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Introduction.

Introduction to the image restoration context.

True scene x Imaging device Observed image y

Figure: Forward problem

Model:

y = A(x) + n

with x ∈ Rd the unknown scene, y ∈ Cm the observation, n ∈ Cm

the noise, and A : Rd → Cm a known degradation operator.

Goal: Estimating x from its observation y . → ill-posed,
ill-conditionned.
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Bayesian framework.

Bayesian paradigm.

▶ x is the realization of a random variable (r.v.) X on Rd .

▶ y is the realization of a r.v. Y |X = x .

▶ Inferences about x from y are derived from the joint
distribution (X ,Y ) via p(x , y) = p(y |x)p(x).

▶ Posterior distribution computation via the Bayes’s rule

p(x |y) = p(x)p(y |x)∫
Rd p(x̃)p(y |x̃)dx̃

∝ p(x)p(y |x)

where p(x) is the prior and p(y |x) is the likelihood (assumed
to be known).
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Bayesian framework.

Classical estimators in imaging.

▶ Potential formulation: R(x) = − log p(x) and

F (x , y) = − log p(y |x)(= ∥Ax−y∥22
2σ2 )

▶ Maximum-A-Posteriori (MAP) estimator:

x̂MAP=argmax
x∈Rd

p(x |y)=argmin
x∈Rd

{F (x , y) + λR(x)} . (1)

▶ Minimum Mean Square Error (MMSE) estimator:

x̂MMSE =argmin
u∈Rd

E[∥X − u∥2|Y = y ] =E[X |Y = y ]. (2)
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Background.

1rst key ingredient: Sampling using Langevin based methods.

Sampling using the Unadjusted Langevin Algorithm (ULA).
Goal: sampling from a distribution with target density
π(x) = p(x |y) ∝ exp(−R(x)− F (x , y)).

▶ Langevin stochastical differential equation (SDE):

dXt = ∇ log π(Xt)dt +
√
2dBt

with (Bt)t≥0 a d-dimensional Brownian motion.
▶ ULA:

Xk+1 = Xk + δ∇ log π(Xk) +
√
2δZk+1

Xk+1 = Xk − δ∇R(Xk)− δ∇F (Xk , y) +
√
2δZk+1 (3)

with Zk ∼ N (0, Id) for all k ∈ N and δ > 0.
▶ Results (Durmus and Moulines, 2017):

▶ Convergence towards a unique stationary distribution πδ ≈ π if
∇(R + F ) is L-Lipschitz and δ < 1/L.

▶ Exponentially fast convergence if F + R is strongly convex at
∞.
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Background.

1rst key ingredient: Sampling using Langevin based methods.

Sampling and Optimizing.

Xk+1 = Xk − δ∇R(Xk)− δF (Xk , y) +

{ √
2δZk+1 ULA.

δZk+1 SGD.
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Background.

2nd key ingredient: PnP priors for Bayesian imaging.

Plug-and-Play (PnP) approaches.
Problem: p(x) (or R(x)) is unknown and difficult to model.

▶ PnP methods use a denoiser Dε : Rd → Rd to implicitly
define an image prior p(x).

▶ Target proxR (Hurault et al., 2022; Ryu et al., 2019;

Venkatakrishnan et al., 2013).

▶ Target ∇R (Alain and Bengio, 2014), (Guo et al.,

2019),(Kadkhodaie and Simoncelli, 2020) using Tweedie’s
formula (Miyasawa et al., 1961; Robbins, 1956).

In the literature:

▶ MAP point estimation: convergence towards fixed-points of
some operators and/or under unrealistic assumptions.

▶ Sampling: No convergence guarantees.

Goal: Propose methods with convergence guarantees under
realistic assumptions.
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Background.

2nd key ingredient: PnP priors for Bayesian imaging.

PnP approaches using Tweedies’s formula.

Tweedie’s formula
If X ∼ PX , N ∼ N (0, Id) and X̃ = X +

√
εN then,

E[X |X̃ = x̃ ]− x̃ = ε∇ log(p ∗ gε)(x̃) = ε∇ log(pε)(x̃) ,

with gε a Gaussian kernel with variance ε.

▶ p(x) is unknown but pε(x) can be used.

▶ Using the MMSE denoiser D∗
ε (x̃) = E[X |X̃ = x̃ ] we get

∇ log(pε)(x̃) = (D∗
ε (x̃)− x̃)/ε ,

with ∇R ≈ −∇ log pε.

▶ Problem: D∗
ε =?
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Proposed methods.

PnP approaches and Tweedie’s formula.

▶ PnP-SGD (Laumont et al., 2022b):

Xk+1 = Xk − δk∇F (Xk , y) + δk(Dε(Xk)− Xk)/ε) + δkZk+1,

where (δk)k∈N is a sequence of decreasing step-sizes.
→ it converges in the vicinity of the stationary points of
log p(x |y).

▶ PnP-ULA (to sample from πC
δ,ε) (Laumont et al., 2022a):

Xk+1 = Xk − δ∇F (Xk , y) + δ(Dε(Xk)− Xk)/ε)

+ δ(ΠC (Xk)− Xk)/λ+
√
2δZk+1.

where this term ensures the strong convexity in the tails and
ΠC is a projection on B(0,RC ) and Dε(x) ≃ D∗

ε (x).
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Proposed methods.

Plug-and-Play approaches and Tweedie’s formula.

▶ Hypotheses:
▶ Dε is Lipschitz and there exists M : R+ → R+, such that for

all ∥x∥≤ R, ∥Dε(x)− D∗
ε (x)∥≤ M(R).

▶ The likelihood p(y |x) is bounded, C 1 and ∇ log p(y |x) is
Lipschitz.

▶ The MSE loss for D∗
ε under gε(.|x̃) is finite and uniformly

bounded.

▶ Non-asymptotic error when sampling (Laumont et al., 2022a):

|1
n

n∑
k=1

EπC
δ,ε
[Xk ]−

∫
Rd

x̃p(x̃ |y)dx̃ |

≤ C0{C1ε
β/4 + C2R

−1
C + C3(

√
δ +

1

nδ
+ CR)}. (4)
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Image restoration using PnP-ULA and PnP-SGD.

Problem position: y = Ax + n
▶ Deblurring: A encodes a block filter of size 9 and σ = 1/255.

▶ Interpolation: A is a diagonal matrix with 1 or 0 on the
diagonal and hiding 80% of the pixels in the original image.

▶ Dataset:

Cameraman. Simpson. Traffic.

Alley. Bridge. Goldhill.
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Image restoration using PnP-ULA and PnP-SGD.

Algorithm parameters for PnP-ULA and PnP-SGD

▶ Denoising implicit prior Dε: SN-DnCNN provided by (Ryu

et al., 2019) and such that (Dε − Id) is L-Lipschitz with
L < 1. ε = (5/255)2.

▶ PnP-ULA:
▶ Initialization at the observation y .
▶ Number of iterations n = 2.5e7.
▶ δ = δstable
▶ C = [−1, 2]d .

▶ PnP-SGD:
▶ Initialization with TV-L2.
▶ Number of iterations n = 5e3 after the burn-in.
▶ δ0 = δstable/6 and δk = δ0(k + 1− nburn-in)

−0.8.
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Image restoration using PnP-ULA and PnP-SGD.

Convergence analysis of PnP-ULA.

Evolution of the L2 distance between the final MMSE
estimate and the samples generated by PnP-ULA for the
interpolation problem.

Cameraman. Simpson. Traffic.

Alley. Bridge. Goldhill.
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Image restoration using PnP-ULA and PnP-SGD.

Convergence analysis of PnP-ULA.

ACF in the pixel domain for the interpolation problem.

Fastest direction Median direction Slowest direction
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Image restoration using PnP-ULA and PnP-SGD.

Convergence analysis of PnP-ULA.

ACF in the Fourier domain for the deblurring problem.

Fastest direction Slowest direction

Fastest direction Slowest direction
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Image restoration using PnP-ULA and PnP-SGD.

Convergence analysis of PnP-ULA.

Log-standard deviation maps in the Fourier domain for the
Markov chains defined by PnP-ULA for the deblurring
problem.

Inverse Fourier

transform of

the blur kernel.

Cameraman Simpson Traffic

Alley Bridge Goldhill
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Image restoration using PnP-ULA and PnP-SGD.

Point estimation for the interpolation task.
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Image restoration using PnP-ULA and PnP-SGD.

Point estimation for the interpolation task.

Original image. PnP-ULA. PnP-SGD.
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Image restoration using PnP-ULA and PnP-SGD.

Point estimation for the interpolation task.
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Image restoration using PnP-ULA and PnP-SGD.

Point estimation for the interpolation task.

Original image. PnP-ULA. PnP-SGD.
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Image restoration using PnP-ULA and PnP-SGD.

Point estimation for the interpolation task.

PSNR evolution of the estimated MMSE for the
interpolation problem with PnP-ULA.
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Image restoration using PnP-ULA and PnP-SGD.

Point estimation for the deblurring task.
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Image restoration using PnP-ULA and PnP-SGD.

Point estimation for the deblurring task.

Detailed comparison between PnP-ULA and PnP-SGD.

Original image. PnP-ULA. PnP-SGD.
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Image restoration using PnP-ULA and PnP-SGD.

Point estimation for the deblurring task.
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Image restoration using PnP-ULA and PnP-SGD.

Point estimation for the deblurring task.

Detailed comparison between PnP-ULA and PnP-SGD.

Original image. PnP-ULA. PnP-SGD.
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Image restoration using PnP-ULA and PnP-SGD.

Point estimation for the deblurring task.

PSNR evolution of the estimated MMSE for the deblurring
problem with PnP-ULA.
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Image restoration using PnP-ULA and PnP-SGD.

Uncertainty visualisation study.

Marginal posterior standard deviation of the unobserved
pixels for the interpolation problem.

Cameraman Simpson Traffic

Alley Bridge Goldhill
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Image restoration using PnP-ULA and PnP-SGD.

Uncertainty visualisation study.

Marginal posterior standard deviation for the deblurring
problem.

Cameraman Simpson Traffic

Alley Bridge Goldhill



Bayesian computation with Plug & Play priors for inverse problems in imaging sciences. 31 / 37

Image restoration using PnP-ULA and PnP-SGD.

Uncertainty visualisation study.

Standard deviation for Alley and Simpson images for
interpolation at different scales.

Scale 1 Scale 2 Scale 3 Scale 4
The scale i corresponds to a downsampling by a factor 2i of the

original sample size.
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Image restoration using PnP-ULA and PnP-SGD.

Uncertainty visualisation study.

Standard deviation for Alley and Simpson for deblurring
at different scales.

Scale 1 Scale 2 Scale 3 Scale 4
The scale i corresponds to a downsampling by a factor 2i of the

original sample size.



Bayesian computation with Plug & Play priors for inverse problems in imaging sciences. 33 / 37

Conclusion.

Conclusion.

▶ Summary.
▶ Better understanding of the PnP models for point estimation

and sampling.
▶ Development of efficient Langevin based algorithms with

detailed convergence guarantees under realistic hypothesis.

▶ Future work.
▶ Development of accelerated schemes for sampling from the

posterior distribution.
▶ Correcting artefacts generated by the prior denoiser.
▶ Study of more realistic and challenging inverse problems (CT

reconstruction, semi-blind deblurring, etc, ...).
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Conclusion.
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Conclusion.

THANK YOU.
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