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Outline

= Non-stationary inverse problems &
state estimation l

= Convection-diffusion problems '

= Bayesian approximation error
method in non-stationary inversion

= Application 1: Industrial process
tomography

= Application 2: Greenhouse gas
emission/balance monitoring
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Bayesian State estimation

(Posterior) estimate at time t
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Bayesian State estimation
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Prediction for time t+1
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Bayesian State estimation

Observation at time t+1: likelihood
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Bayesian State estimation

t+1

Posterior at time t+1 =
prediction x likelihood
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Bayesian state estimation

* The state-space system

01 = fo(6;) + Wiy «—— (Evolution model)
yi =Hg(6;)+v;. «— (Observation model)

= State estimation problem(s):

= Given a sequence of measurementsy,,...,y,, form the
conditional probability density of 6,

P (6, | YiuYi) = N(Byp, [yl (If we make Gaussian

approximations)
= |f: k<t:Prediction

k = t: Filtering
k > t: smoothing
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Bayesian state estimation

Extended Kalman filter (EKF)

Fort=1,..T
Predic- 01 = fol( 1‘|I)+Wf+1 4 Kal h
tion Cyty = 75 (00T, r|r)T+Fw,+1 ...and Kalman smoother
Kot =Ty 0r110)" (T (6110 Fort=1T-1,..,1
T —1
JH9(9t+1]r) +F"r+l) G, = F;|,«F;£1F,+1|t
Measure- 0 _ K Ha(6
t+1)r+1 = Or1p T+ r-l—l()’r—i-l — Hpy( r+l|r)) Gf’T — r|t‘|’Gr( 1T — I—|—1|I)
ment l_‘r+1|t+1 — lﬁr+l r(I_JH (9 1 )TKT 1)‘ !
update | ARG E Loy = Ly +G(Lpyr —Li)G,

Backward recursion
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Convection-diffusion (inverse) problems

1. Industrial process tomography

= Measurements: Electrical impedance tomography
= Evolution model: convection-diffusion eq. '

dc ~ |
— = —v-Vec+ V- (kVe¢) |
ot | I ] |
! \
Convection Diffusion

2. Greenhouse gas emission monitoring

= Measurements: Laser dispersion spectroscopy (& tomography)
= Evolution model: convection-diffusion eq.

0
—C:—’U'VC+V'(KJVC)—|-S

375\'1\';\_YJ

Convection Diffusion Gas emission rate
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Evolution: convection-diffusion model

e Convection diffusion mode|
@

g = —v-Vec+V-rVe

e FE-approximation & stochastic modeling of uncertainties=

Cti1 = Ff(’t_')Ct -+ Sf(l_') -+ u»'f(l_')..
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Electrical impedance tomography

gj/”@)x,
/

The complete electrode model \@

V:(eVu)=0, re

u+2:gcr%:U(f), reep, 0 =1.2..... L
Jdv
Ou
o A4S =10 =19 ... L
Qv
ou - /
oo = 0, 7€ 0N\ U, e
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Electrical impedance tomography

e FE-approximation & stochastic modeling of uncertainties=
Vi=Ri(o) + € + ny,
e Model between concentration ¢ and conductivity o
o(c) = Ay — \c?/?
e Observation model

Vi = Rio(e))+e+ny
= Ui(cy) + € +ny
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Electrical impedance tomography:
State estimation

(Videos removed from the pdf-version, snapshots only)
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Stationary reconstructions vs. state estimates

Stationary

MAP
estimate,
e Ei::;::i; EE::;::? smoothness

N ‘:I:::::i. S P B prior

Sic

02 _ State
estimates

mS/cm,

.....
l_"l-l'! | l!"l-l'! I I!'Ill" | I!.III'!
lllllll

(Lipponen et al 2011) @ m e wiel
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Notes

e No need for spatial prior information or regularization — the
evolution model carries temporal prior information of the target

e Modeling errors & uncertainties were accounted for
(discretization, truncation of the computational domain and
unknown contact impedances)

e Stationary approximation for the velocity field
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State estimate without and with accounting for
the mOdeling @FYOFK'S (Videos removed from the pdf-version, snapshots only)
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Without With
accounting accounting
for the for the
modeling modeling
errors errors

UEF// University of Eastern Finland (Lipponen et al 2011)



Modeling of uncertainties

e Uncertainties and inaccuracies in the observation model

e Unknown contact impedances
e Discretization error
e Truncation of the computational domain

e Uncertainties and inaccuracies in the evolution model

o Unknown velocity field o(7. t)
e Unknown input concentration c¢;, (7, 1)
e Discretization error

o Statistical modeling of uncertainties and unknowns,
approximation error method
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Uncertainties of the observation model

e Accurate observation model (known contact impedances zy,
negligible discretization & domain truncation errors)

V; = (z'lrt((it) — Tt

o Approximate/reduced order observation model (approximate
contact impedances, sparse mesh, etc.)

. o Write the observation equation in the form
L'; ~ Di (Ct) -+ Tt

1/;5 = L’Tt(ct) + L"T;(C;‘) — L"T;‘(C;) + Tt
= U;(c})+ e+ ny

where

€ — Ut(ct) — (}Tfl(cé) = (J'Tt(ct) — (/'Tg(h-(f:f))
is the approximation error
e Approximate the statistics of ¢, by Monte Carlo simulations

e The prior model for the concentration is the convection-diffusion
7 model = the samples of ¢, are taken from same evolution as that
i ) used for constructing the error model for the evolution equation.
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Uncertainties of the evolution model

e Accurate evolution model corresponding to known #(7, t),
cin(7, 1), dense FE-mesh M:

Cip1 = Fiop + 54

o Approximate/reduced order evolution model corresponding to
temporal means of o(7, t), ¢y (7. t) and sparse FE-mesh M,:

e Write ¢j; in the form
Ciq = Fc, +s

Ci_|_1 = ]?-(Cit_|_1) = h-(Ft+1Ct + St—i—l)
e Denote interpolation mapping between the dense FE-mesh M = h(Fip1c+ S4p1) + Fey+s—Fep —s
and the sparse mesh M, by h = Fé + s+ uw,

e where w, is the approximation error

e Approximation error method: approximate second order statistics
of w, based on simulation:
e Run along sample evolution of ¢; based on Navier-Stokes flow
model and time-varying input concentration
e Approximate w; as a (discrete-time) Gaussian stochastic process
e Compute E{w;} and I',,, as ergodic averages
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State estimation problem

e Approximate / reduced order state space representation

Ctr1 — Fct + S+ Wy
I/t — U'tr(ct) -+ € T Ny

e Maximum a posteriori estimate

¢y = argmax (e |Vi..... V})
Ct

corresponding to approximate state space representation with
error models

e Extended Kalman filter
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Process tomography: recovery from
uncertainties of the velocity field

(Videos
removed
from the pdf-
version,
snapshots
only)

)

e Unknown and non-stationary velocity field o(r, ¢) and input
concentration ¢, (7. 1)

e Use temporal average of ©(7. %) and ¢, (7. 1) in the
convection-diffusion model

o Write a statistical model for the error induced by the use of time
averaged approximations of #(7, t) and ¢, (7. t)
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Stationary flow approximation, no error
models included

-
—

(Videos removed from the pdf-version, snapshots only)
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Approximation error modeling approach

Y

s~ P

(Videos removed from the pdf-version, snapshots only)
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Dual estimation of concentration and velocity

e Navier-Stokes equations

p2 4 pv - Vo — uAv + Vp = pf
V.5=0

e Reduced order Navier-Stokes model (based on principal
component analysis): small dimensional approximation:

b & oo + S0 Bi () o Evolution model
Reduced order FE-approximation = | = o . + y
o PP ( Ct+1 ) ( Fy(Be)er + se(8) w ()
/ / | o ~ W - ~ W -
Bir1 = h(Be) + 1y Ot41 fe(0¢) we
e Observation model
l/:g = Drt( Ct) -+ Ty
= U/ (6) +ny
e Filtering problem: Write the posterior density
UEF// University of Eastern Finland




Dual estimation - basis functions for the
velocity
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Dual estimation of concentration and velocity

True concentration True concentration
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(Videos removed from the pdf-version, snapshots only)
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Gas emission monitoring

T “““..

= Measurement system produced by MIRICO Ltd
=  Application: Monitoring of greenhouse gas emissions (carbon dioxide, methane, etc)
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Estimation problem Limited angle tomography

problem ...
= Sequential measurements (t =0,...,T) T p—

I I | | I Assumed area for the gas source(s)
40 I~

Beams

@  Retroreflector

= Laser dispersion measurements y,-> line- e ® Liswrarue

integrals of concentration c(x,t)

= Wind velocity (speed and direction) v(x,t)

= State estimation problem

= Estimate the (spatially and temporally
varying) concentration c(x,t) and the gas
emission rate S(x,t)

= Bayesian state estimation, based on
* Measurement model (line-integrals)

x (m)
* Fvolution model (convection-diffusion
equation) + Currently, we measure wind
= Kalman filtering/smoothing velocity only in a single point...
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Evolution model: convection-diffusion equation

= Convection-diffusion equation
wnknowns in the model
c(x,t) and S(x,t)
A BCARGC o~
v Y

I

Convection Diffusion Gas emission rate

= Stochastic modelling of ¢, and a, (discrete counterparts of c(x,t) and S(x,t))

i1 = Fep+ 5001+ §(ar) + Wi (FEM approximation of the CD model)

ar+1 = Aopar+A1a,_| + V4 (2nd order Markov model promoting
spatial and temporal smoothness)
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Evolution model

= Augmented state variable:

0=\ a

= Evolution model in terms of this state variable

(Crt FT, 0] a St Wit
a+1| =10 Ay A a |+ 0 |+ | Vg
L a; _0 Il O_ =y I 0 ] I 0 ]

|:> 61 =FO 4541+ Wit
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Observation model

K2 _____
6, = a, ol . , ! T Sii’n“‘i"' for the gas sourca(s)
=y L E ion
20 - -
= Observations y,: line-integrals of c(x,t) 1w} .
E oL _
>~
y:= Hc, + v, N ]
20k |
=H- I 0 0]-6, +v, wr :
ol | . | | | | .

-20 0 20 40 60 80 100 120
= Hg(6;) + v, X (m)
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Field test, experimental setup

P Sonic anemorneter location \ ®
e Retrod FRSUOD Qasesa

@ 0
Sensor Location CRSES Retro3'o {GASE | REL:

Sonic

Retroi Q
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State estimation, example

Concantration (ppmv) - at time 18.6167 min

YT

1 ) Al Bl Hl) 1M
% (m)

=" Weighted temporal average
of the emission rate

= True source location?
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(Animation removed from the
pdf-version, snapshots only)

Emission rate (ppmv/s) - at time 18.6167 min
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More test cases
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3D modeling

Time: 0.1710 min Time: 2/10 min
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3D reconstruction & uncertainty quantification

Time: 6/10 min Time: 6/10 min

= Left column:
reconstructed 3D
Time: 8/10 min Time: 8/10 min Concentration .
= Right column 95 %
. credibility interval
Time: 9.67/10 min Time: 9.67/10 min Wldth

(Elias Vanska, MSc
thesis, UEF, 2022)
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Modeling errors
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100

Uncertainties in
the wind field

Approximation of
the evolution using
a single-gas model
(CD model)




Effect of uncertainty in the wind field

time: 150/ 470 s time: 250/ 470 s time: 350/ 470 s 1 20 40 60 80 20 40 60 80

Time-average emission rates (left column) and
corresponding 95% credible interval widths (right
column). Conventional and error enhanced estimate

True concentration, conventional estimate and its
95% credible interval width, error enhanced estimate
and its 95% credible inteval width.

UEF// University of Eastern Finland (OUtI Kurri, MSc thESIS, UEF, 2022)
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Diffuse source case (numerical simulation)

(Animations removed from the
pdf-version, snapshots only)
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Diffuse source case (numerical simulation

Average flux, whole area

0 T T
[ J2-std interval
-200 | = = True 8
Estimate
-400
=
~ 600
E
D
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-1000
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1400 1 | | | ! | . |
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time steps
1000 . 5veragle flux, ‘Plot 2 . ‘
[ 2-std interval
500 = = True 1
Estimate
0 | "M
o W '
=
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summary

= Convection-diffusion problems

= Sequential measurements

= Bayesian state estimation

= Application 1: Process tomography

= Application 2: Greenhouse gas emission/balance monitoring
= Approximation error modeling

* Uncertainty quantification
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