

Edge-Preserving Tomographic Reconstruction with Uncertain View Angles

Per Christian Hansen, Technical University of Denmark, pcha@dtu.dk J.M. Bardsley, Univ. Montana; Y. Dong & N.A.B.R. Riis, DTU; F. Uribe, LUT

Setting the Stage – True and Nominal View Angles

Computed Tomography (CT)

CT data consist of measurements of the attenuation of X-rays passing through an object. We reconstruct an image of the linear attenuation coefficient of the object's interior. For each position of the X-ray source, we measure a set of data referred to as a view.

The true view angles may differ from the assumed nominal view angles: \bullet

- The model for the measured data is $b = A_{\text{tru}} x + e$, where *e* is the measurement noise, x represents the image, and A_{tru} is the forward model for the *unknown* true angles.
- \bullet A "naive" and bad reconstruction uses the matrix $\bm A_{\text{nom}}$ based on the nominal angles.

How to Handle Uncertain View Angles - The Bayesian Framework

We consider the true view angles as unknowns θ , together with the image x: find (x, θ) such that $b = A(\theta) x + e$.

 \bullet

- \bullet $\bullet\,$ The distribution of \bm{e} is determined by the measurements; in CT it is log-Poisson and we approximate it by a Gaussian. Hence, $\pi_{\text{lik}}({\bm b}|{\bm x}, {\bm \theta})$ is a Gaussian.
	-

Here, $A(\theta)$ denotes the forward model corresponding to the view angles θ . We apply the Bayesian framework with a likelihood that involves both x and θ :

 $\pi_\text{pos}(\pmb{\times},\pmb{\theta}) \propto \pi_\text{lik}(\pmb{b} \vert \pmb{\times},\pmb{\theta}) \times \pi_\text{pri}(\pmb{\times}) \times \pi_\text{pri}(\pmb{\theta})$.

- \bullet \bullet For $\pi_{\text{pri}}({\pmb{\mathsf{x}}})$ we use a Laplace distribution of the differences of neighbour pixels (enables sharp edges in the image; related to total variation (TV) regularization.
- \bullet $\bullet\,$ For $\pi_{\text{pri}}(\boldsymbol{\theta})$ we use the **von Mises distribution** (i.e., a *periodic* normal distribution).

But wait, there's more. We introduce scalar hyperparameters: λ in the Gaussian likelihood, δ in the Laplace-difference prior for x, and κ in the von Mises prior for θ . All three have exponential distributions $\pi_{\text{hpri}}(\cdot) = \beta \, \exp(-\beta \, \cdot)$ with $\beta = 10$ -4 . Thus, the posterior takes the form

 $\pi_\text{pos}(\textsf{x}, \theta, \lambda, \delta, \kappa) \propto \pi_\text{lik}(\textit{b} \vert \textbf{\textit{x}}, \theta, \lambda) \times \pi_\text{pri}(\textsf{x} \vert \delta) \times \pi_\text{pri}(\theta \vert \kappa) \times \pi_\text{hpri}(\lambda) \, \pi_\text{hpri}(\delta) \times \pi_\text{hpri}(\kappa)$

How to Sample $-$ A Hybrid Gibbs Sampler

Performing statistical inference of the full posterior $\pi_{pos}(x, \theta, \lambda, \delta, \kappa)$ is challenging: the number of pixels n is large, the forward model $A(\theta)$ is nonlinear in the view angles θ , and the prior $\pi_{pri}(x|\delta)$ is nondifferentiable due to the 1-norm. We split the posterior and apply different samplers for each parameter, hence the sampler is hybrid.

Left: von Mises prior with the respective densities for selected angles in θ . Right: some component densities and true angles shown as vertical green lines.

> $\Gamma_{0.00}$ 0.02 0.04 We compute a sharper image with uncertainty confined to pixels on grain boundaries.

Appendix - Definition of Priors

Much easier to work with a Gaussian but we miss the heavy tails of π_1 . We use 10 CGLS iterations to compute the LS solution that gives the sample $x^{(j)}$.

 π_2 : samples from π_2 are drawn sequentially by componentwise Metropolis:

$$
\pi_1(\mathbf{x}|\boldsymbol{\theta}, \lambda, \delta) \propto \exp\left(-\frac{\lambda}{2}||\mathbf{A}(\boldsymbol{\theta})\mathbf{x} - \mathbf{b}||_2^2 - \delta(||(\mathbf{I} \otimes \mathbf{D})\mathbf{x}||_1 + ||(\mathbf{D} \otimes \mathbf{I})\mathbf{x}||_1)\right)
$$

$$
\pi_2(\boldsymbol{\theta}|\mathbf{x}, \lambda, \kappa) \propto \exp\left(-\frac{\lambda}{2}||\mathbf{A}(\boldsymbol{\theta})\mathbf{x} - \mathbf{b}||_2^2 + \kappa \mathbf{1}^T \cos(\boldsymbol{\theta} - \bar{\boldsymbol{\theta}})\right)
$$

$$
\pi_3(\lambda|\mathbf{x}, \boldsymbol{\theta}) \propto \lambda^{m/2} \exp\left(-\lambda \left[\frac{1}{2}||\mathbf{A}(\boldsymbol{\theta})\mathbf{x} - \mathbf{b}||_2^2 + \beta\right]\right)
$$

$$
\pi_4(\delta|\mathbf{x}) \propto \delta^n \exp(-\delta[||(\mathbf{I} \otimes \mathbf{D})\mathbf{x}||_1 + ||(\mathbf{D} \otimes \mathbf{I})\mathbf{x}||_1 + \beta])
$$

$$
\pi_5(\kappa|\boldsymbol{\theta}) \propto I_0(\kappa)^{-p} \exp(-\kappa \left[-\mathbf{1}^T \cos(\boldsymbol{\theta} - \bar{\boldsymbol{\theta}}) + \beta\right])
$$

F. Uribe, J. M. Bardsley, Y. Dong, P. C. Hansen, N. Riis, A hybrid Gibbs sampler for edge-preserving tomographic reconstruction with uncertain view angles, SIAM/ASA J. Uncertain. Quantific., 10 (2022), pp. 1293-1320, doi: 10.1137/21M1412268. A part of the project Computational Uncertainty Quantification for Inverse problems

 $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$, $\theta \in \mathbb{R}^p$, $I_0 = 0$ -order mod. Bessel funct., $D = \text{bidiag}(-1, 1)$, $\bar{\theta} = \text{nominal angles}$.

End

Some Details of the Algorithm

 π_1 : non-differentiable due to $\|\cdot\|_1$ and nonlinear in $\pmb{\theta}$. Use Laplace's approximation, i.e., a Gaussian $\pi_{\mathsf{G}} = \mathcal{N}(\pmb{\varkappa}; \pmb{\mu}, \pmb{H})$ $\left(\frac{-1}{1} \right)$ with $H(x^{(j-1)}) \approx$ Hessian of $-\log \pi_1$ and

 $\mu = \mu(\mathsf{x}) = \lambda H$ -1 (x) $A(\theta)^{\top}$ $b = \text{MAP}$ estimator of π_1 ,

Results - Metallic Grains Phantom

$$
\theta_1^{[k+1]} \sim \pi_2 \left(\boldsymbol{\theta} | \mathbf{x}, \lambda, \kappa, \left[\theta_2^{[k]}, \theta_3^{[k]}, \ldots, \theta_p^{[k]} \right] \right),
$$
\n
$$
\theta_2^{[k+1]} \sim \pi_2 \left(\boldsymbol{\theta} | \mathbf{x}, \lambda, \kappa, \left[\theta_1^{[k+1]}, \theta_3^{[k]}, \ldots, \theta_p^{[k]} \right] \right),
$$
\n
$$
\vdots
$$
\n
$$
\theta_p^{[k+1]} \sim \pi_2 \left(\boldsymbol{\theta} | \mathbf{x}, \lambda, \kappa, \left[\theta_1^{[k+1]}, \theta_2^{[k+1]}, \ldots, \theta_{p-1}^{[k+1]} \right] \right)
$$

 \setminus

:
:

 $\frac{\left[\kappa+1\right]}{\rho}\sim\pi_2$

After 20 cycles we obtain $\boldsymbol{\theta}^{(j)} = \boldsymbol{\theta}^{[20]}$.

 π_3 and π_4 : can be written and approximated, respectively, in closed form.

 π_5 : sampled with standard random-walk Metropolis.

0.00

Results - View Angles

0.00

0.25

0.50

0.25 -0.50 $+0.75$ Left: our method. Right: using the incorrect nominal angles. Top: posterior mean

 0.06 0.08

0.75

1.00

Bottom: st. dev.

Nominal angles give a blurry image with uncertain boundaries.

$$
\pi_{\text{pri}}(\boldsymbol{x} \,|\, \delta) = \left(\frac{\delta}{2}\right)^n \exp\left(-\delta(\| (\boldsymbol{I} \otimes \boldsymbol{D}) \, \boldsymbol{x} \|_1 + \| (\boldsymbol{D} \otimes \boldsymbol{I}) \, \boldsymbol{x} \|_1)\right)
$$
\n
$$
\pi_{\text{pri}}(\boldsymbol{\theta} \,|\, \kappa) = \left(\frac{1}{2\pi I_0(\kappa)}\right)^p \exp\left(\kappa \, \mathbf{1}^\top \cos(\boldsymbol{\theta} - \bar{\boldsymbol{\theta}})\right)
$$

Reference and Funding

(CUQI), funded by Villum Investigator grant no. 25893 from The Villum Foundation.