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Motivation
UQ for the reconstruction of large dimensional sparse signals

M

Data generating process, for example:

A(Xtrue) +e=Y, Xurue € Rday S R™ , € N(07 Zobs)~
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Motivation
UQ for the reconstruction of large dimensional sparse signals

Data generating process, for example:
A(Xtrue) +e= y7 Xtrue S RdLy S Rm , € N(07 ZObS)'
Posterior density in x:
1
w(xy) = Zry)n(x), 2= [yl
In this talk:  7(x) o< £L(x)mo(x)

olx
2y~ AL, )

where for example  £(x) x exp (
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UQ for the reconstruction of large dimensional sparse signals
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Motivation
UQ for the reconstruction of large dimensional sparse signals

M

Problem in signal domain Wavelet coefficients of true signal
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Motivation
UQ for the reconstruction of large dimensional sparse signals

Laplace prior to enforce sparsity:

mo(X) o< exp (- Z5I|Xi’)a 6; >0

Posterior density in x:

m(x) o< L(x exp( Zé\x,)
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Certified Coordinate Selection for large-dimensional Bayesian Inversion 5



=]
—
=

M

Motivation
UQ for the reconstruction of large dimensional sparse signals

Laplace prior to enforce sparsity:

X)ocexp( Z(Hx,) 5 >0

Posterior density in x:

7(x) exp( Zé\x,)

How can we find the ’'most important coordinates’ and how can we
approximate the posterior density with this knowledge?
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Outline

M

® A posterior approximation

¢ Certifying the approximation

e Sampling options

¢ Numerical example 1: 1D piece-wise constant signal

¢ Numerical example 2: 2D super-resolution microscopy
¢ Conclusions
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A posterior approximation
Coordinate splitting

Replace the likelihood by a ridge approximation:

m(Xx) o< L{X)mo(X)

#(x) oc L0x;)m0(X )70 (X, ) = 7 (X, )mo(X,e):
given a coordinate splitting x := (x,, x..), x, € RZ, x . € R

Ideally |Z] < |Z°|

September 6, 2023 AIP 23
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A posterior approximation
Optimal reduced likelihood
Proposition

For mo(x) oc exp (— Y di|xi|), ;i > 0 the optimal reduced likelihood which
minimizes the (squared) Hellinger distance

Du(rll#)? = 5 | (VA - V7)) ax.

Rd

is given by

2
F(x,) = ( /R C\/ﬁ(xpxze)m(xz»dxﬂ) |

AIP 23
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A posterior approximation
Optimal reduced likelihood
Proposition

For mo(x) oc exp (— Y di|xi|), ;i > 0 the optimal reduced likelihood which
minimizes the (squared) Hellinger distance

Du(rll#)? = 5 | (VA - V7)) ax.

Rd

M

is given by
2
L5(x,) = </ch \/ L(Xz, X6 )mo (X0 )dX ) .

How to select Z?

September 6, 2023 AIP 23
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Certifying the approximation
Upper bound on the Hellinger distance

Proposition _
For 7 (x) o £*(x)mo(x), we can control the Hellinger distance with

7T||7T <4Zhh

i€zZ¢c

where the entries of the diagnostic vector h € RY are

i = ;2 | (@og £0x)Pr(x)ax.
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Certifying the approximation
Additive Gaussian noise and linear forward model

For problems of the form

1
() x o0 (5 4~ 12, ~ S alxil)
we have
h= diag (ATE LATATE L A) + (ATE Ly — ATES] )2,

where ¥ and p are the posterior covariance and mean, respectively.

September 6, 2023
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Certifying the approximation
Additive Gaussian noise and linear forward model

M

h = diag (ATELATATELA) + (ATE Ly — ATE L),

obs

where ¥ and p are the posterior covariance and mean, respectively.
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Certifying the approximation
Additive Gaussian noise and linear forward model

h= diag (ATE LATATE LA + (ATE Ly — ATE L),
where ¥ and p are the posterior covariance and mean, respectively.

In practice, we can approximate p and X by, e.g.,

e A Gaussian posterior approximation at the maximum-a-posteriori
probability (MAP) estimate, i.e.,
1~ Xuap and T &~ —V2log (Xpiap)
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Certifying the approximation
Additive Gaussian noise and linear forward model

M

h= diag (ATE LATATE LA + (ATE Ly — ATE L),
where ¥ and p are the posterior covariance and mean, respectively.
In practice, we can approximate p and X by, e.g.,

e A Gaussian posterior approximation at the maximum-a-posteriori
probability (MAP) estimate, i.e.,
1~ Xuap and T &~ —V2log (Xpiap)

e Prior mean and covariance, i.e,
4 ~0and ¥ ~ 2diag (5,—2)
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=)
—_
=

Sampling Options
Option 1: Sampling the approximated posterior

M

© Compute diagnostic h and perform coordinate splitting x := (x,, X_;)
® Draw N samples {x }k 1 from the reduced marginal posterior

(X)) o< L7 (X, )mo (X, )-
® Draw N samples {ch}k:1 from mo(x_.).

® Reassemble samples from (2) and (3): {x}N_, = {(xék),xIc))}k 1-
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Sampling Options
Option 2: Sampling the exact posterior

Pseudo-marginal MCMC', delayed acceptance MCMC?

Christophe, A., Roberts, G. O.: The pseudo-marginal approach for efficient Monte Carlo
computations. (2009)

2Liu, Jun S., Rong Chen: Sequential Monte Carlo methods for dynamic systems. Journal
of the American statistical association 93.443 (1998).
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Sampling Options

Option 2: Sampling the exact posterior
Pseudo-marginal MCMC', delayed acceptance MCMC?
Pseudo-marginal MCMC

© Compute diagnostic h and perform coordinate splitting x := (x,, x_.)

79 N C

Christophe, A., Roberts, G. O.: The pseudo-marginal approach for efficient Monte Carlo
computations. (2009)

2Liu, Jun S., Rong Chen: Sequential Monte Carlo methods for dynamic systems. Journal
of the American statistical association 93.443 (1998).
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Sampling Options
Option 2: Sampling the exact posterior

M

@fori=1...N:
® Draw z, ~ g(|x0~)
@® Draw M i.d. samples zV) ~ m(-)
© Compute £(z,) ~ 4; X114 L(2,,29)
® Set {(x1), {(xUNM 3 = {z,, {zW}},} with acceptance probability

J— {1 7ro<zI>E(zz)q(xz|zz>}
’ 7TO(XI)E(XI)Q(ZI|Xz)

© Return Markov chain {x, {x{:0}}1 3N,

September 6, 2023 AIP 23
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Sampling Options
Option 2: Sampling the exact posterior

@ Recycling stepfori=1...N:
e Set x{) = x{&) with probability

L(xD, x()

I’;rc

S L Xy

PXQ = X0, (XY =

* Reassemble x() = (x), x(0)
@ Return Markov chain {x(0}N

AP 23 Certified Coordinate Selection for large-dimensional Bayesian Inversion 15
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Numerical example 1: 1D piece-wise constant signal

>
> - -
Problem description
Problem in signal domain Wavelet coefficients of true signal
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Numerical example 1: 1D piece-wise constant signal
Problem description

The data is generated as
y = Rstrue + ¢,

where R is a Gaussian blur operator and ¢ ~ N (0, 02,.).

obs

The posterior density in coefficient space (synthesis formulation) is

d
1
m(X) o exp (—%ZHY — RWx|3 - 5/!Xi\>7

obs =1

where a W is the synthesis operator of a 10-level Haar wavelet basis.
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AP 23 Certified Coordinate Selection for large-dimensional Bayesian Inversion



=)
—_
=

Numerical example 1: 1D piece-wise constant signal
Selection of coordinates

M

Upper bound
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Numerical example 1: 1D piece-wise constant signal
Pseudo-marginal for exact inference

M

PM-MALA: 95% posterior HDI

s A setting PM-MALA  MALA
1.50 |I‘ 200 -
125 max R 1.00 1.19
oo 4 ESSz 3977 93
. ESSzec 19756 204
' time [min] 52.7 34.4
0 mean step size  9.8x 1073 22x107*
0.25
0.00 20000 samples in total, averages over 10
T T T T T T Cha”’]s
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Numerical example 1: 1D piece-wise constant signal
Sampling the approximate posterior

M

Optimal reduced likelihood:

2
£(x,) = ( /R c\/c(xpxzc)m(xzc)dxzc) |

September 6, 2023 AP 23 Certified Coordinate Selection for large-dimensional Bayesian Inversion
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Numerical example 1: 1D piece-wise constant signal
Sampling the approximate posterior

Optimal reduced likelihood:

2
£(x,) = ( /R c\/c(xpxzc)m(xzc)dxzc) |

Approximation:
7(X) o< L(Xy X;e = 0)mo(X).

September 6, 2023
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Numerical example 1: 1D piece-wise constant signal
Sampling the approximate posterior

M

Numerical estimation of Hellinger distance:

setting red-MALA  MALA
2

7] 400 - Du (el <2 [ (/2 1) #ooax
max R 1.00 1.06 A(x)
ESSz 2722.0 156.1 : 2

2 ()
ESSze - 356.3 ~ 2 ( fj&l_)i _ >
time [min] 62.3 62.9 i=1 P

mean step size 32x107° 1.8x107*

x() ~ F(x), and p, j are the unnormalized poste-
rior densities.

red-MALA: Dy (n||7)? < 3.42 x 1072 + 4.57 x 104
Our bound computed with hyiap: Py (7r]|7)2 < 1.0 x 1071
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Numerical example 2: 2D super-resolution microscopy

>
> = -
Problem description
ata T
dat: truth
0
3000 8000
5 2750 7000
10 2500 6000
2250 5000
15
2000 4000
20 1750 3000
25 1500 2000
1250 1000
30
0 5 10 15 20 25 30 0 20 40 60 80 100 120

Example from Zhu, L., Zhang, W., Elnatan, D., Huang, B.: Faster STORM using compressed
sensing. Nature Methods 9(7), 721-723 (2012)
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Numerical example 2: 2D super-resolution microscopy
Problem description

True super-resolution image: 50 molecules with photon count simulated as
X ~ lognormal with mode 3000 and standard deviation 1700.

Data generation:
AXtrue +e=Y,

where A : R128x128 _, R32x32 known blurring Kernel from the optical
measurement instrument, and £ ~ NV(0,02, ) (SNR = 54).

obs

Posterior: 1
w(6) x exp (5o Iy = AxIB = dlxl ).
g

obs

AP 23 Certified Coordinate Selection for large-dimensional Bayesian Inversion 23
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Numerical example 2: 2D super-resolution microscopy
Results

M

Selected coordinates

Width of 99% HDI (log-scale)
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Conclusions

M

The method
e Selection of coordinates based on a bound on the Hellinger distance

e Sampling of exact posterior with specialized MCMC algorithms or
approximate posterior

e Estimation of diagnostic in the case of linear forward model and
Gaussian likelihood based on posterior mean and covariance

September 6, 2023 AP 23 Certified Coordinate Selection for large-dimensional Bayesian Inversion 25
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Conclusions

M

The method
e Selection of coordinates based on a bound on the Hellinger distance

e Sampling of exact posterior with specialized MCMC algorithms or
approximate posterior

e Estimation of diagnostic in the case of linear forward model and
Gaussian likelihood based on posterior mean and covariance

Outlook
e Exploration of other ways of computing the diagnostic
e Especially computing myap problematic, since %|x! required

C U () I THE VELUX FOUNDATIONS
» VILLUM FONDEN 3< VELUX FONDEN
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