Bayesian imaging using Plug & Play priors. When Langevin meets Tweedie.

Rémi Laumont

Joint work with:

Valentin De Bortoli, Julie Delon, Andrés Almansa, Alain Durmus, Marcelo Pereyra.

IUQ Workshop: September 27, 2022

1 Introduction.

- Plug-and-Play priors for Bayesian imaging.
 - Bayesian framework.
 - Sampling using Langevin based methods.

Study of data-driven Plug-&-Play priors for sampling.

- Visual Comparison between the SN-DnCNN and FINE priors.
- Visual analysis of the Prox-GSD prior.
- Potential analysis.
- Frequentist accuracy of the Bayesian models.

4 Conclusion.

Introduction.

Plug-and-Play priors for Bayesian imaging. Study of data-driven Plug-&-Play priors for sampling. Conclusion.

Introduction to the image restoration context.

Modelisation:

$$y = A(x) + n$$

with $x \in \mathbb{R}^d$ the <u>unknown</u> scene, $y \in \mathbb{R}^m$ the observation, $n \in \mathbb{R}^m$ the noise, and $A : \mathbb{R}^d \to \mathbb{R}^m$ a known degradation operator.

• <u>Classical Goal</u>: Estimate *x* from its observation *y*.

Introduction.

Plug-and-Play priors for Bayesian imaging. Study of data-driven Plug-&-Play priors for sampling. Conclusion.

Examples.

Noisy observation y. True scene x. Blurry observation y. <u>Problem:</u> ill-posed, -conditionned. \rightarrow Need to regularize.

Bayesian framework. Sampling using Langevin based methods.

Bayesian paradigm.

• Bayesian formulation:

$$p(x|y) = \frac{p(x)p(y|x)}{\int_{\mathbb{R}^d} p(\tilde{x})p(y|\tilde{x})\mathrm{d}\tilde{x}} \propto p(x)p(y|x)$$

where p(x) the prior and p(y|x) is the likelihood (assumed to be known).

- $R(x) = -\log p(x)$ and $F(x, y) = -\log p(y|x) (= \frac{||Ax-y||_2^2}{2\sigma^2})$
- Maximum-A-Posteriori (MAP) estimator:

$$\hat{x}_{MAP} = \arg\max_{x \in \mathbb{R}^d} p(x|y) = \arg\min_{x \in \mathbb{R}^d} \left\{ F(x, y) + \lambda R(x) \right\}.$$
(1)

• Minimum Mean Square Error (MMSE) estimator:

$$\hat{x}_{MMSE} = \arg\min_{u \in \mathbb{R}^d} \mathbb{E}[\|x - u\|^2 | y] = \mathbb{E}[x | y].$$
(2)

Bayesian framework. Sampling using Langevin based methods.

Sampling using the Unadjusted Langevin Algortihm (ULA).

<u>Goal</u>: sampling from a distribution with target density $\pi(x) = p(x|y) \propto \exp(-R(x) - F(x,y)).$

ULA:

$$X_{k+1} = X_k + \delta \nabla \log \pi(X_k) + \sqrt{2\delta} Z_{k+1}$$

$$X_{k+1} = X_k - \delta \nabla R(X_k) - \delta \nabla F(X_k, y) + \sqrt{2\delta} Z_{k+1}$$
(3)

with $Z_k \sim \mathcal{N}(0, Id)$ for all $k \in \mathbb{N}$ and $\delta > 0$.

- Results (Durmus and Moulines, 2017):
 - Convergence towards a unique stationary distribution $\pi_{\delta} \approx \pi$ if $\nabla(R+F)$ is *L*-Lipschitz and $\delta < 1/L$.
 - Exponentially fast convergence if F+R is strongly convex at ∞ .

Bayesian framework. Sampling using Langevin based methods.

Plug-and-Play (PnP) approaches.

Problem: p(x) (or R(x)) is unknown and difficult to model.

- PnP methods uses a denosier D_ε : ℝ^d → ℝ^d to implicitly define an image prior p(x).
- Target ∇R ((Alain and Bengio, 2014), (Guo et al., 2019),(Romano et al., 2017) and (Kadkhodaie and Simoncelli, 2020)) using the Tweedie's formula.

Tweedie's formula

If $X \sim P_X, \ N \sim \mathcal{N}(0, Id)$ and $ilde{X} = X + \sqrt{arepsilon} N$ then,

$$\mathbb{E}[x|\tilde{x}] - \tilde{x} = \varepsilon \nabla \log(p * g_{\varepsilon})(\tilde{x}) = \varepsilon \nabla \log(p_{\varepsilon})(\tilde{x})$$

with g_{ε} a Gaussian kernel with variance ε .

Bayesian framework. Sampling using Langevin based methods.

PnP approaches and Tweedie's formula for sampling: PnP-ULA.

• Using the MMSE denoiser $D^*_{arepsilon}(ilde{x}) = \mathbb{E}[x| ilde{x}]$ we get

$$D^*_{arepsilon}(ilde{x}) - ilde{x} = arepsilon
abla \log(p_arepsilon)(ilde{x})$$

PnP-ULA:

$$X_{k+1} = X_k - \delta \nabla F(X_k, y) + \delta (D_{\varepsilon}(X_k) - X_k) / \varepsilon) - \delta (\prod_C (X_k) - X_k) / \lambda + \sqrt{2\delta} Z_{k+1}.$$

where this term ensures the strong convexity in the tails and Π_C is a projection on $B(0, R_C)$ and $D_{\varepsilon}(x) \simeq D_{\varepsilon}^*(x)$. • <u>PPnP-ULA:</u>

$$X_{k+1} = \prod_{\mathcal{C}} [X_k - \delta \nabla F(X_k, y) + \delta (D_{\varepsilon}(X_k) - X_k) / \varepsilon) + \sqrt{2\delta} Z_{k+1}].$$

• Sampling respectively from $\pi_{\delta,\varepsilon}^{C}$ and $\pi_{\delta,\varepsilon}^{C,P}$.

Introduction.	Visual Comparison between the SN-DnCNN and FINE priors.
Plug-and-Play priors for Bayesian imaging.	Visual analysis of the Prox-GSD prior.
Study of data-driven Plug-&-Play priors for sampling.	
Conclusion.	

Problem parameters

<u>This talk</u>: Investigating the influence of the implicit data-driven prior on the results.

• Deblurring inverse problem

$$y = Ax + n \tag{4}$$

where A encodes a 9 × 9 bloc filter and $n \sim \mathcal{N}(0, \sigma^2)$.

Algorithms parameters

•
$$C = [-1, 2]^d$$
.

• Initialization at the observation y.

•
$$\delta = \delta_{th}$$

Introduction.	Visual Comparison between the SN-DnCNN and FINE priors.
Plug-and-Play priors for Bayesian imaging.	Visual analysis of the Prox-GSD prior.
Study of data-driven Plug-&-Play priors for sampling.	
Conclusion.	

PnP denoisers

- SN-DnCNN (Ryu et al., 2019)
 - CNN based architecture with ReLU activations.
 - $(D_{\varepsilon} Id)$ is *L*-Lipschitz with L < 1.
 - $\varepsilon = (5/255)^2$.
 - Input: noisy grayscale image.
- FINE (Pesquet et al., 2020)
 - CNN based architecture with Leaky ReLU activations.
 - D_{ε} is firmly non-expansive \Rightarrow 1-Lipschitz.
 - $\varepsilon = (2.25/255)^2$.
 - Input: noisy grayscale image.
- Prox-GSD (Hurault et al., 2022)
 - $D_{\varepsilon} = Id \nabla g_{\varepsilon}$ with $g_{\varepsilon}(x) = ||x N(x, \varepsilon)||_2^2/2$ and $(D_{\varepsilon} Id)$ 1-Lipschitz.
 - N(., ε): DRUNet based architecture with Softplus activations.
 ε = (15/255)².
 - Inputs: noisy RGB image and noise map.

Visual Comparison between the SN-DnCNN and FINE priors. Visual analysis of the Prox-GSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

Comparison between the MMSE restorations of the SN-DnCNN and FINE induced priors within PnP-ULA for Simpson.

Simpson

Observation

PSNR=22.44/SSIM=0.66

SN-DnCNN MMSE

PSNR=34.26/SSIM=0.94

FINE MMSE

PSNR=31.77/SSIM=0.92

Visual Comparison between the SN-DnCNN and FINE priors. Visual analysis of the Prox-GSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

Detailed comparison between the MMSE restorations of the SN-DnCNN and FINE induced priors.

Sn-DnCNN MMSE

FINE MMSE

Visual Comparison between the SN-DnCNN and FINE priors. Visual analysis of the Prox-GSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

Comparison between the MMSE restorations of the SN-DnCNN and FINE induced priors within PnP-ULA for Goldhill.

PSNR=22.61/SSIM=0.45

PSNR=27.72/SSIM=0.73

PSNR=27.20/SSIM=0.71

Visual Comparison between the SN-DnCNN and FINE priors. Visual analysis of the Prox-GSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

Zoom on the MMSE restoration produced by PnP-ULA with the SN-DnCNN induced prior for Goldhill.

Visual Comparison between the SN-DnCNN and FINE priors. Visual analysis of the Prox-GSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

 L_2 distance between the final MMSE estimate and the samples generated by PnP-ULA with the SN-DnCNN and the FINE induced priors.

15/27

Visual Comparison between the SN-DnCNN and FINE priors. Visual analysis of the Prox-GSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

Comparison between the standard deviations produced of PnP-ULA with the SN-DnCNN and FINE induced priors.

Rémi Laumont Bayesian imaging using Plug & Play priors. 16 / 27

Visual Comparison between the SN-DnCNN and FINE priors. Visual analysis of the Prox-CSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

Results for Color Simpson with PnP-ULA for the Prox-GSD prior.

Visual analysis of the Prox-GSD prior.

Samples generated by PnP-ULA the Prox-GSD prior.

n = 5e5n = 1.63e6 $U(X_n) = 24112.473$ $U(X_n) = 24089.926$

n = 1.64e6

n = 1.7e6 $U(X_n) = 24013.79$ $U(X_n) = 24101.984$

n = 5e6 $U(X_n) = 22920.855$

Visual analysis of the Prox-GSD prior.

Sample cumulative histograms.

n = 5e5 $U(X_n) = 24112.473$ $U(X_n) = 24089.926$

n = 1.63e6

n = 1.634e6 $U(X_n) = 24094.4$

n = 1.64e6

n = 1.7e6 $U(X_n) = 24013.79$ $U(X_n) = 24101.984$

n = 5e6 $U(X_n) = 22920.855$

Visual Comparison between the SN-DnCNN and FINE priors Visual analysis of the Prox-GSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

Results obtained with PPnP-ULA and the Prox-GSD prior for Color Simpson ($C = [0, 1]^d$).

MMSE, PSNR=33.51 *n* = 1*e*6, PSNR=24.25 *n* = 4*e*6, PSNR=24.13

Visual Comparison between the SN-DnCNN and FINE priors Visual analysis of the Prox-CSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

Results obtained with PPnP-ULA and the Prox-GSD prior for Fox ($C = [0, 1]^d$).

Fox

Observation, PSNR=21.69

MMSE

Introduction. Visual Comparison between the SN-DnCNN and FINE priors. Visual analysis of the Prox-GSD prior. Plug-and-Play priors for sampling. Study of data-driven Plug-&-Play priors for sampling. Conclusion. Frequentist accuracy of the Bayesian models.

Potential.

- <u>Goal</u>: Better understand the images promoted by our posterior.
- SN-DnCNN and FINE posterior potential: We consider the approximated potential U_{red} introduced in (ROMANO ET AL., 2017):

$$\forall x \in \mathbb{R}^d, \ U_{red}(x) = \frac{\|Ax - y\|^2}{2\sigma^2} + \frac{\alpha}{2}x^T(x - D_{\varepsilon}(x)).$$
 (5)

with $\alpha=1/\varepsilon$ and such that

$$abla U_{red}(x) = -rac{A^T(Ax-y)}{\sigma^2} + rac{1}{arepsilon}(x-D_arepsilon(x)).$$

• Prox-GSD posterior potential:

$$\forall x \in \mathbb{R}^d, \ U(x) = \frac{\|Ax - y\|^2}{2\sigma^2} + \frac{1}{2}\|x - N(x,\varepsilon)\|_2^2.$$
 (6)

Visual Comparison between the SN-DnCNN and FINE priors Visual analysis of the Prox-GSD prior. Potential analysis.

usion. Frequ

Evolution of the posterior potential U_{red} for Simpson and Goldhill with the SN-DnCNN and FINE induced priors.

Visual Comparison between the SN-DnCNN and FINE priors Visual analysis of the Prox-GSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

Evolution of the exact posterior potential U for Color Simpson and Fox with PnP-ULA or PPnP-ULA with the Prox-GSD induced prior.

Introduction. Plug-and-Play priors for Bayesian imaging. Study of data-driven Plug-&-Play priors for sampling. Conclusion. Visual Comparison between the SN-DnCNN a Visual analysis of the Prox-GSD prior. Potential analysis. Frequentist accuracy of the Bayesian models.

Frequentist accuracy of the Bayesian models defined by SN-DnCNN and FINE.

Conclusion.

• Summary.

- Development of a Langevin based algorithm with detailed convergence guarantees under realistic hypothesis.
- Analysis of the influence of the plugged prior from a visual and a potential viewpoint.
- Controlling the Lipschitz constant of the denoiser does not seem to be sufficient for PnP priors.
- Future work.
 - Further investigation of the current PnP priors.
 - Comparison with other methods such as NFs (HAGEMANN ET AL., 2022), DDPM based models (KAWAR ET AL., 2022) and Score-matching based methods (KAWAR ET AL., 2021).

Thank you !

If you want to know more you can:

- ask questions.
- Ind the article related to PnP-ULA on Arxiv https://arxiv.org/abs/2103.04715 and published in SIAM Imaging Science.

Alain, Guillaume and Yoshua Bengio (2014). "What Regularized Auto-Encoders Learn from the Data-Generating Distribution". In: <i>Journal of Machine Learning</i> <i>Research</i> 15, pp. 3743–3773. ISSN: 1532-4435. arXiv: 1211.4246 (cit. on p. 7).
Durmus, Alain and Éric Moulines (2017). "Nonasymptotic convergence analysis for the unadjusted Langevin algorithm". In: <i>Ann. Appl. Probab.</i> 27.3, pp. 1551–1587. ISSN: 1050-5164. DOI: 10.1214/16-AAP1238 (cit. on p. 6).
Guo, Bichuan, Yuxing Han, and Jiangtao Wen (2019). "AGEM: Solving Linear Inverse Problems via Deep Priors and Sampling". In: <i>Advances in Neural</i> <i>Information Processing Systems</i> , pp. 547–558 (cit. on p. 7).
Hagemann, Paul, Johannes Hertrich, and Gabriele Steidl (2022). Stochastic Normalizing Flows for Inverse Problems: a Markov Chains Viewpoint. arXiv: 2109.11375 [cs.LG] (cit. on p. 26).
Hurault, Samuel, Arthur Leclaire, and Nicolas Papadakis (2022). "Gradient Step Denoiser for convergent Plug-and-Play". In: <i>International Conference on Learning Representations</i> (cit. on p. 10).
Kadkhodaie, Zahra and Eero P Simoncelli (2020). "Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser". In: <i>arXiv preprint</i>

arXiv:2007.13640 (cit. on p. 7).

- Kawar, Bahjat, Michael Elad, Stefano Ermon, and Jiaming Song (2022). "Denoising diffusion restoration models". In: *arXiv preprint arXiv:2201.11793* (cit. on p. 26).
- Kawar, Bahjat, Gregory Vaksman, and Michael Elad (2021). "SNIPS: Solving Noisy Inverse Problems Stochastically". In: *arXiv preprint arXiv:2105.14951* (cit. on p. 26).
- Pesquet, Jean-Christophe, Audrey Repetti, Matthieu Terris, and Yves Wiaux (2020). Learning Maximally Monotone Operators for Image Recovery. arXiv: 2012.13247 [math.0C] (cit. on p. 10).
- Roberts, Gareth O, Richard L Tweedie, et al. (1996). "Exponential convergence of Langevin distributions and their discrete approximations". In: *Bernoulli* 2.4, pp. 341–363.

- Romano, Yaniv, Michael Elad, and Peyman Milanfar (2017). "The little engine that could: Regularization by denoising (RED)". In: *SIAM Journal on Imaging Sciences* 10.4, pp. 1804–1844 (cit. on pp. 7, 22).
- Ryu, Ernest K., Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin (2019). "Plug-and-Play Methods Provably Converge with Properly Trained Denoisers". In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 5546–5557. arXiv: 1905.05406 (cit. on p. 10).

Plug-and-Play approaches and Tweedie's formula for sampling: PnP-ULA (2).

- Hypotheses:
 - $Id D_{\varepsilon}$ is Lipschitz and there exists $M : \mathbb{R}^+ \to \mathbb{R}^+$, such that for all $||x|| \le R$, $||D_{\varepsilon}(x) D_{\varepsilon}^*(x)|| \le M(R)$.
 - The likelihood p(y|x) is bounded, C^1 and $\nabla \log p(y|x)$ is Lipschitz.
 - The MSE loss for D^{*}_ε under g_ε(.|x̃) is finite and uniformly bounded.

٥

Convergence at exponential rate toward $\pi^{C}_{\delta,\varepsilon}$, non-asymptotic error:

$$\frac{1}{n}\sum_{k=1}^{n}\mathbb{E}[X_{k}] - \int_{\mathbb{R}^{d}}\tilde{x}\rho(\tilde{x}|y)\mathrm{d}\tilde{x}| \\
\leq C_{0}\{C_{1}\varepsilon^{\beta/4} + C_{2}R_{C}^{-1} + C_{3}(\sqrt{\delta} + \frac{1}{n\delta} + C_{R})\}. \quad (7)$$

References Complementary materials

Figure: Log-standard deviation maps in the Fourier domain for the Markov chains defined by PnP-ULA for the deblurring problem. First line: images Cameraman, Simpson, Traffic. Second line: images Alley, Bridge and Goldhill. References Complementary materials

Samples of the SN-DnCNN induced prior distribution.

