work

2 DTU Compute Stochastic wave equations 18.9.2023



Passive sensor imaging
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Passive sensor imaging
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Space-time stationary and ''delta''-correlated noise, homogeneous medium.
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The data at hand

Cross correlation

Consider an array of N passive sensors at position {x; };\’: |» wave fields u(z, x;) recorded in the time interval

[0,T], T > 0, then we write the cross correlation matrix for time lag 7 as:

1 rT
Cr(t,xj,x1) = T/ u(t,xj)u(t+7,x)dt, j,l={1,---,N}, 7eR (1
0

For space-time stationary and "delta"-correlated noise sources, we get [GP16]:

Green’s function proportionality

Denoting by G the Green’s function of the scalar wave equation, it is possible to arrive at the following
relation:

0
ECT(T,XI’XZ) % = [G(-7,x1,x2) = G(7,x1,x2)] )

The travel time can be inferred from (2) by considering the singular support of the right-hand side.
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The setup under consideration

Underlying wave equation

We assume the measured data at sensor positions {x j}§:1 originates from the following wave equation
1 9%u
= —u
2 012 -
u(0,x) =0, Ju(0,x)=f(x), xeR

=0, xeR, 1€(0,7) 3

where ¢ > 0 is the wave speed and f the initial speed.

\.

Solution space
We seek f in the solution set @y, defined as

Q= {f|f € C(R), supp f < [0, 1], |f] < L}

for some constant L > 0.

.
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Cross correlation as wave equation

Definition (The inverse source problem)
Let f € Qr, fix x| = 7 = 0, then the data, at the given values for any combination of ¢,T € R™, is defined as
originating from:

T ct
d(x) :=0:Cr(0,0,x) + c0,Cr(0,0,x) = ZC‘LT / / f(s)dsf(x+ct)dt ()
0 —ct

and the inverse source problem becomes

Given the data, d(x), seen in (4) recover the initial speed, f € Q;, of the wave equation (3).
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e The inverse source problem in 1d

9 DTU Compute

Stochastic wave equations

18.9.2023



Manipulating the data equation

We can express the data as follows:
T q
2T / [F(ct) — F(=ct)] F'(x +ct)dt, F(q)= / f(s)ds
0

as ¢ > 0, T > 0 with the compact support of f in [0, 1] the term F'(—ct) vanishes, reducing the

d(x) =

above to:

1 T 1 cT
dx) = — F(ct)F’ Hdt = F(g)F’ dg, =ct
0 =57 | Fenrrenar= 50 [ F@F o q=c

A direct application of integration by parts shows the data is equivalent to

cT
a0 = S P - o [ P @ F G g

Stochastic wave equations 18.9.2023
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Fourier domain and mean estimation

Data in the Fourier domain

F (CT) p2micT [ 2

Fld (x = meTw £y — — | f(w)|]?, T = 1,

(@ (0)(w) = 55T () - 5| f (W)

where f is the Fourier transform of f.

Remark: Tt should be noted that F(cT) = M, [ f] is the mean of f by the definition of F and the assumption
of the support of f. From the above relation it is apparent F(cT) is important to know a priori and hence
something that is recovered.

\.

Lemma (Mean of the source from data)

Assume access to the data d(x), and the sensor signal ug(t) = u(t,0), then the mean M [ f] can be

calculated as:
2c¢ Leb(supp d)M, [d]

M, [uo]

M. [f] =

.
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Zero mean, non-uniqueness. and phase-retrieval
Now, assume M, [ f] = 0 and introduce f (x) = f(-x), then

2¢*Td' (x) = — (f * 7) (—x)
with * the usual convolution operator. Applying the Fourier transform we find:

2iwc*Td(w) = —f(-w) f (~w) = —f(w) f(-w)

since f is real-valued, we have f(-w) = f(w), the complex conjugate, which yields the phase
retrieval problem
—iwc*Td(w) = |f(a))|2

Phase retrival

Hence, in the case where the mean of the source function is zero, we are faced with the following problem

Reconstruct f from |f]
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Zero mean, non-uniqueness. and phase-retrieval

Theorem (Akutowicz [Aku57])

Let f,g € Qp, and denote by f and § the Fourier transform. Then f and § admits a holomorphic extensions,
Fand G toall of C. If |f| = || then {z,} U{Zn} = {2} U {2, } where {z,} U{Z,} and {z},} U {Z,} are the
sets of zeros of F and G respectively. This implies

$(2) = h(z)e'%y, 6€eR, yeC, ly|=1

for some function h € E' (R) completely determined by {z,} U {Zn}.

Let f € Qp, M\ [f] =0, and assume cT > 1 the non-linear inverse source problem based on the data seen
in (4) is ill-posed. Furthermore, it is a phase retrieval problem.

\.

.
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Non-zero reconstruction theorem

Let f € QL(R), M[f] # 0, assume ¢T > 1 put G(w) = 2c>TF [d’ (x)](w) and a(w) = E.r(w) then the

non-linear inverse source problem based on the data seen in (4) can be reconstructed from:

k4 —42RG — 4(IG)?|Ral + Rak® +23aIG

%f: 2k
. -«kJaRf - 9G
3f= kRa

where k = F(cT). Furthermore, we obtain the following stability estimate

1fi = follzey < 7' CL) (262 +1) 161 - Gl 2

Stochastic wave equations
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e Numerical experiments
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Reconstructions
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e Conclusion and future work
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Conclusion and future work

Conclusion:

® Proved non-uniqueness in the case of a source with mean zero, using results from phase retrieval in one
dimension.

® Derived a reconstruction method and stability estimate where the source has a non-zero mean in one
dimension.

® Numerical proof of concept using simulated data in one dimension.

Future work

® Extend to higher dimensions (in progress)

® Consider the stochastic setting in terms of initial conditions and time fluctuations (in progress)

® Possible real applications, e.g. within seismology and astronomy.
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Wave equation

Wave equation

1

c2(x) 012

8%u

- Au=n(t,x), x€R", teR" =«

v

Green’s function

1
A(x)

G(t,x,

0%G .
W—Axczé(t)é(x—y), x,y€R", teR
y)=0, forallt <0

A

Solution (Causal)

u(t,x) =‘[

t

/ G(t - s,x,y)n(s,y)dyds
Rn

(o8]
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Space-time stationary and ''delta''-correlated noise, homogeneous medium

piece of signal recorded at x,
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Travel time estimation

Singular support
Consider any distribution f € D’ (Q) for Q C R", then we define singular support as:

singsupp(f) = {x € Q, fis C* near x}¢

.

Derivative and singular support
For any differential operator, D, and distribution, f, that;

singsupp (D f) < singsupp(f)

.
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