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Introduction to the image restoration context.

Modelisation:
y = A(x) + n

with x ∈ Rd the unknown scene, y ∈ Rm the observation,
n ∈ Rm the noise, and A : Rd → Rm a known degradation
operator.
Classical Goal: Estimate x from its observation y .
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Examples.

Noisy observation y . True scene x . Blurry observation y .
Problem: ill-posed, -conditionned. → Need to regularize.
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Bayesian framework.
Sampling using Langevin based methods.

Bayesian paradigm.
Bayesian formulation:

p(x |y) = p(x)p(y |x)∫
Rd p(x̃)p(y |x̃)dx̃

∝ p(x)p(y |x)

where p(x) the prior and p(y |x) is the likelihood (assumed to
be known).
R(x) = − log p(x) and F (x , y) = − log p(y |x)(= ‖Ax−y‖2

2
2σ2 )

Maximum-A-Posteriori (MAP) estimator:

x̂MAP =argmax
x∈Rd

p(x |y)=argmin
x∈Rd

{F (x , y) + λR(x)} . (1)

Minimum Mean Square Error (MMSE) estimator:

x̂MMSE =argmin
u∈Rd

E[‖x − u‖2|y ] =E[x |y ]. (2)
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Bayesian framework.
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Sampling using the Unadjusted Langevin Algortihm (ULA).

Goal: sampling from a distribution with target density
π(x) = p(x |y) ∝ exp(−R(x)− F (x , y)).

ULA:
Xk+1 = Xk + δ∇ log π(Xk) +

√
2δZk+1

Xk+1 = Xk − δ∇R(Xk)− δ∇F (Xk , y) +
√

2δZk+1 (3)

with Zk ∼ N (0, Id) for all k ∈ N and δ > 0.
Results (Durmus and Moulines, 2017):

Convergence towards a unique stationary distribution πδ ≈ π if
∇(R + F ) is L-Lipschitz and δ < 1/L.
Exponentially fast convergence if F + R is strongly convex at
∞ .
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Bayesian framework.
Sampling using Langevin based methods.

Plug-and-Play (PnP) approaches.
Problem: p(x) (or R(x)) is unknown and difficult to model.

PnP methods uses a denosier Dε : Rd → Rd to implicitly
define an image prior p(x).
Target ∇R ((Alain and Bengio, 2014), (Guo et al.,
2019),(Romano et al., 2017) and
(Kadkhodaie and Simoncelli, 2020)) using the Tweedie’s
formula.

Tweedie’s formula
If X ∼ PX , N ∼ N (0, Id) and X̃ = X +

√
εN then,

E[x |x̃ ]− x̃ = ε∇ log(p ∗ gε)(x̃) = ε∇ log(pε)(x̃) ,

with gε a Gaussian kernel with variance ε.
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Bayesian framework.
Sampling using Langevin based methods.

PnP approaches and Tweedie’s formula for sampling:
PnP-ULA.

Using the MMSE denoiser D∗
ε (x̃) = E[x |x̃ ] we get

D∗
ε (x̃)− x̃ = ε∇ log(pε)(x̃) .

PnP-ULA:
Xk+1 = Xk − δ∇F (Xk , y) + δ(Dε(Xk)− Xk)/ε)

− δ(ΠC(Xk)− Xk)/λ+
√

2δZk+1.

where this term ensures the strong convexity in the tails and
ΠC is a projection on B(0,RC) and Dε(x) ' D∗

ε (x).
PPnP-ULA:

Xk+1 = ΠC [Xk − δ∇F (Xk , y) + δ(Dε(Xk)− Xk)/ε)

+
√

2δZk+1].

Sampling respectively from πC
δ,ε and πC ,P

δ,ε .
Rémi Laumont Bayesian imaging using Plug & Play priors. 8 / 27



Introduction.
Plug-and-Play priors for Bayesian imaging.

Study of data-driven Plug-&-Play priors for sampling.
Conclusion.

Visual Comparison between the SN-DnCNN and FINE priors.
Visual analysis of the Prox-GSD prior.
Potential analysis.
Frequentist accuracy of the Bayesian models.

Problem parameters

This talk: Investigating the influence of the implicit data-driven
prior on the results.

Deblurring inverse problem

y = Ax + n (4)

where A encodes a 9 × 9 bloc filter and n ∼ N (0, σ2).
Algorithms parameters

C = [−1, 2]d .
Initialization at the observation y .
δ = δth
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PnP denoisers
SN-DnCNN (Ryu et al., 2019)

CNN based architecture with ReLU activations.
(Dε − Id) is L-Lipschitz with L < 1.
ε = (5/255)2.
Input: noisy grayscale image.

FINE (Pesquet et al., 2020)
CNN based architecture with Leaky ReLU activations.
Dε is firmly non-expansive ⇒ 1-Lipschitz.
ε = (2.25/255)2.
Input: noisy grayscale image.

Prox-GSD (Hurault et al., 2022)
Dε = Id −∇gε with gε(x) = ‖x − N(x , ε)‖2

2/2 and (Dε − Id)
1-Lipschitz.
N(., ε): DRUNet based architecture with Softplus activations.
ε = (15/255)2.
Inputs: noisy RGB image and noise map.
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Visual Comparison between the SN-DnCNN and FINE priors.
Visual analysis of the Prox-GSD prior.
Potential analysis.
Frequentist accuracy of the Bayesian models.

Comparison between the MMSE restorations of the
SN-DnCNN and FINE induced priors within PnP-ULA for
Simpson.

Simpson Observation SN-DnCNN MMSE FINE MMSE

PSNR=22.44/SSIM=0.66 PSNR=34.26/SSIM=0.94 PSNR=31.77/SSIM=0.92
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Visual Comparison between the SN-DnCNN and FINE priors.
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Detailed comparison between the MMSE restorations of
the SN-DnCNN and FINE induced priors.

Sn-DnCNN MMSE FINE MMSE
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Comparison between the MMSE restorations of the
SN-DnCNN and FINE induced priors within PnP-ULA for
Goldhill.

Goldhill Observation SN-DnCNN MMSE FINE MMSE

PSNR=22.61/SSIM=0.45 PSNR=27.72/SSIM=0.73 PSNR=27.20/SSIM=0.71
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Visual Comparison between the SN-DnCNN and FINE priors.
Visual analysis of the Prox-GSD prior.
Potential analysis.
Frequentist accuracy of the Bayesian models.

Zoom on the MMSE restoration produced by PnP-ULA
with the SN-DnCNN induced prior for Goldhill.
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L2 distance between the final MMSE estimate and the
samples generated by PnP-ULA with the SN-DnCNN and
the FINE induced priors.
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.

Simpson Goldhill
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Visual Comparison between the SN-DnCNN and FINE priors.
Visual analysis of the Prox-GSD prior.
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Frequentist accuracy of the Bayesian models.

Comparison between the standard deviations produced of
PnP-ULA with the SN-DnCNN and FINE induced priors.
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Visual Comparison between the SN-DnCNN and FINE priors.
Visual analysis of the Prox-GSD prior.
Potential analysis.
Frequentist accuracy of the Bayesian models.

Results for Color Simpson with PnP-ULA for the
Prox-GSD prior.

Color Simpson Blurry observation MMSE Standard deviation
PSNR=25.18
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Visual Comparison between the SN-DnCNN and FINE priors.
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Samples generated by PnP-ULA the Prox-GSD prior.

n = 5e5 n = 1.63e6 n = 1.634e6
U(Xn) = 24112.473 U(Xn) = 24089.926 U(Xn) = 24094.4

n = 1.64e6 n = 1.7e6 n = 5e6
U(Xn) = 24013.79 U(Xn) = 24101.984 U(Xn) = 22920.855
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Sample cumulative histograms.

n = 5e5 n = 1.63e6 n = 1.634e6
U(Xn) = 24112.473 U(Xn) = 24089.926 U(Xn) = 24094.4

n = 1.64e6 n = 1.7e6 n = 5e6
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Visual Comparison between the SN-DnCNN and FINE priors.
Visual analysis of the Prox-GSD prior.
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Frequentist accuracy of the Bayesian models.

Results obtained with PPnP-ULA and the Prox-GSD prior
for Color Simpson (C = [0, 1]d).

MMSE, PSNR=33.51 n = 1e6, PSNR=24.25 n = 4e6, PSNR=24.13
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Visual Comparison between the SN-DnCNN and FINE priors.
Visual analysis of the Prox-GSD prior.
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Results obtained with PPnP-ULA and the Prox-GSD prior
for Fox (C = [0, 1]d).

Fox Observation, PSNR=21.69 MMSE
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Potential.
Goal: Better understand the images promoted by our posterior.
SN-DnCNN and FINE posterior potential: We consider the
approximated potential Ured introduced in (Romano et al.,
2017):

∀x ∈ Rd , Ured(x) =
‖Ax − y‖2

2σ2 +
α

2 xT (x − Dε(x)). (5)

with α = 1/ε and such that

∇Ured(x) = −AT (Ax − y)
σ2 +

1
ε
(x − Dε(x)).

Prox-GSD posterior potential:

∀x ∈ Rd , U(x) = ‖Ax − y‖2

2σ2 +
1
2‖x − N(x , ε)‖2

2. (6)
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Evolution of the posterior potential Ured for Simpson and
Goldhill with the SN-DnCNN and FINE induced priors.
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Visual Comparison between the SN-DnCNN and FINE priors.
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Evolution of the exact posterior potential U for Color
Simpson and Fox with PnP-ULA or PPnP-ULA with the
Prox-GSD induced prior.

Color Simpson Color Simpson Fox
PnP-ULA PPnP-ULA PPnP-ULA
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Visual Comparison between the SN-DnCNN and FINE priors.
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Frequentist accuracy of the Bayesian models defined by
SN-DnCNN and FINE.
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Conclusion.

Summary.
Development of a Langevin based algorithm with detailed
convergence guarantees under realistic hypothesis.
Analysis of the influence of the plugged prior from a visual and
a potential viewpoint.
Controlling the Lipschitz constant of the denoiser does not
seem to be sufficient for PnP priors.

Future work.
Further investigation of the current PnP priors.
Comparison with other methods such as NFs (Hagemann et al.,
2022), DDPM based models (Kawar et al., 2022) and
Score-matching based methods (Kawar et al., 2021).
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Thank you !

If you want to know more you can:
1 ask questions.
2 find the article related to PnP-ULA on Arxiv

https://arxiv.org/abs/2103.04715 and published in
SIAM Imaging Science.
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Plug-and-Play approaches and Tweedie’s formula for
sampling: PnP-ULA (2).

Hypotheses:
Id − Dε is Lipschitz and there exists M : R+ → R+, such that
for all ‖x‖≤ R , ‖Dε(x)− D∗

ε (x)‖≤ M(R).
The likelihood p(y |x) is bounded, C1 and ∇ log p(y |x) is
Lipschitz.
The MSE loss for D∗

ε under gε(.|x̃) is finite and uniformly
bounded.

Convergence at exponential rate toward πC
δ,ε, non-asymptotic error:

|1n

n∑
k=1

E[Xk ]−
∫
Rd

x̃p(x̃ |y)dx̃ |

≤ C0{C1ε
β/4 + C2R−1

C + C3(
√
δ +

1
nδ + CR)}. (7)
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Inverse Fourier
transform of

the blur kernel.

Figure: Log-standard deviation maps in the Fourier domain for the
Markov chains defined by PnP-ULA for the deblurring problem. First line:
images Cameraman, Simpson, Traffic. Second line: images Alley,
Bridge and Goldhill.
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Samples of the SN-DnCNN induced prior distribution.
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