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Introduction

Cryo-electron microscopy Single Particle Analysis
aims at the reconstruction of three-dimensional
structure of biological macromolecules from
a set of its two-dimensional projections created
by a transmission electron microscope. Structural
information is vital to understanding biological
life processes and can be used, for example,
in drug discovery. A wide variety of mathematical
problems arises in the reconstruction process. These
problems are challenging especially due to large
dimensionality of the measured data, suffering
from the presence of extreme amounts
of noise and missing information.
Here, we focus on an inverse prob-
lem of volume reconstruction from a
given set of measured particle projec-
tions with estimated viewing angles.

Model formulation
The considered relation between the studied volume and
its projection from a viewing angle ω is

gω = PSFω ∗ Eω ∗ (Pωf + es
ω) + eb

ω, (1)

with
• PSFω, Eω: Point Spread Functions.
• Pω: X-ray transform:

Pωf (s) :=
∫ ∞

−∞ f (t · ω + s)dt, s ∈ ω⊥.

• f : Unknown function representing the particle.
• gω: Measured projection (data).
• es

ω, eb
ω: Structure and background noise functions.

• ∗: Convolution operator.

Figure: Input data - particle projections of the β-galactosidase
macro-molecule measured by transmission electron microscope.

Discretization
In a discrete setting the aim is to
reconstruct the values of the function
f in a set of n3 equidistantly dis-
tributed sampling points zi. Typi-
cally, n is of order 102. Discretization
of the model formulation (1) gives a
system of linear equations

CωPωx = bω, (2)

where x is a vector of the unknown values of f in the
sampling points zi and
• Cω: BCCB matrix, analytic formula is known in the

Fourier spectrum (CTF).
• Pω: Sparse rectangular matrix containing the weights

of a numerical quadrature∫ ∞

−∞
f (t · ω + s)dt ≈

n3∑
i=1

αif (zi).

• bω: Measured noisy projection.

(a) PSF (b) CTF (c) Pωx (d) CωPωx

Figure: Example of PSF and its Fourier transform (CTF). Pωx is a
projection of β-gal. and CωPωx is its blurred projection.

Discrete inverse problem

Considering N particle projections we obtain

CPx ≈ b, b = bexact + e, (3)

where C ∈ RNn2×Nn2, P ∈ RNn2×n3, x ∈ Rn3,
b ∈ RNn2. The vector e comprises noise in the data
and it is assumed to be Gaussian white noise. The
level of noise in the data is typically very high

∥e∥
∥bexact∥

> 1.

The number of particle projections N thus needs to
be very high (order of 106) in order to obtain a good
quality reconstruction.

Figure: Illustration of the block structure of matrices C and P and
right hand side vector b. C is a square matrix, P is overdetermined.

Iterative hybrid regularization

Hybrid LSQR method combining Krylov subspace
method with Tikhonov regularization can be applied
to solve the problem (3). Its key parts are:
• Golub-Kahan iterative bidiagonalization

Lk+yk ≈ β1e1.

• Subsequent application of Tikhonov reg.

min
y

{∥Lk+y − β1e1∥2
2 + λ2

k ∥y∥2
2}.

• Problem driven selection of λk.
• Extracts solution norm estimate η ≈ ∥xexact∥2

from preceding reconstruction steps.
• Selects λk such that ∥yk∥2 ≈ η.

• Stopping criterion (choice of the parameter k).
• Monitors stagnation of ∥rk∥2 - indicates

stagnation of the method.

GPU implementation
Matrices C and P cannot be stored explicitly, their realis-
tic size is hundreds of PB. Highly-parallel implementation
of matrix-vector products utilizing GPUs and the block
structure is thus necessary. Single precision arithmetic is
typically used.
• Matrix-vector products with C and CT :

• Fast fourier transform and convolution theorem.
• O(n2log(n)) operations per block.

• Matrix-vector products with P and P T :
• Fast voxel-traversal algorithms on GPU.
• P Tv is realized through row-wise access to P .
• O(n) operations per row.

Solution quality assesement
Evaluation of quality of the obtained solution is extremely
challenging. Visualization tools are often used in practice.

Figure: Selected parts of the computed reconstruction of β-gal.

Figure: Comparison of selected parts computed by different methods.
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