

Rafael Flock, Yiqiu Dong, Technical University of Denmark Olivier Zahm, INRIA Grenoble Felipe Uribe, Lappeenranta-Lahti University of Technology

Certified Coordinate Selection for large-dimensional Bayesian Inversion

DTU

Motivation

UQ for the reconstruction of large dimensional sparse signals

Data generating process, for example:

$$A(x_{ ext{true}}) + \varepsilon = y, \quad x_{ ext{true}} \in \mathbb{R}^d, y \in \mathbb{R}^m, \varepsilon \sim \mathcal{N}(0, \Sigma_{ ext{obs}}).$$

Motivation

UQ for the reconstruction of large dimensional sparse signals

Data generating process, for example:

$$oldsymbol{A}(oldsymbol{x}_{ ext{true}})+arepsilon=oldsymbol{y}, \hspace{0.1 in}oldsymbol{x}_{ ext{true}}\in \mathbb{R}^d, oldsymbol{y}\in \mathbb{R}^m, arepsilon\sim \mathcal{N}(\mathbf{0}, \Sigma_{ ext{obs}}).$$

Posterior density in *x*:

$$\pi(x|y) = \frac{1}{Z}\pi(y|x)\pi(x), \quad Z = \int \pi(y|x)\pi(x) dx$$

In this talk: $\pi(x) \propto \mathcal{L}(x)\pi_0(x)$
where for example $\mathcal{L}(x) \propto \exp\left(-\frac{1}{2}\|y - A(x)\|_{\Sigma_{obs}^{-1}}^2\right).$

DTU

Motivation

data

UQ for the reconstruction of large dimensional sparse signals

truth

Motivation UQ for the reconstruction of large dimensional sparse signals

DTU

Motivation

UQ for the reconstruction of large dimensional sparse signals

Laplace prior to enforce sparsity:

$$\pi_{\mathbf{0}}(\boldsymbol{x}) \propto \exp\left(-\sum \delta_{i}|\boldsymbol{x}_{i}|
ight), \quad \delta_{i} > \mathbf{0}$$

Posterior density in *x*:

$$\pi(m{x}) \propto \mathcal{L}(m{x}) \exp\left(-\sum \delta_i |m{x}_i|
ight)$$

Motivation

UQ for the reconstruction of large dimensional sparse signals

Laplace prior to enforce sparsity:

$$\pi_{\mathbf{0}}(\boldsymbol{x}) \propto \exp\left(-\sum \delta_{i}|\boldsymbol{x}_{i}|
ight), \quad \delta_{i} > \mathbf{0}$$

Posterior density in *x*:

$$\pi(\mathbf{x}) \propto \mathcal{L}(\mathbf{x}) \exp\left(-\sum \delta_i |\mathbf{x}_i|\right)$$

How can we find the 'most important coordinates' and how can we approximate the posterior density with this knowledge?

- A posterior approximation
- Certifying the approximation
- Sampling options
- Numerical example 1: 1D piece-wise constant signal
- Numerical example 2: 2D super-resolution microscopy
- Conclusions

A posterior approximation Coordinate splitting

Replace the likelihood by a ridge approximation:

$$egin{aligned} \pi(\pmb{x}) \propto \mathcal{L}(\pmb{x}) \pi_{0}(\pmb{x}) \ & & \widetilde{\pi}(\pmb{x}) \propto \widetilde{\mathcal{L}}(\pmb{x}_{_{\mathcal{I}}}) \pi_{0}(\pmb{x}_{_{\mathcal{I}}}) \pi_{0}(\pmb{x}_{_{\mathcal{I}^{c}}}) = \widetilde{\pi}(\pmb{x}_{_{\mathcal{I}}}) \pi_{0}(\pmb{x}_{_{\mathcal{I}^{c}}}), \end{aligned}$$

given a coordinate splitting $x := (x_{_{\mathcal{I}}}, x_{_{\mathcal{I}^c}}), \, x_{_{\mathcal{I}}} \in \mathbb{R}^{|\mathcal{I}|}, \, x_{_{\mathcal{I}^c}} \in \mathbb{R}^{|\mathcal{I}^c|}.$

Ideally $|\mathcal{I}| \ll |\mathcal{I}^{c}|$

A posterior approximation

Optimal reduced likelihood

Proposition

For $\pi_0(x) \propto \exp(-\sum \delta_i |x_i|)$, $\delta_i > 0$ the optimal reduced likelihood which minimizes the (squared) Hellinger distance

$$\mathcal{D}_{\mathrm{H}}\left(\pi|| ilde{\pi}
ight)^2 = rac{1}{2}\int_{\mathbb{R}^d}\left(\sqrt{\pi(x)}-\sqrt{ ilde{\pi}(x)}
ight)^2\mathrm{d}x\,,$$

is given by

$$\widetilde{\mathcal{L}}^*(x_{\scriptscriptstyle \mathcal{I}}) = \left(\int_{\mathbb{R}_{\mathcal{I}^c}} \sqrt{\mathcal{L}(x_{\scriptscriptstyle \mathcal{I}}, x_{\scriptscriptstyle \mathcal{I}^c})} \pi_0(x_{\scriptscriptstyle \mathcal{I}^c}) \mathrm{d}x_{\scriptscriptstyle \mathcal{I}^c}\right)^2$$

8

A posterior approximation

Optimal reduced likelihood

Proposition

For $\pi_0(x) \propto \exp(-\sum \delta_i |x_i|)$, $\delta_i > 0$ the optimal reduced likelihood which minimizes the (squared) Hellinger distance

$$\mathcal{D}_{\mathrm{H}}\left(\pi|| ilde{\pi}
ight)^2 = rac{1}{2}\int_{\mathbb{R}^d}\left(\sqrt{\pi(x)}-\sqrt{ ilde{\pi}(x)}
ight)^2\mathrm{d}x\,,$$

is given by

$$\widetilde{\mathcal{L}}^*(\mathbf{X}_{_{\mathcal{I}}}) = \left(\int_{\mathbb{R}_{_{\mathcal{I}}^c}} \sqrt{\mathcal{L}(\mathbf{X}_{_{\mathcal{I}}}, \mathbf{X}_{_{\mathcal{I}}^c})} \pi_0(\mathbf{X}_{_{_{\mathcal{I}}^c}}) \mathrm{d}\mathbf{X}_{_{_{\mathcal{I}}^c}}\right)^2.$$

How to select \mathcal{I} ?

8

Upper bound on the Hellinger distance

Proposition

For $\tilde{\pi}^*(x) \propto \tilde{\mathcal{L}}^*(x)\pi_0(x)$, we can control the Hellinger distance with

$$\mathcal{D}_{\mathrm{H}}\left(\pi || \widetilde{\pi}^{*}
ight)^{2} \leq 4\sum_{i \in \mathcal{I}^{c}}h_{i},$$

where the entries of the *diagnostic* vector $h \in \mathbb{R}^d$ are

$$h_i = rac{1}{\delta_i^2} \int_{\mathbb{R}^d} (\partial_i \log \mathcal{L}(x))^2 \pi(x) \mathrm{d}x \; .$$

a

Additive Gaussian noise and linear forward model

For problems of the form

$$\pi(\mathbf{x}) \propto \exp\left(-\frac{1}{2}\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{\Sigma_{\mathrm{obs}}^{-1}}^2 - \sum \delta_i \|\mathbf{x}_i\|\right)$$

we have

$$h = \operatorname{diag} \left(A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} A \Sigma A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} A \right) + (A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} y - A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} \mu)^{\circ 2},$$

where Σ and μ are the posterior covariance and mean, respectively.

Additive Gaussian noise and linear forward model

$$h = \operatorname{diag} \left(A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} A \Sigma A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} A \right) + (A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} y - A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} \mu)^{\circ 2},$$

where Σ and μ are the posterior covariance and mean, respectively.

Additive Gaussian noise and linear forward model

$$h = \operatorname{diag} \left(A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} A \Sigma A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} A \right) + (A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} y - A^{\mathsf{T}} \Sigma_{\operatorname{obs}}^{-1} \mu)^{\circ 2},$$

where $\pmb{\Sigma}$ and μ are the posterior covariance and mean, respectively.

In practice, we can approximate μ and Σ by, e.g.,

• A Gaussian posterior approximation at the maximum-a-posteriori probability (MAP) estimate, i.e., $\mu \approx x_{\text{MAP}}$ and $\Sigma^{-1} \approx -\nabla^2 \log \pi(x_{\text{MAP}})$

Additive Gaussian noise and linear forward model

$$h = \operatorname{diag} \left(\boldsymbol{A}^{\mathsf{T}} \boldsymbol{\Sigma}_{\operatorname{obs}}^{-1} \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\Sigma}_{\operatorname{obs}}^{-1} \boldsymbol{A} \right) + (\boldsymbol{A}^{\mathsf{T}} \boldsymbol{\Sigma}_{\operatorname{obs}}^{-1} \boldsymbol{y} - \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\Sigma}_{\operatorname{obs}}^{-1} \boldsymbol{\mu})^{\circ 2},$$

where $\pmb{\Sigma}$ and μ are the posterior covariance and mean, respectively.

In practice, we can approximate μ and Σ by, e.g.,

• A Gaussian posterior approximation at the maximum-a-posteriori probability (MAP) estimate, i.e., $\mu \approx x_{\text{MAP}}$ and $\Sigma^{-1} \approx -\nabla^2 \log \pi(x_{\text{MAP}})$

• Prior mean and covariance, i.e,
$$\mu \approx 0$$
 and $\Sigma \approx 2 \operatorname{diag} \left(\delta_i^{-2} \right)$

Option 1: Sampling the approximated posterior

- Compute diagnostic *h* and perform coordinate splitting *x* := (*x*_{*I*}, *x*_{*I*^c})
 Draw *N* samples {*x*_{*I*}}^{*N*}_{*k*=1} from the reduced marginal posterior *π*^{*}(*x*_{*I*}) ∝ *L*^{*}(*x*_{*I*})*π*₀(*x*_{*I*}).
- **3** Draw *N* samples $\{x_{z^c}\}_{k=1}^N$ from $\pi_0(x_{z^c})$.
- 4 Reassemble samples from (2) and (3): $\{x\}_{k=1}^{N} = \{(x_{\mathcal{I}}^{(k)}, x_{\mathcal{I}^{c}}^{(k)})\}_{k=1}^{N}$.

Option 2: Sampling the exact posterior

Pseudo-marginal MCMC¹, delayed acceptance MCMC²

¹Christophe, A., Roberts, G. O.: The pseudo-marginal approach for efficient Monte Carlo computations. (2009)

²Liu, Jun S., Rong Chen: Sequential Monte Carlo methods for dynamic systems. Journal of the American statistical association 93.443 (1998).

Option 2: Sampling the exact posterior

Pseudo-marginal MCMC¹, delayed acceptance MCMC²

Pseudo-marginal MCMC

1 Compute diagnostic *h* and perform coordinate splitting $x := (x_{\tau}, x_{\tau c})$

¹Christophe, A., Roberts, G. O.: The pseudo-marginal approach for efficient Monte Carlo computations. (2009)

²Liu, Jun S., Rong Chen: Sequential Monte Carlo methods for dynamic systems. Journal of the American statistical association 93.443 (1998).

Option 2: Sampling the exact posterior

- A Draw $z_{_{\mathcal{I}}} \sim q(\cdot | x_{_{\mathcal{I}}}^{(i-1)})$
- **B** Draw *M* i.d. samples $z_{x^c}^{(j)} \sim \pi_0(\cdot)$
- **O Compute** $\widetilde{\mathcal{L}}(z_x) \approx \frac{1}{M} \sum_{j=1}^{M} \mathcal{L}(z_x, z_{x^c}^{(j)})$
- **D** Set $\{x_x^{(i)}, \{x_{x^c}^{(i,j)}\}_{j=1}^M\} = \{z_x, \{z_{x^c}^{(j)}\}_{j=1}^M\}$ with acceptance probability

$$\alpha = \min\left\{1, \frac{\pi_0(\boldsymbol{z}_{\scriptscriptstyle \mathcal{I}})\widetilde{\mathcal{L}}(\boldsymbol{z}_{\scriptscriptstyle \mathcal{I}})\boldsymbol{q}(\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}}|\boldsymbol{z}_{\scriptscriptstyle \mathcal{I}})}{\pi_0(\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}})\widetilde{\mathcal{L}}(\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}})\boldsymbol{q}(\boldsymbol{z}_{\scriptscriptstyle \mathcal{I}}|\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}})}\right\}$$

3 Return Markov chain $\{x_{\mathcal{I}}^{(i)}, \{x_{\mathcal{I}c}^{(i,j)}\}_{j=1}^{M}\}_{i=1}^{N}$

Option 2: Sampling the exact posterior

4 Recycling step for $i = 1 \dots N$:

• Set $x_{x^c}^{(i)} = x_{x^c}^{(i,j)}$ with probability

$$\mathbb{P}(\boldsymbol{X}_{_{\mathcal{I}^{c}}}^{(i)} = \boldsymbol{x}_{_{\mathcal{I}^{c}}}^{(i,j)} | \boldsymbol{x}_{_{\mathcal{I}^{c}}}^{(i)}, \{\boldsymbol{x}_{_{\mathcal{I}^{c}}}^{(i,j)}\}_{j=1}^{M}) = \frac{\mathcal{L}(\boldsymbol{x}_{_{\mathcal{I}}}^{(i)}, \boldsymbol{x}_{_{\mathcal{I}^{c}}}^{(i,j)})}{\sum_{j=1}^{M} \mathcal{L}(\boldsymbol{x}_{_{\mathcal{I}}}^{(i)}, \boldsymbol{x}_{_{\mathcal{I}^{c}}}^{(i,j)})}.$$

• Reassemble
$$x^{(i)} = (x_x^{(i)}, x_{x^c}^{(i)})$$

5 Return Markov chain $\{x^{(i)}\}_{i=1}^N$

Numerical example 1: 1D piece-wise constant signal Problem description

Numerical example 1: 1D piece-wise constant signal Problem description

The data is generated as

$$\mathbf{y} = \mathbf{Rs}_{true} + \varepsilon,$$

where *R* is a Gaussian blur operator and $\varepsilon \sim \mathcal{N}(0, \sigma_{obs}^2)$.

The posterior density in coefficient space (synthesis formulation) is

$$\pi(\mathbf{x}) \propto \exp\left(-rac{1}{2\sigma_{\mathrm{obs}}^2}\|\mathbf{y} - \mathbf{RW}\mathbf{x}\|_2^2 - \sum_{i=1}^d \delta_i |\mathbf{x}_i|
ight),$$

where a W is the synthesis operator of a 10-level Haar wavelet basis.

Numerical example 1: 1D piece-wise constant signal

Selection of coordinates

The vertical lines indicate the indices $\{i : x_{true,i} \neq 0\}$.

Numerical example 1: 1D piece-wise constant signal Pseudo-marginal for exact inference

PM-MALA: 95% posterior HDI

setting	PM-MALA	MALA
$ \mathcal{I} $	200	-
$\max \hat{R}$	1.00	1.19
$\mathrm{ESS}_\mathcal{I}$	3977	93
$\mathrm{ESS}_{\mathcal{I}^{\mathcal{C}}}$	19756	204
time [min]	52.7	34.4
mean step size	$9.8 imes10^{-3}$	$2.2 imes 10^{-4}$

20 000 samples in total, averages over 10 chains

Numerical example 1: 1D piece-wise constant signal Sampling the approximate posterior

Optimal reduced likelihood:

$$\widetilde{\mathcal{L}}^*(\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}}) = \left(\int_{\mathbb{R}_{\scriptscriptstyle \mathcal{I}^c}} \sqrt{\mathcal{L}(\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}}, \boldsymbol{x}_{\scriptscriptstyle \mathcal{I}^c})} \pi_0(\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}^c}) \mathrm{d} \boldsymbol{x}_{\scriptscriptstyle \mathcal{I}^c}\right)^2.$$

Numerical example 1: 1D piece-wise constant signal Sampling the approximate posterior

Optimal reduced likelihood:

$$\widetilde{\mathcal{L}}^*(\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}}) = \left(\int_{\mathbb{R}_{\mathcal{I}^c}} \sqrt{\mathcal{L}(\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}}, \boldsymbol{x}_{\scriptscriptstyle \mathcal{I}^c})} \pi_0(\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}^c}) \mathrm{d}\boldsymbol{x}_{\scriptscriptstyle \mathcal{I}^c}\right)^2.$$

Approximation:

$$\widetilde{\pi}(x) \propto \mathcal{L}(x_{I}, x_{I^{c}} = 0)\pi_{0}(x).$$

Numerical example 1: 1D piece-wise constant signal

Sampling the approximate posterior

setting	red-MALA	MALA
$ \mathcal{I} $	400	-
$\max \hat{R}$	1.00	1.06
$\mathrm{ESS}_\mathcal{I}$	2722.0	156.1
$\mathrm{ESS}_{\mathcal{I}^{\mathcal{O}}}$	-	356.3
time [min]	62.3	62.9
mean step size	$3.2 imes10^{-3}$	$1.8 imes 10^{-4}$

Numerical estimation of Hellinger distance:

$$\begin{split} \mathcal{D}_{\mathrm{H}} \, (\pi || \widetilde{\pi})^2 &\leq 2 \int \left(\sqrt{\frac{\rho(x)}{\widetilde{\rho}(x)}} - 1 \right)^2 \widetilde{\pi}(x) \mathrm{d}x \\ &\approx \frac{2}{N} \sum_{i=1}^N \left(\sqrt{\frac{\rho(x^{(i)})}{\widetilde{\rho}(x^{(i)})}} - 1 \right)^2 \end{split}$$

 $x^{(l)} \sim \widetilde{\pi}(x)$, and ho, $\widetilde{
ho}$ are the unnormalized posterior densities.

red-MALA: $\mathcal{D}_{\mathrm{H}} \left(\pi || \widetilde{\pi} \right)^2 \leq 3.42 \times 10^{-2} \pm 4.57 \times 10^{-4}.$ Our bound computed with h_{MAP} : $\mathcal{D}_{\mathrm{H}} \left(\pi || \widetilde{\pi} \right)^2 \leq 1.0 \times 10^{-1}!$

Numerical example 2: 2D super-resolution microscopy Problem description

Example from Zhu, L., Zhang, W., Elnatan, D., Huang, B.: Faster STORM using compressed sensing. Nature Methods 9(7), 721–723 (2012)

Numerical example 2: 2D super-resolution microscopy Problem description

True super-resolution image: 50 molecules with photon count simulated as $x \sim \text{lognormal}$ with mode 3000 and standard deviation 1700.

Data generation:

$$Ax_{true} + \varepsilon = y,$$

where $A : \mathbb{R}^{128 \times 128} \to \mathbb{R}^{32 \times 32}$ known blurring Kernel from the optical measurement instrument, and $\varepsilon \sim \mathcal{N}(0, \sigma_{obs}^2)$ (*SNR* = 54).

Posterior:

$$\pi(\mathbf{x}) \propto \exp\left(-\frac{1}{2\sigma_{\mathrm{obs}}^2}\|\mathbf{y}-\mathbf{A}\mathbf{x}\|_2^2 - \delta\|\mathbf{x}\|_1\right).$$

Numerical example 2: 2D super-resolution microscopy Results

Conclusions

The method

- Selection of coordinates based on a bound on the Hellinger distance
- Sampling of exact posterior with specialized MCMC algorithms or approximate posterior
- Estimation of *diagnostic* in the case of linear forward model and Gaussian likelihood based on posterior mean and covariance

Conclusions

The method

- Selection of coordinates based on a bound on the Hellinger distance
- Sampling of exact posterior with specialized MCMC algorithms or approximate posterior
- Estimation of *diagnostic* in the case of linear forward model and Gaussian likelihood based on posterior mean and covariance

Outlook

- Exploration of other ways of computing the diagnostic
- Especially computing h_{MAP} problematic, since $\frac{d}{dx}|x|$ required

THE VELUX FOUNDATIONS VILLUM FONDEN 🛰 VELUX FONDEN