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Bayesian approach to inverse problems
We want to recover the unknown f from a noisy measurement M;
M = Af + noise,

where A is a forward operator that usually causes loss of information.

@ Consider observing data M drawn at random from some unknown
probability distribution P% , and sample size n.

@ Specify a prior distribution II for the unknown f and assume
M|f~ P

o Using Bayes’ theorem the prior distribution can be updated to a
posterior distribution

fIM ~TI(- [ M).



Gaussian priors are often used for inverse problems

@ Assume measurement model
M = Af + oW,
where A is a linear forward operator and W ~ N(0, 7).

o If we assume f ~ N(0, Cy) the posterior is also Gaussian and CM
coincides with MAP estimate and is given by

f(M) = (A"A+5°C)'A'M.

@ Standard Gaussian priors are often used in practice due to their fast
computational properties.
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Many applications require edge preservation

Noisy image (?-regularised solution ~ TV-regularised solution

Trv(f) ocexp( Zlfl-HJ —Jijl + Vfijer = fij ‘)
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Is total variation prior consistent?

When discretisation gets finer the discrete total variation prior either
diverges or the posterior distribution converges to a Gaussian distribution.
= Not edge preserving with fine discretisation, Lassas and Siltanen 2004.
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Tor(f) ﬁ)r% exp(—a||Vfll), f€L™

mally

is not known to correspond to any well defined random variable.

6/32



Is total variation prior consistent?

When discretisation gets finer the discrete total variation prior either
diverges or the posterior distribution converges to a Gaussian distribution.
= Not edge preserving with fine discretisation, Lassas and Siltanen 2004.

The widely used formal total variation prior

Tor(f)  ~ exp(—al|Vflu), fe€L

formally
is not known to correspond to any well defined random variable.
We want to
@ Have similar edge preserving properties than total variation priors.

@ Correspond to well defined infinite dimensional random variables.

@ Can be approximated by finite dimensional random variables.
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Replacing TV prior by a Besov prior

We can replace the formal prior

7(f) o exp (| Vllu)
ormally

by a well defined Besov prior

n(f) o< exp (<1l ).

formally

that was first introduced by Lassas, Saksman and Siltanen 2009, and
further studied by Dashti, Harris and Stuart 2012.
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How to form a random function?

Remember that 1, v/2 sin(kf) and v/2 cos(kt) form an orthonormal basis
for L*[—, 7). A periodic signal u(t), t € [—, 7], can be written as

o

= EO + ; ay sin(kt) + by cos(kt).



How to form a random function?

Remember that 1, v/2 sin(kf) and v/2 cos(kr) form an orthonormal basis
for L*[—, 7). A periodic signal u(t), t € [—, 7], can be written as

o

= EO + ; ay sin(kt) + by cos(kt).

Extension of this idea for random functions is given by

0= Zua(t)
k=1

where Z;’s are pairwise uncorrelated random variables and 1 is an
orthonormal basis on L?[—, 7].



Karhunen-Loeve expansion

We can construct random draws from a Gaussian measure;

@ Let {1}, A\r} be an orthonormal set of eigenvectors and eigenvalues
for the covariance operator ..

o Take {&}2, to be a sequence of independent random variables with

& ~N(0,1).
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@ Let {1}, A\r} be an orthonormal set of eigenvectors and eigenvalues
for the covariance operator ..

o Take {&}2, to be a sequence of independent random variables with

& ~N(0,1).

Then the random variable U given by the Karhunen—-Loeve expansion
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Karhunen-Loeve expansion

We can construct random draws from a Gaussian measure;

@ Let {1}, A\r} be an orthonormal set of eigenvectors and eigenvalues
for the covariance operator ..

o Take {&}2, to be a sequence of independent random variables with

& ~N(0,1).

Then the random variable U given by the Karhunen—-Loeve expansion

Ur) =Y v/ Mwtnln)
k=1

is distributed according to N/(0, X2).

Example: If ¥~ is a Laplace type operator the eigenvalues will grow
like k2.
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Wavelet basis

Let ¥ be the mother wavelet suitable for multi-resolution analysis of

smoothness C” and define wavelets

Yix(x) = 2P0 — ki, ..., Yxg—ka), jEN, kezZl

We consider  f(x) = > _jen ez fik®ik(x),  fik

Yoo =¥ (x)
1

Y10 =¥(2x) Y1 =y¢Q2x-1)
1 1

] []
JuU U

Vo0 = Y(4x) Vo1 =ydx-1) Voo =yY(4x-2)
1 1 1

| | ]

= <f) ¢j,k>'

Vo3 =yY(dx-3)
1

I

N R T N I

40
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Discrete wavelet transform
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Thresholded peppers

Left: the original image. Right: 95% of the wavelet coefficients are set to
zero using hard thresholding.
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The wavelet coefficients can be placed into a tree (d = 1)
(1,1)

(2,1) (2,2)

& 62 33 (34

An entire tree is defined as a set of indices

T={(,k) e NxN|jeNsy, k= (ki, - ,kq), | <hkg <271}



S
Besov spaces B,

For s < r, the Besov norm can be defined as

o0
ip(s+d(3—1
1715, gay = D 27T IE NG F = (akens.
j=0
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S
Besov spaces B,

For s < r, the Besov norm can be defined as

o
ip(st+d(3—1
1715, gay = D 27T IE NG F = (akens.

Jj=0

@ Besov spaces B3, (R?) coincide with the Sobolev spaces H*(R?).

o Bl,(R?) space is relatively close to space of functions with bounded

variations, || Vu||;1 < oo.
We can show that:

Bl (RY) c WL (RY) ¢ BIT(RY),  forall &> 0.

loc



Creating a proper subtree

LI ALALTAL,

Draw #;x ~ U[0, 1] and set anode 1 if ;; < 3, 5 € [0, 1], and O otherwise.
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Creating a proper subtree

Only choose nodes that are connected to the root node.
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Random tree Besov priors (d = 1)

Let 8 = 27!, with v € (—o0, 1], and consider pairs (X, T), where X is a
RT-valued random variable and 7 is a random sub-tree and X | T.

e The sub-tree 7 is determined recursively: Let j; ~ U[0, 1], 1.i.d.
When, for a given level j, all pairs (j, k) in T are chosen, we choose a
pair (j + 1,£) to be in tree T iff (j, [5]) € T and ;41,0 < .

@ The sequence X consists of i.i.d Xjx ~ N (0, 1) or
Xjx ~ Laplace(0,a), (j,k) € T.
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Random tree Besov priors (d = 1)
Let 8 = 27!, with v € (—o0, 1], and consider pairs (X, T), where X is a
RT-valued random variable and 7 is a random sub-tree and X | T.

e The sub-tree 7 is determined recursively: Let j; ~ U[0, 1], 1.i.d.
When, for a given level j, all pairs (j, k) in T are chosen, we choose a
pair (j + 1,£) to be in tree T iff (j, [5]) € T and ;41,0 < .

@ The sequence X consists of i.i.d Xjx ~ N (0, 1) or
Xjx ~ Laplace(0,a), (j,k) € T.

Let f be the random function

flx) = Z hJ'XJ'vkd}J}k(x)? x€D=]0,1],

(j,k)eT

(sl 1 s~
where hj = 2 Jst+3=5), Then f takes values in B),, 5 < s — [1}
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Fractal dimension of the prior (d = 1)

The random tree Besov constructions creates non-smooth priors. We can
also calculate the Hausdorff dimension of the singular support of the
resulting prior.

Theorem 1 (K., Lassas, Saksman and Siltanen 2020)

Let v € (—oo0, 1] satisfy 3 = 27! and T be a sub-tree chosen as above.

o If v < 0 the sub-tree will terminate on some finite level with
probability one = f € C" a.s.
o Ify € [0,1]

P(dimp (singsupp:(f)) = ) = 265; 1

2
and singsupp,(f) is an empty set with probability <%) .
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Zeros of a Wiener process have Hausdorff dimension 0.5

Wiener processes are often used for modelling stock prices.
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Example: signal denoising

Consider the denoising problem
M=f+W,

where W = > wj r1)j  is white noise, independent of f.



Example: signal denoising

Consider the denoising problem
M=f+W,

where W = > wj x1);j « is white noise, independent of /. We choose prior

Z ]3 k%, Z t] k8j, kw] k(X

(k) er (,k)eT

where gj x ~ N(0,1) or g;» ~ Laplace(0,a) and 7;; € {0, 1} defines if a
node (j, k) € T is chosen. Denote #;x an independent node, assume
P(tix =1)=p,8 < 1/2,and

= [

('K (sk)



The MAP estimator can be calculated explicitly

@ The posterior distribution can be written in form

(g, t[m)ocm(m | g 1)m(g)m(r)

= 11 7Omix | g G007 (gi0)m (1)
(j,k)ET



The MAP estimator can be calculated explicitly

The posterior distribution can be written in form

(g, t[m)ocm(m | g 1)m(g)m(r)

= 11 7Omix | g G007 (gi0)m (1)
(k)ET

The MAP estimator can then be calculated recursively.

@ The wavelet density 8 < % acts as a regularisation parameter.

If gix ~ N(0, 1) the result is a wavelet pruning algorithm which
either accepts a full branch or turns it off.

If gjx ~ Laplace(0, a) then we get tree enforced soft thresholding
algorithm with threshold a.



Example: signal denoising

02 04 06 0.8 1 o 02 04 06 08 1

Original blocks signal and a noisy signal with signal to noise ratio 3.
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Denoising using wavelet pruning and thresholding

& A b o M & O ®

o

0.2 0.4 0.6 0.8 1
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Example: Image denoising

Original and noisy image
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Prior draws with Haar wavelets, Gaussian coefficients and
wavelet densities 0.2, 0.4, 0.6 and 0.8
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Prior draws with Daubechies 2 wavelets, Gaussian
coefficients and wavelet densities 0.2, 0.4, 0.6 and 0.8

I1R/32



Denoising an image using wavelet pruning
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Using Laplace prior leads to tree enforced soft thresholding

w -
' -
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Comparing pruning, tree enforced soft thresholding and soft
thresholding
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In a nutshell

1. We proposed new edge preserving random tree Besov priors

o Similar properties to TV priors

o Correspond to well defined infinite dimensional random variables

2. We can calculate the fractal dimension of the singular support of a
prior draw

3. We introduced a sparsity promoting algorithm for calculating the
MAP estimator in denoising problem

e Semi-Gaussian prior = Wavelet tree pruning

e Semi-Laplace prior = Tree enforced soft thresholding
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