
Utilising Monte Carlo method for light
transport in the inverse problem of quantitative
photoacoustic tomography
Tanja Tarvainen
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland

Workshop on Inverse problems, Bayes and beyond
DTU, Lyngby, November 22, 2023

UEF // University of Eastern Finland



This is joint work with

Niko Hänninen, University of Eastern Finland, Finland
Aleksi Leino, University of Eastern Finland and University of Helsinki,
Finland
Aki Pulkkinen, University of Eastern Finland, Finland
Simon Arridge, University College London, United Kingdom

UEF // University of Eastern Finland 22.11.2023 1



Photoacoustic tomography (PAT)

Tissue is illuminated with a short
pulse of light
As light propagates within the tissue,
it is absorbed by chromophores
The absorbed energy causes
pressure rise
This pressure increase propagates
through the tissue as an acoustic
wave and can be measured on the
boundary of the tissue using
ultrasound sensors
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Image reconstruction

Reconstruct the initial
pressure (or absorbed optical
energy density) from the
photoacoustic wave measured
on the boundary of the tissue

⇒

⇒
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Photoacoustic tomography combines
benefits of optical and acoustic
methods
Contrast through optical absorption

Tissue chromophores: oxygenated
and deoxygenated haemoglobin,
water, lipids, melanin
Contrast agents

Resolution by ultrasound
Low scattering in soft biological
tissue

Applications in imaging of tissue
vasculature, tumours, small animal
imaging, etc.

J. Tick et al, Three dimensional

photoacoustic tomography in Bayesian

framework, J Acoust Soc Am

144:2061-2071, 2018
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Quantitative photoacoustic tomography (QPAT)

Aims is to estimate the concentrations of light absorbing
molecules
Two inverse problems:

Acoustic inverse problem: estimation of initial pressure from
photoacoustic measurements
Optical inverse problem: estimation of optical parameters from the
initial pressure

Modelling of light propagation, photoacoustic efficiency and
ultrasound propagation are needed
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In this work, we study the optical inverse problem of QPAT
MAP estimates for absorption and scattering are computed from
absorbed optical energy density
Evaluation of the forward operator is based on Monte Carlo
method for light transport, i.e. forward operator is stochastic
⇒ The search direction in an optimisation algorithm is also
stochastic
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Optical forward problem of QPAT
Radiative transfer equation (RTE)
ŝ · ∇ϕ(r , ŝ) + (µs + µa)ϕ(r , ŝ) = µs

∫
Sn−1

Θ(ŝ · ŝ′)ϕ(r , ŝ′)dŝ′, r ∈ Ω

ϕ(r , ŝ) =
{

ϕ0(r , ŝ), r ∈ ϵj , ŝ · n̂ < 0
0, r ∈ ∂Ω\ϵj , ŝ · n̂ < 0

where ϕ(r , ŝ) is radiance, µa is absorption, µs is scattering, Θ(ŝ · ŝ′) is
scattering phase function and ϕ0(r , ŝ) is light source in position r and
direction ŝ

RTE simulates light propagation accurately in a scattering medium
It is computationally challenging
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Photon fluence
Φ(r) =

∫
Sn−1

ϕ(r , ŝ)dŝ

Absorbed optical energy density

H(r) = µa(r)Φ(r)

Initial acoustic pressure

p0(r) = p(r , t = 0) = G(r)H(r) =
βc2

Cp
H(r)

where G(r) is the Grüneisen parameter describing photoacoustic
efficiency
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Monte Carlo method for light transport
Simulates same physics as the RTE
Based on random sampling of photon paths as they undergo
scattering and absorption effects in the medium
In this work, a Monte Carlo software ValoMC1is used
(https://inverselight.github.io/ValoMC/)

1
A.A. Leino, A. Pulkkinen, T. Tarvainen, ValoMC: a Monte Carlo software and MATLAB toolbox for simulating light transport

in biological tissue, OSA Continuum 2:957–972, 2019
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Photon packet Monte Carlo
Photon packet with an initial weight w0 is considered
The probability for photon absorption in a small length ds in a
propagation direction is µads, and the probability for photon
scattering is µsds
Scattering length follows an exponential probability distribution
function

h(l) = µs(l) exp

[
−
∫ l

0
µs(l ′)dl ′

]
Scattering angle follows a probability distribution
(Henyey-Greenstein phase function)
Weight of a photon packet along trajectory is reduced according to

w(s) = exp

[
−
∫ s

0
µa(s′)ds′

]
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In Monte Carlo simulation for QPAT with piecewise constant
optical coefficients µa,i and µs,i , the total absorbed optical energy
density Hj deposited to discretisation element j is computed as

Hj =
1
Aj

∑
e

we(1− exp[−µa,jSe,j ])

where we is the weight of the photon packet before entrance to
the j :th element, and Se,j is the distance travelled on each
entrance to j , Aj is the area/volume of the element in 2D/3D
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Number of photon packets affects on the accuracy of the
approximation and the computational cost

Low HighNumber of photons

(computational cost)
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Inverse problem

Optical inverse problem: estimate distribution of absorption and
scattering parameters from absorbed optical energy density
A discrete observation model for QPAT in the presence of additive
noise model is

y = f (x) + e

where y ∈ Rm is the data, x ∈ Rn are the unknown optical
parameters, f : Rn 7→ Rm is the discretised forward model, and
e ∈ Rm denotes the noise

UEF // University of Eastern Finland 22.11.2023 14



The solution of the inverse problem given by the Bayes’ formula
(posterior probability distribution)

π(x |y) ∝ π(y |x)π(x)

where π(y |x) is the likelihood and π(x) is the prior
Model the unknown x and noise e mutually independent and
Gaussian distributed

x ∼ N (ηx , Γx), e ∼ N (ηe, Γe)

where ηx ∈ Rn and ηe ∈ Rm are the means and Γx ∈ Rn×n and
Γe ∈ Rm×m are the covariance matrices
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The posterior distribution

π(x |y) ∝ exp

{
−1

2
∥Le(y − f (x)− ηe)∥2 −

1
2
∥Lx(x − ηx)∥2

}
where Γ−1

e = LT
e Le and Γ−1

x = LT
x Lx

The maximum a posteriori (MAP) estimate

xMAP = arg min
x

{
1
2
∥Le(y − f (x)− ηe)∥2 +

1
2
∥Lx(x − ηx)∥2

}
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MAP estimate can be computed using methods of computational
optimisation (in this work Gauss-Newton method)
For the Gauss-Newton method, Jacobian matrices need to be
formed

Absorption: derivative can be computed from the exponential
decay of the weight of the photon packet
Scattering: a so-called perturbation approximation of Monte Carlo
is utilised
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Simulations
5 mm× 5 mm square computation domain
µa in scale [0.0001 , 0.05]mm−1, and µs in scale [0.01 , 5]mm−1

Henyey-Greenstein scattering anisotropy parameter g = 0.9
Four planar illuminations from different sides of the domain
Two noise levels for the additive noise: 0.1% and 1%

Used 109 photon packets in data simulation, and 108 in the
inversion on each iteration for each illumination
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Relative errors of the estimates
Eµa = 0.3% and Eµs = 11%
Eµa = 2.2% and Eµs = 20%
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Relative errors of the estimates
Eµa = 0.2% and Eµs = 6.1%
Eµa = 1.9% and Eµs = 11%
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Stochastic framework

Using Monte Carlo, the ’accurate’ forward model f (x) or its
Jacobian J(x) are unavailable
Simulating finite number of photon packets P provides only
approximations fP(x) and JP(x)

fP(x) = f (x) + ϵP

JP(x) = J(x) + ξP

where ϵP and ξP are (stochastic) errors of the forward model and
its Jacobian
Increasing the number of photon packets decreases the errors,
but comes with a higher computational cost
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Stochastic Gauss-Newton method (SGN)
The estimates are updated by

xi+1 = xi + αiδPi (xi),

where αi is the step size parameter and δPi (xi) is solved from

(JPi (xi)
TΓ−1

e JPi (xi)+Γ−1
x )δPi (xi) = JPi (xi)

TΓ−1
e (y−fPi (xi))−Γ−1

x (xi−ηx),

where fPi (xi) is the forward model and JPi (xi) its Jacobian,
computed with Pi photon packets at point xi

With a fixed number of photon packets, the effect of stochastic
noise increases when residual

∥∥y − fPi (x)
∥∥ decreases
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Adaptive number of photon packets
The number of photon packets is adjusted during iteration
Norm test approach2,3

The expected relative error of the SGN search direction is
controlled

VPi (xi)
2 :=

E[||δ(xi)− δPi (xi)||2]
||δ(xi)||2

< γ2,

where δ(xi) is the reference SGN direction at point xi and γ is a
threshold parameter describing accepted error
If the norm test fails, the number of photon packets is increased

Pi ←
VPi (xi)

2

γ2 Pi ,

2
R.G. Carter. On the global convergence of trust region algorithms using inexact gradient information. SIAM J Numer Anal

28:251-265, 1991
3

C.M. Macdonald, S. Arridge, S. Powell. Efficient inversion strategies for estimating optical properties with Monte Carlo
radiative transport models. J Biomed Opt 24:1-13, 2019
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Simulations

15 mm× 10 mm rectangular domain
Henyey-Greenstein scattering anisotropy parameter g = 0.8
Four planar illuminations from different sides of the domain
Data was simulated using 109 photon packets for each illumination
Noise level 1 % for the additive noise
Three MAP estimates for absorption were computed (scattering
assumed to be known):

Simple stochastic Gauss-Newton approach (S-SGN): number of
photon packets is fixed
Adaptive stochastic Gauss-Newton approach (A-SGN): number of
photon packets determined by the norm test
Reference estimate (REF-SGN) with very large number of photon
packets (108 per iteration)
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First comparison: Same computational cost
Fixed the total number of photon packets (photon budget Pb) used
in the solution of the inverse problem
Terminated SGN iteration when the budget was used
S-SGN: 10 iterations with Pi =

1
10 Pb

A-SGN: Pi determined by the norm test
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Value of the objective function (left) and relative error of estimates (right) against SGN
iteration
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Relative error of absorption estimates for 100 simulations
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Second comparison: Same convergence criterion
Terminated the SGN iteration when a sufficient convergence was
achieved (sufficiently small relative change in three consecutive
estimates)
S-SGN: Pi is the number of photon packets in the last A-SGN
iteration (ensures similar convergence)
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Total number of photon packets: 3 × 107 8.6 × 106
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Summary

Monte Carlo method for light transport can be utilised in the
inverse problem of QPAT
Adjusting the number of photons during iteration improves the
efficiency of Gauss-Newton iteration
Adaptive approach and the norm test require some parameters to
be predefined
Simulating a large number of photon packets requires
computational resources (methodology is time-consuming)
Future work:

Simultaneous estimation of absorption and scattering
Evaluating the reliability of the estimates
Modelling of the stochastic noise
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