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Bayesian approach to inverse problems

We want to recover the unknown f from a noisy measurement M;

M = Af + noise,

where A is a forward operator that usually causes loss of information.

Consider observing data M drawn at random from some unknown
probability distribution PM

f † , and sample size n.

Specify a prior distribution Π for the unknown f and assume

M | f ∼ PM
f .

Using Bayes’ theorem the prior distribution can be updated to a
posterior distribution

f |M ∼ Π(· |M).
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Gaussian priors are often used for inverse problems

Assume measurement model

M = Af + δW,

where A is a linear forward operator and W ∼ N (0, I).

If we assume f ∼ N (0,Cf ) the posterior is also Gaussian and CM
coincides with MAP estimate and is given by

f̂ (M) = (A∗A + δ2C−1
f )−1A∗M.

Standard Gaussian priors are often used in practice due to their fast
computational properties.
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Many applications require edge preservation

Noisy image `2-regularised solution TV-regularised solution

πTV(f ) ∝ exp

(
α
∑

i,j

|fi+1,j − fi,j|+ |fi,j+1 − fi,j|
)

5 / 32



Is total variation prior consistent?

When discretisation gets finer the discrete total variation prior either
diverges or the posterior distribution converges to a Gaussian distribution.
⇒ Not edge preserving with fine discretisation, Lassas and Siltanen 2004.

The widely used formal total variation prior

πpr(f ) ≈
formally

exp(−α‖∇f‖L1), f ∈ L2.

is not known to correspond to any well defined random variable.

We want to

Have similar edge preserving properties than total variation priors.

Correspond to well defined infinite dimensional random variables.

Can be approximated by finite dimensional random variables.
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Replacing TV prior by a Besov prior

We can replace the formal prior

π(f ) ∝
formally

exp (−‖∇f‖L1)

by a well defined Besov prior

π(f ) ∝
formally

exp
(
−‖∇f‖p

B0
11

)
,

that was first introduced by Lassas, Saksman and Siltanen 2009, and
further studied by Dashti, Harris and Stuart 2012.
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How to form a random function?

Remember that 1,
√

2 sin(kt) and
√

2 cos(kt) form an orthonormal basis
for L2[−π, π]. A periodic signal u(t), t ∈ [−π, π], can be written as

u(t) =
a0

2
+

∞∑
k=1

ak sin(kt) + bk cos(kt).

Extension of this idea for random functions is given by

U(t) =

∞∑
k=1

Zkψk(t),

where Zk’s are pairwise uncorrelated random variables and ψk is an
orthonormal basis on L2[−π, π].
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Karhunen–Loève expansion

We can construct random draws from a Gaussian measure;

Let {ψk, λk} be an orthonormal set of eigenvectors and eigenvalues
for the covariance operator Σ.

Take {ξk}∞k=1 to be a sequence of independent random variables with
ξk ∼ N (0, 1).

Then the random variable U given by the Karhunen–Loève expansion

U(t) =
∞∑

k=1

√
λkξkψk(t)

is distributed according to N (0,Σ).

Example: If Σ−1 is a Laplace type operator the eigenvalues will grow
like k−2.
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Wavelet basis

Let Ψ be the mother wavelet suitable for multi-resolution analysis of
smoothness Cr and define wavelets

ψj,k(x) = 2j/2Ψ(2jx1 − k1, . . . , 2jxd − kd), j ∈ N, k ∈ Zd.

We consider f (x) =
∑

j∈N,k∈Zd fj,kψj,k(x), fj,k = 〈f , ψj,k〉.
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Discrete wavelet transform
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Thresholded peppers

Left: the original image. Right: 95% of the wavelet coefficients are set to
zero using hard thresholding.
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The wavelet coefficients can be placed into a tree (d = 1)

An entire tree is defined as a set of indices

T = {(j, k) ∈ N× Nd | j ∈ N≥1, k = (k1, · · · , kd), 1 ≤ k` ≤ 2j−1},
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Besov spaces Bs
pp

For s < r, the Besov norm can be defined as

‖f‖p
Bs

pp(Rd)
=

∞∑
j=0

2jp(s+d( 1
2−

1
p ))‖Fj‖p

`p Fj = (fj,k)k∈Zd .

Besov spaces Bs
22(Rd) coincide with the Sobolev spaces Hs(Rd).

B1
11(Rd) space is relatively close to space of functions with bounded

variations, ‖∇u‖L1 <∞.

We can show that:

B1
11(Rd) ⊂ W1,1

loc (Rd) ⊂ B1−ε
11 (Rd), for all ε > 0.
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Creating a proper subtree

Draw tj,k ∼ U [0, 1] and set a node 1 if tj,k ≤ β, β ∈ [0, 1], and 0 otherwise.
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Creating a proper subtree

Only choose nodes that are connected to the root node.
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Random tree Besov priors (d = 1)

Let β = 2γ−1, with γ ∈ (−∞, 1], and consider pairs (X,T), where X is a
RT-valued random variable and T is a random sub-tree and X ⊥ T .

The sub-tree T is determined recursively: Let tj,k ∼ U [0, 1], i.i.d.
When, for a given level j, all pairs (j, k) in T are chosen, we choose a
pair (j + 1, `) to be in tree T iff (j, [ `2 ]) ∈ T and tj+1,` ≤ β.

The sequence X consists of i.i.d Xj,k ∼ N (0, 1) or
Xj,k ∼ Laplace(0, a), (j, k) ∈ T.

Let f be the random function

f (x) =
∑

(j,k)∈T

hjXj,kψj,k(x), x ∈ D = [0, 1],

where hj = 2−j(s+ 1
2−

1
p ). Then f takes values in Bs̃

pp, s̃ < s− γ
p .
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Fractal dimension of the prior (d = 1)

The random tree Besov constructions creates non-smooth priors. We can
also calculate the Hausdorff dimension of the singular support of the
resulting prior.

Theorem 1 (K., Lassas, Saksman and Siltanen 2020)

Let γ ∈ (−∞, 1] satisfy β = 2γ−1 and T be a sub-tree chosen as above.

If γ < 0 the sub-tree will terminate on some finite level with
probability one =⇒ f ∈ Cr a.s.

If γ ∈ [0, 1]

P
(

dimH(singsuppr(f )) = γ
)

=
2β − 1
β2

and singsuppr(f ) is an empty set with probability
(

1−β
β

)2
.
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Zeros of a Wiener process have Hausdorff dimension 0.5

Wiener processes are often used for modelling stock prices.
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Example: signal denoising

Consider the denoising problem

M = f + W,

where W =
∑

wj,kψj,k is white noise, independent of f .

We choose prior

f (x) =
∑

(j,k)∈T

fj,kψj,k(x) =
∑

(j,k)∈T

t̃j,kgj,kψj,k(x),

where gj,k ∼ N (0, 1) or gj,k ∼ Laplace(0, a) and t̃j,k ∈ {0, 1} defines if a
node (j, k) ∈ T is chosen. Denote tj,k an independent node, assume
P(tj,k = 1) = β, β < 1/2, and

t̃j,k =
∏

(j′,k′)D(j,k)

tj,k.
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The MAP estimator can be calculated explicitly

The posterior distribution can be written in form

π(g, t | m) ∝ π(m | g, t)π(g)π(t)

=
∏

(j,k)∈T

π(mj,k | gj,k, t̃j,k)π(gj,k)π(tj,k)

The MAP estimator can then be calculated recursively.

The wavelet density β < 1
2 acts as a regularisation parameter.

If gjk ∼ N (0, 1) the result is a wavelet pruning algorithm which
either accepts a full branch or turns it off.

If gjk ∼ Laplace(0, a) then we get tree enforced soft thresholding
algorithm with threshold a.
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Example: signal denoising

Original blocks signal and a noisy signal with signal to noise ratio 3.
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Denoising using wavelet pruning and thresholding
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Example: Image denoising

Original and noisy image
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Prior draws with Haar wavelets, Gaussian coefficients and
wavelet densities 0.2, 0.4, 0.6 and 0.8
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Prior draws with Daubechies 2 wavelets, Gaussian
coefficients and wavelet densities 0.2, 0.4, 0.6 and 0.8
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Denoising an image using wavelet pruning
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Using Laplace prior leads to tree enforced soft thresholding
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Comparing pruning, tree enforced soft thresholding and soft
thresholding

31 / 32



In a nutshell

1. We proposed new edge preserving random tree Besov priors

Similar properties to TV priors
Correspond to well defined infinite dimensional random variables

2. We can calculate the fractal dimension of the singular support of a
prior draw

3. We introduced a sparsity promoting algorithm for calculating the
MAP estimator in denoising problem

Semi-Gaussian prior =⇒Wavelet tree pruning
Semi-Laplace prior =⇒ Tree enforced soft thresholding
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