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1 Contributions
1. Reviewed state-of-art methods under Bayesian

framework, and proposed the recursive up-
dated error model;

2. Applied projected Gaussian to constrain the
posterior, and discuss its advantage;

3. Implemented the algorithm onto MREIT prob-
lem, and show advantages with comparison.

2 Problem Description

Figure 1: Recessed electrode configurations for
MREIT experiments on the canine head[2].

The mathematical modelling of MREIT could be
divided into two part:
1. Injected currents generates current density:

∇ · (σ∇u) = 0, in Ω

u = f , on ∂Ω

J = σE = −σ∇u, in Ω

(1)

2. Current density generates magnetic flux den-
sity

J =
1

µ0
∇× B, in Ω (2)

The inverse problem is to approximate the con-
ductivity σ with measurements of perturbed in-
terior current Je = J + e since the second part
is linear.
Given Je := F (σ)+e, the linearization is denoted
as

f σ = F (σ∗) +DF (σ∗)(σ − σ∗) (3)

Then the accurate model goes like

Je = f σ +m + e := f σ + v (4)
m = F (σ)− f σ (5)

According to Bayes’ Theorem the posterior would
be formulated as

π(σ|Je) =
1

π(Je)
π(σ)π(Je|σ) ∝ π(σ)π(Je|σ)

(6)
The prior π(σ) indicates our pre-knowledge of
conductivity. As for the likelihood π(Je|σ) we
have

π(Je|σ) = πv |σ(Je − f σ|σ) (7)

3 Method
Given σ and e gaussian distributed, assuming that
m is independent from σ and Gaussian, then v is
Gaussian. Following (6) and (7), we have gaus-
sian posterior. To get better reconstruciton, we
iteratively updated error model by pushing for-
ward samples from the previous posterior, and
updated σ∗ with stable posterior estimate. More-
over, since the conductivity is always positive, we
project the distribution onto some positive con-
strained set.
Recursive Updated Error Model
Take π(σ) = N (σ0, Γσ), π(e) = N (0, Γe). In-
put sample number N, constrain set C, outside
loops L, inside loops Lr . Set σ∗ = σ0, l = 0,
lr = 0, σ0 = σ0, Γ0 = Γσ;
Sample

{
σ0(i)

}
i=1,...,N

∼ ΠC (π(σ));
if lr < Lr then

if l < L then
Calculate linearized values of samples as
fhσ
l
(i) and get model error samples ml(i);

Evaluate model error sample mean ml0
and sample covariance Γlv ;
Set l = l + 1, solve the posterior
πllr(σ

l
h|Je);

Sample
{
σl(i)

}
i=1,...,N

∼ ΠC
(
πllr

)
;

end
Calculate the median of

{
σL(i)

}
i=1,...,N

and

update σ∗;
Set l = 0, lr = lr + 1;

end
Return πLLr as the result.

4 Result

Figure 2: Figures in the first row from left to
right are (1) the exact conductivity, (2) reconstruction from lin-
ear approximation without model error, (3) reconstruction from
linear approximation with model error, (4) reconstruction from
linear approximation with 2-time updated model error, (5) recon-
struction from linear approximation with 2-time updated model
error and updated reference point, (6) reconstruction from lin-
ear approximation with 2-time updated model error and 2-time
updated reference point respectively. Figure in the second row
are corresponding difference between the upper reconstruction
and the exact conductivity.

Figure 3: Relative error of the conventional error model,
the iterative updated error model[1] and the recursive updated
error model with respect to the exact conductivity.
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