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Bayesian approach to inverse problems

We want to recover the unknown f from a noisy measurement M;

M = Af + noise,

where A is a forward operator that usually causes loss of information.

Consider observing data M drawn at random from some unknown
probability distribution PM

f † , and sample size n.

Specify a prior distribution Π for the unknown f and assume

M | f ∼ PM
f .

Using Bayes’ theorem the prior distribution can be updated to a
posterior distribution

πM(f ) = π(f |M) ∝ p(M − Af )π(f ).
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Gaussian priors are often used for inverse problems

Assume measurement model

M = Af + δW,

where A is a linear forward operator and W ∼ N (0, I).

If we assume f ∼ N (0,Cf ) the posterior is also Gaussian and CM
coincides with MAP estimate and is given by

f̂ (M) = (A∗A + δ2C−1
f )−1A∗M.

Standard Gaussian priors are often used in practice due to their fast
computational properties.
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Many applications require edge preservation

Noisy image ℓ2-regularised solution TV-regularised solution

πTV(f ) ∝ exp

(
α
∑

i,j

|fi+1,j − fi,j|+ |fi,j+1 − fi,j|
)
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Is total variation prior consistent?

When discretisation gets finer the discrete total variation prior either
diverges or the posterior distribution converges to a Gaussian distribution.
⇒ Not edge preserving with fine discretisation, Lassas and Siltanen 2004.

The widely used formal total variation prior

πpr(f ) ≈
formally

exp(−α∥∇f∥L1), f ∈ L2.

is not known to correspond to any well defined random variable.

We want to

Have similar edge preserving properties than total variation priors.

Correspond to well defined infinite dimensional random variables.

Can be approximated by finite dimensional random variables.

6 / 33



Outline

1 Bayesian inverse problems

2 Random tree Besov priors

3 Automatic density selection

7 / 33



Replacing TV prior by a Besov prior

We can replace the formal prior

π(f ) ∝
formally

exp (−∥∇f∥L1)

by a well defined Besov prior

π(f ) ∝
formally

exp
(
−∥∇f∥p

B0
11

)
,

that was first introduced by Lassas, Saksman and Siltanen 2009, and
further studied by Dashti, Harris and Stuart 2012.
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How to form a random function?

Remember that
√

2 sin(kt) and
√

2 cos(kt) form an orthonormal basis for
L2[−π, π]. A periodic signal u(t), t ∈ [−π, π], can be written as

u(t) =
∞∑

k=1

aksin(kt) + bkcos(kt).

Extension of this idea for random functions is given by

U(t) =
∞∑

k=1

Zkψk(t),

where Zk’s are pairwise uncorrelated random variables and ψk is an
orthonormal basis on L2[−π, π].
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Karhunen–Loève expansion

We can construct random draws from a Gaussian measure;

Let {ψk, λk} be an orthonormal set of eigenvectors and eigenvalues
for the covariance operator Σ.

Take {ξk}∞k=1 to be a sequence of independent random variables with
ξk ∼ N (0, 1).

Then the random variable U given by the Karhunen–Loève expansion

U(t) =
∞∑

k=1

√
λkξkψk(t)

is distributed according to N (0,Σ).

Example: If Σ−1 is a Laplace type operator the eigenvalues will grow
like k−2.
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Wavelet basis

Let Ψ be the mother wavelet suitable for multi-resolution analysis of
smoothness Cr and define wavelets

ψj,k(x) = 2j/2Ψ(2jx1 − k1, . . . , 2jxd − kd), j ∈ N, k ∈ Zd.

We consider f (x) =
∑

j∈N,k∈Zd fj,kψj,k(x), fj,k = ⟨f , ψj,k⟩.
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Discrete wavelet transform
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Thresholded peppers

Left: the original image. Right: 95% of the wavelet coefficients are set to
zero using hard thresholding.
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The wavelet coefficients can be placed into a tree (d = 1)

An entire tree is defined as a set of indices

T = {(j, k) ∈ N× Nd | j ∈ N≥1, k = (k1, · · · , kd), 1 ≤ kℓ ≤ 2j−1},
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Besov spaces Bs
pp

For s < r, the Besov norm can be defined as

∥f∥p
Bs

pp(Rd)
=

∞∑
j=0

2jp(s+d( 1
2−

1
p ))∥Fj∥p

ℓp Fj = (fj,k)k∈Zd .
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2jp(s+d( 1
2−

1
p ))∥Fj∥p

ℓp Fj = (fj,k)k∈Zd .

Besov spaces Bs
22(Rd) coincide with the Sobolev spaces Hs(Rd).

B1
11(Rd) space is relatively close to space of functions with bounded

variations, ∥∇u∥L1 <∞.

We can show that:

B1
11(Rd) ⊂ W1,1

loc (R
d) ⊂ B1−ε

11 (Rd), for all ε > 0.
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Creating a proper subtree

Draw tj,k ∼ U [0, 1] and set a node 1 if tj,k ≤ β, β ∈ [0, 1], and 0 otherwise.
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Creating a proper subtree

Only choose nodes that are connected to the root node.
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Random tree Besov priors (d = 1)

Xj,k ∼ N (0, 1)

or

Xj,k ∼ Laplace(0, a)

f (x) =
∑

(j,k)∈T

hjXj,kψj,k(x).

If we set hj = 2−j(s+ 1
2−

1
p ) then f takes values in Bs̃

pp, s̃ < s − log2(β)+1
p .

K., Lassas, Saksman, Siltanen, Random tree Besov priors - Towards fractal imaging, 2022
18 / 33



Outline

1 Bayesian inverse problems

2 Random tree Besov priors

3 Automatic density selection

19 / 33



Signal denoising

Consider the denoising problem

M = f + W,

where W =
∑

wj,kψj,k is white noise, independent of f . We choose prior

f (x) =
∑

(j,k)∈T

fj,kψj,k(x) =
∑

(j,k)∈T

t̃j,kgj,kψj,k(x),

where gj,k ∼ N (0, 1) and t̃j,k ∈ {0, 1} defines if a node (j, k) ∈ T is
chosen. Denote tj,k an independent node, assume P(tj,k = 1) = βj, with
βj ∼ π, and

t̃j,k =
∏

(j′,k′)⊵(j,k)

tj,k.
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Calculating the MAP estimator

The posterior distribution can be written in form

π(g, t, β | m) ∝ π(m | g, t)π(g)π(t |β)π(β)

=
∏

(j,k)∈T

π(mj,k | gj,k, t̃j,k)π(gj,k)π(tj,k |βj)π(βj)

We consider priors of the form π(β) = 21+α(1 + α)( 1
2 − β)α, α > 0.
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Every node is either chosen to the tree or not

We consider maximising

z1
jk= exp

(
− 1

2
(mjk − gjk)

2 −
g2

jk

2

)
cαβj(

1
2
− βj)

α

z0
jk= exp

(
− 1

2
m2

jk −
g2

jk

2

)
cα(1 − βj)(

1
2
− βj)

α.

or equivalently minimising

− log(z1
jk)=

1
2
(mjk − gjk)

2 +
g2

jk

2
− log(cαβj(

1
2
− βj)

α)

− log z0
jk=

1
2

m2
jk +

g2
jk

2
− log(cα(1 − βj)(

1
2
− βj)

α).
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Start from the bottom of the tree

At the bottom leaves we set ĝjk = m2
jk/2 to attain the optimal weights

m2
jk/4. If a node is not selected ĝjk = 0 the weight is m2

jk/2.

We want to find βj so that the selected bottom row has an optimal weight,
that is, we want to minimise

Bj,A =
∑
k∈A

1
4

m2
jk − log(cαβj(

1
2
− βj)

α)

+
∑
k ̸∈A

1
2

m2
jk − log(cα(1 − βj)(

1
2
− βj)

α),

where A is the set of nodes that are selected.
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We only need to consider finite number of values for βj

A bottom row node is selected if

1
4

m2
jk − log

(
cαβj(

1
2
− βj)

α
)
≤ 1

2
m2

jk − log
(

cα(1 − βj)(
1
2
− βj)

α
)

mjk ≥ 4 log
(1 − βj

βj

)
When minimising Bj,A we only consider grid points βjk≥(1+e

1
4 mjk)−1.

Order the data mjki ≥ mjki+1 . We can then consider

Bj,i =
∑
k≤ki

1
4

m2
jki
+

∑
k>ki

1
2

m2
jki
+ ki log

(1 − βjki

βjki

)
− nj log

(
cα(1 − βjki)(

1
2
− βjki)

α
)

where nj is the number of nodes on the row j.
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Optimising for a general level

Denote the weight of an optimised sub-tree with root node (j, k) by Gjk.
The sub-tree is included in the tree if

Gjk − log(βj) ≤
1
2
∥m|Tjk∥2 − log(1 − βj)

−
ℓmax∑

ℓ=1+j

rℓ log(cα(1 − βℓ)(
1
2
− βℓ)

α),

where rℓ is the number of nodes of the sub-tree on the row ℓ. We get grid
points

βjk ≥
1

1 + eMjk
,

where Mjk =
1
2∥m|Tjk∥2 − Gjk −

∑ℓmax
ℓ=1+j rℓ log(cα(1 − βℓ)(

1
2 − βℓ)

α).
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Blocks data

The original signal (black) and the noisy data (red)
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Wavelet pruning with automatic β selection

β = 0.0000, 0.0000, 0.2894, 0.2289, 0.1863, 0.1959, 0.0481, 0.1359,
0.0029, 0.0005, 0.0000, 0.0002, 0.0000
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Smooth data with jumps

The original signal (black) and the noisy data (red)
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Wavelet pruning with automatic β selection (Haar)

β = 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.2374, 0.1734, 0.0171,
0.0560, 0.0003, 0.0000, 0.0023, 0.0005
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Wavelet pruning with automatic β selection (db4)

β = 0.0000, 0.0000, 0.0000, 0.3238, 0.2268, 0.0308, 0.0116, 0.0025,
0.0026, 0.0008, 0.0000, 0.0007, 0.0559
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Separating music from speech using optimised β values

Test signals of length 214 of music (left) and speech (right).
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Optimised β values (db2)

Optimised β values for music (top) and speech (bottom).
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Classification using support vector machine

Signal length 214 ≈ 0.37s.

Training set 450 signals.

Test set 150 signals.

Classification error < 5%.
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