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Photoacoustic tomography (PAT)

Tissue is illuminated with a short
pulse of light
As light propagates within the tissue,
it is absorbed by chromophores
The absorbed energy causes
pressure rise
This pressure increase propagates
through the tissue as an acoustic
wave and can be measured on the
boundary of the tissue using
ultrasound sensors
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Image reconstruction

Recover the initial pressure (or
absorbed optical energy
density) from the
photoacoustic signal
measured on the boundary of
the tissue

⇒

⇒
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Photoacoustic tomography combines
benefits of optical and acoustic
methods
Contrast through optical absorption

Tissue chromophores: oxygenated
and deoxygenated haemoglobin,
water, lipids, melanin
Contrast agents

Resolution by ultrasound
Low scattering in soft biological
tissue

Applications in imaging of tissue
vasculature, tumours, small animal
imaging, etc.

J. Tick et al, Three dimensional

photoacoustic tomography in Bayesian

framework, J Acoust Soc Am

144:2061-2071, 2018
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Quantitative photoacoustic tomography (QPAT)
Aim is to estimate the concentrations of light absorbing molecules
Two inverse problems:

Acoustic inverse problem: estimation of the initial pressure from
photoacoustic measurements
Optical inverse problem: estimation of the optical parameters from
the initial pressure

Modelling of light propagation, photoacoustic efficiency and
ultrasound propagation are needed
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n 1. The optical forward problem: Solve
the absorbed optical energy density H(r)
when the optical properties of the medium
(µa(r), µs(r)) and the input light sources
are given
−∇ · κ(r)∇Φ(r) + µa(r)Φ(r) = 0

H(r) = µa(r)Φ(r)

3. The optical inverse problem: Estimate

the optical parameters (µa(r), µs(r)) when

the absorbed optical energy density H(r)

and the amount of input light are given

arg min
{
‖Ln(H − Ah(x))‖2

+‖Lx (x − x∗)‖2}

P
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se 2. Solve the initial acoustic pressure p0(r)
from the absorbed optical energy density

p0(r) = G(r)H(r)

2. Calculate the absorbed optical energy
density H(r) from the estimated initial
acoustic pressure p0(r)
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n 3. The acoustic forward problem: Solve the
time-varying pressure pS(t) at the sensors
(measurable data) when the initial acoustic
pressure distribution is given(

∂2

∂t2
− v2(r)∇2

)
p(r , t) = 0

1 . The acoustic inverse problem: Estimate
the initial acoustic pressure distribution
p0(r) when measured acoustic waves
pS(t) on the sensors are given (inverse
initial value problem of acoustics)

IN
V

E
R

S
E

P
R

O
B

LE
M
⇒

UEF // University of Eastern Finland Tarvainen // IUQ Workshop, 27-29.9.2022 7



⇐
FO

R
W

A
R

D
P

R
O

B
LE

M

Ill
um

in
at

io
n,

ab
so

rp
tio

n 1. The optical forward problem: Solve
the absorbed optical energy density H(r)
when the optical properties of the medium
(µa(r), µs(r)) and the input light sources
are given
−∇ · κ(r)∇Φ(r) + µa(r)Φ(r) = 0

H(r) = µa(r)Φ(r)

3. The optical inverse problem: Estimate

the optical parameters (µa(r), µs(r)) when

the absorbed optical energy density H(r)

and the amount of input light are given

arg min
{
‖Ln(H − Ah(x))‖2

+‖Lx (x − x∗)‖2}

P
re

ss
ur

e
ri

se 2. Solve the initial acoustic pressure p0(r)
from the absorbed optical energy density

p0(r) = G(r)H(r)

2. Calculate the absorbed optical energy
density H(r) from the estimated initial
acoustic pressure p0(r)

P
re

ss
ur

e
pr

op
ag

at
io

n 3. The acoustic forward problem: Solve the
time-varying pressure pS(t) at the sensors
(measurable data) when the initial acoustic
pressure distribution is given(

∂2

∂t2
− v2(r)∇2

)
p(r , t) = 0

1 . The acoustic inverse problem: Estimate
the initial acoustic pressure distribution
p0(r) when measured acoustic waves
pS(t) on the sensors are given (inverse
initial value problem of acoustics)

IN
V

E
R

S
E

P
R

O
B

LE
M
⇒

UEF // University of Eastern Finland Tarvainen // IUQ Workshop, 27-29.9.2022 7



Forward problem
Optical forward problem:

Model light propagation in tissue using either the radiative transfer
equation (RTE)

ŝ · ∇φ(r , ŝ) + (µs + µa)φ(r , ŝ) = µs
∫

Sn−1 Θ(ŝ · ŝ′)φ(r , ŝ′)dŝ′, r ∈ Ω

φ(r , ŝ) =

{
φ0(r , ŝ), r ∈ εj , ŝ · n̂ < 0

0, r ∈ ∂Ω\εj , ŝ · n̂ < 0
(1)

or the diffusion approximation (DA)
−∇ · κ(r)∇Φ(r) + µa(r)Φ(r) = 0 r ∈ Ω

Φ(r) + 1
2γn
κ(r)A∂Φ(r)

∂n̂ =

{ Is
γn
, r ∈ εi

0, r ∈ ∂Ω \ εi
(2)

where fluence Φ(r) =
∫

Sn−1 φ(r , ŝ)dŝ
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Compute absorbed optical energy density

H(r) = µa(r)Φ(r) (3)

In this work, the solutions of the RTE and DA are numerically
approximated using the finite element method and/or Monte Carlo
method1

Photoacoustic efficiency:
Calculate the initial acoustic pressure p0(r) from the absorbed
optical energy density

p0(r) = p(r , t = 0) = G(r)H(r) (4)

where G(r) is the Grüneisen parameter describing photoacoustic
efficiency

1Leino AA, Pulkkinen A, Tarvainen T, ValoMC: A Monte Carlo software and MATLAB toolbox for simulating light transport in
biological tissue, OSA Continuum, 2(3):957-972, 2019
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Acoustic forward problem:
Let us assume a non-attenuating medium with a speed of sound
v(r)

Propagation of photoacoustic waves generated by an initial
pressure p0 can be described by the initial value problem

(
∂2

∂t2 − v2(r)∇2
)

p(r , t) = 0
p(r , t = 0) = p0(r)
∂
∂t p(r , t = 0) = 0

(5)

where p is the time-varying pressure
In this work, the wave equation is solved using a k-space
time-domain method implemented with the k-Wave MATLAB
toolbox2 (http://www.k-wave.org/)

2Treeby BE and Cox BT, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, Journal of
Biomedical Optics 15:021314, 2010
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Bayesian approach to the inverse problem of PAT
(a linear problem)

Let us consider all parameters as random variables
Assume measurements (ultrasound pressure wave) pt ∈ Rm,
unknown quantity of interest (initial pressure) p0 ∈ Rn and
measurement noise e ∈ Rm

The solution of the inverse problem (posterior probability
distribution) given by the Bayes’ formula

π(p0|pt ) =
π(pt |p0)π(p0)

π(pt )
(6)

∝ π(pt |p0)π(p0)

where π(pt |p0) is the likelihood and π(p0) is the prior
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A discrete observation model for PAT in the presence of additive
noise is a linear model

pt = Kp0 + e (7)

where pt ∈ Rm is a vector of measured acoustic pressure waves,
p0 ∈ Rn is the initial pressure distribution, K ∈ Rm×n is the
discretised forward model that is assumed to be exact with
measurement accuracy, e ∈ Rm denotes the noise
In this work, the matrix K is assembled using the k-Wave MATLAB
toolbox in 2D and a matrix free approach is utilised in 3D
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Let us consider the joint probability distribution of all random
variables

π(pt ,p0,e) = π(pt |p0,e)π(p0,e) (8)
= π(pt |p0,e)π(e|p0)π(p0)

= π(pt ,e|p0)π(p0)

This gives us

π(pt ,e|p0) = π(pt |p0,e)π(e|p0) (9)

which in the case of the additive noise model (7) is

π(pt ,e|p0) = δ(pt − Kp0 − e)π(e|p0) (10)
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Now, the likelihood can be written as

π(pt |p0) =

∫
π(pt ,e|p0)de (11)

=

∫
δ(pt − Kp0 − e)π(e|p0)de

= πe|p0
(pt − Kp0|p0)

This leads to posterior probability distribution

π(p0|pt ) ∝ π(pt |p0)π(p0) (12)
∝ πe|p0

(y − Kp0|p0)π(p0)

In case p0 and e are mutually independent, we get

π(p0|pt ) ∝ πe(y − Kp0)π(p0) (13)
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The unknown p0 and noise e are modelled as Gaussian
distributed

p0 ∼ N (ηp0 , Γp0), e ∼ N (ηe, Γe)

where ηp0 and ηe are the means and Γp0 and Γe are covariance
matrices of the prior and noise
In this case, the posterior distribution becomes

π(p0|pt ) ∝ exp

{
−1

2
‖Le(pt − Kp0 − ηe)‖2 − 1

2
‖Lp0(p0 − ηp0)‖2

}
(14)

where Le and Lp0 are the square roots of the inverse covariance
matrices such as the Cholesky decompositions of the noise
LT

eLe = Γ−1
e and prior LT

p0
Lp0 = Γ−1

p0
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Posterior mean and covariance
Now, in the case of a linear observation model and Gaussian
distributed noise and prior, the posterior distribution is also
Gaussian

p0|pt ∼ N (ηp0|pt , Γp0|pt )where
ηp0|pt = (K TΓ−1

e K + Γ−1
p0

)−1(K TΓ−1
e (pt − ηe) + Γ−1

p0
ηp0)

Γp0|pt = (K TΓ−1
e K + Γ−1

p0
)−1

are the mean and covariance, respectively
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Prior distributions

Some possible choices for the Gaussian prior:

White noise covariance

Γp0 = diag(σ2)

Ornstein-Uhlenbeck covariance

Γp0,ij = σ2 exp

{
−
‖ri − rj‖

ζ

}
Squared exponential covariance

Γp0,ij = σ2 exp

{
−
‖ri − rj‖2

2ζ2

}
where σ is the standard deviation and ζ is the
characteristic length scale (controls spatial
correlation)

Sample draws
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2D simulations

Two dimensional circular domain with a diameter of 4 mm

Non-attenuating medium with speed of sound v = 1500 m/s

Data simulation
Data was simulated using the acoustic wave equation (5)
The target domain was discretised using a pixel width
∆h = 14.29µm

The pressure signals were simulated at sensor locations using
701 temporal samples for 7µs (sampling frequency 100 MHz)
Uncorrelated Gaussian distributed noise with a zero mean ηe = 0
and a standard deviation σe proportional to 1 % of the peak
amplitude of the simulated pressure signal was added to the
signal

UEF // University of Eastern Finland Tarvainen // IUQ Workshop, 27-29.9.2022 18



Inverse problem
The target domain was discretised using a pixel width ∆h = 25µm

We solved the mean and covariance of the posterior distribution
p0|pt ∼ N (ηp0|pt , Γp0|pt )

ηp0|pt = (K TΓ−1
e K + Γ−1

p0
)−1(K TΓ−1

e (pt − ηe) + Γ−1
p0
ηp0)

Γp0|pt = (K TΓ−1
e K + Γ−1

p0
)−1

Three priors were investigated: white noise, Ornstein-Uhlenbeck
and squared exponential prior
The measurement noise was considered to be uncorrelated
Gaussian noise with zero mean and standard deviation set to 1 %
of the peak amplitude of the noisy simulated data
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Posterior mean (top row) and standard deviation (bottom row). Images from left to right:
true target, white noise, Ornstein-Uhlenbeck and squared exponential prior

Posterior mean with 3 standard deviation credible intervals on a vertical cross-section
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Posterior mean (top row) and standard deviation (bottom row). Images from left to right:
true target, white noise, Ornstein-Uhlenbeck and squared exponential prior

Posterior mean with 3 standard deviation credible intervals on a vertical cross-section
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3D simulations

Three dimensional cube with a side length 10 mm

Non-attenuating medium with speed of sound v = 1500 m/s

Three types of detector geometries were considered: full view
(6-side), L-shaped, one-side
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Data simulation
Data was simulated using the acoustic wave equation (5)
The target domain was discretised into 306× 306× 306 voxels
(voxel side length ∆h = 32.7µm)
The pressure signals were simulated at sensor locations using
849 temporal samples from 0µs to 14.1µs (sampling frequency
60 MHz)
Uncorrelated Gaussian distributed noise with a zero mean ηe = 0
and a standard deviation σe proportional to 1 % of the peak
amplitude of the simulated pressure signal was added to the
signal
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Inverse problem
The target domain was discretised into 204× 204× 204 pixels
(pixel width ∆h = 49µm)
The MAP estimates of the initial pressure distribution were
computed iteratively using a biconjugate gradient stabilized
method built-in Matlab with an adjoint operator3

Ornstein-Uhlenbeck prior, 1% of noise

3Arridge SR, Betcke MM, Cox BT, Lucka F, Treeby BE, On the Adjoint Operator in Photoacoustic Tomography, Inverse Problems
32:115012, 2016
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Full-view:

L-shape:

1-side:

Bayesian approach Time reversal

Relative errors (%)
full-view L-shape 1-side

Bayesian approach 3.8 24.9 48.4
Time-reversal 4.0 61.5 79.9
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Marginal density of the posterior distribution
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Experiments
PAT system of University College London4

Measurements were done by Robert Ellwood5

Planar Fabry-Pérot sensor

4Zhang E, Laufer J, Beard P, Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film
ultrasound sensor for high-resolution three-dimensional imaging of biological tissues, Applied Optics, 47:561-577, 2008

5Ellwood R, Ogunlade O, Zhang E, Beard P, Cox B, Photoacoustic tomography using orthogonal Fabry-Pérot sensors, Journal of
Biomedical Optics, 22:041009, 2017
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Wave equation (5) as the model
Non-attenuating medium with a speed of sound v = 1488 m/s

Noise statistics (mean and standard deviation) were estimated
from the data
Ornstein-Uhlenbeck prior
The MAP estimates of the initial pressure distribution were
computed iteratively using a biconjugate gradient stabilized
method built-in Matlab with an adjoint operator
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Leaf phantom
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Mouse head
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Inverse problem in the presence of modelling
errors

Let us now consider a situation, where the forward operator K is
parameterized by some parameter ϕ
The observation model can be written in the form

pt = K (ϕ)p0 + e (15)

In practice, however, the random variable ϕ is often fixed to some
constant ϕ→ ϕ0 and an approximate forward operator K (ϕ0) is
used instead
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The observation model (15) can be written utilising Bayesian
approximation error modelling6 as

pt = K (ϕ)p0 + K (ϕ0)p0 − K (ϕ0)p0 + e (16)
= K (ϕ0)p0 + (K (ϕ)p0 − K (ϕ0)p0) + e
= K (ϕ0)p0 + ε+ e
= K (ϕ0)p0 + n

where ε = K (ϕ)p0 − K (ϕ0)p0 is the modelling error that describes
the discrepancy between the exact and reduced models
Thus, if K (ϕ) = K (ϕ0), forward model is exact (within
measurement precision) and ε = 0

6Kaipio J and Somersalo E, Statistical and Computational Inverse Problems, Springer, 2005
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In this work, we study three situations:
1. Inverse problem using an ’exact’ forward model K (ϕ) = K (ϕ0) and

ε = 0
2. Inverse problem using a reduced forward model K (ϕ0) with a

Gaussian approximation for the modelling errors ε ∼ N (ηε, Γε)
3. Inverse problem using a reduced forward model K (ϕ0) and ignoring

the modelling errors (ε = 0)
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Let us assume that p0 and e are mutually independent and
Gaussian distributed

p0 ∼ N (ηp0 , Γp0), e ∼ N (ηe, Γe)

Approximate the modelling error ε and the total error n = ε+ e as
Gaussian

ε ∼ N (ηε, Γε), n ∼ N (ηn, Γn)

Let us ignore the mutual dependence of p0 and modelling error ε
(so called enhanced error model)
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Following a similar derivation as in the case of the exact forward
model, the posterior distribution can be derived

π(p0|pt ) ∝ exp

{
−1

2
‖Ln(pt − K (ϕ0)p0 − ηn)‖2 − 1

2
‖Lp0(p0 − ηp0)‖2

}
(17)

where ηn and ηp0 are the means and Ln and Lp0 are the Cholesky
decompositions of the inverse covariance matrices of the noise
and prior LT

nLn = Γ−1
n and LT

p0
Lp0 = Γ−1

p0
, and ηn = ηε + ηe and

Γn = Γε + Γe
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Approximation error ε can be determined by, for example, using
simulations and a sample based approximation as follows
Let S = {s(1), s(2), . . . , s(N)} be a set of samples drawn from
prior distribution of p0 and ϕ` a sampled value of the uncertain
parameter ϕ
Mean and covariance of the approximation error ε can then be
computed using the accurate and reduced forward models as

ε` = K (ϕ`)p`0 − K (ϕ0)p`0

ηε =
1
L

L∑
`=1

ε`

Γε =
1

L− 1

L∑
`=1

(ε` − ηε)(ε` − ηε)T
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Simulations

We studied modelling of errors related to uncertainties in sensor
positions in PAT

The approach was evaluated using
three measurement geometries

130◦, 180◦ and 360◦

10◦ increments

Sensor locations were modelled to be
on a circle of 5 mm radius
Data was simulated using radially
altered sensor locations

Uncertainties: ±89µm and ±177µm
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Posterior mean solved using accurate sensor positions, inaccurate
sensor positions without modelling of uncertainties, and
inaccurate sensor positions with modelling of uncertainties (AE)

Uncertainty ±89µm
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Posterior mean solved using accurate sensor positions, inaccurate
sensor positions without modelling of uncertainties, and
inaccurate sensor positions with modelling of uncertainties (AE)

Uncertainty ±89µm
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Posterior mean solved using accurate sensor positions, inaccurate
sensor positions without modelling of uncertainties, and
inaccurate sensor positions with modelling of uncertainties (AE)

Uncertainty ±89µm Uncertainty ±177µm
UEF // University of Eastern Finland Tarvainen // IUQ Workshop, 27-29.9.2022 39



Posterior mean with 3 standard deviations on a cross-section
computed using accurate sensor positions (ACEM), inaccurate
sensor positions without modelling of uncertainties (ICEM), and
inaccurate sensor positions with modelling of uncertainties (EEM)
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Experiments
PAT system of UEF with a LED illumination7

Measurement setup with a piezoelectric ultrasound sensor
180◦ rotation, 5◦ increments, 1024 illuminations per angle
Target: 3 plastic microcapillary tubes with inner diameter 0.85 mm

7Leskinen J, Pulkkinen A, Tick J, Tarvainen T, Photoacoustic tomography setup using LED illumination, In Proc. SPIE 11077,
110770Q, 2019
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Uncertainty in modelling of ultrasound sensor position ±188µm in
the radial direction
Mean of the posterior distribution computed in three cases

Accurately modelled sensor locations
Inaccurately modelled sensor locations
Inaccurately modelled sensor locations with Bayesian
approximation error modelling
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Non-linear case: the optical inverse problem of
QPAT

Let us now study the optical inverse problem of QPAT
Assume data (absorbed optical energy density) y ∈ RM , unknown
quantities of interests x = [µa, µs] ∈ R2N and noise e ∈ RM

Observation model
y = f (x) + e (18)

Following the Bayesian framework, similarly as in the linear case,
we model all parameters as random variables
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Model unknown x and noise e as Gaussian distributed

x ∼ N (ηx , Γx ), e ∼ N (ηe, Γe)

and ignore their mutual dependence
The posterior distribution can be derived to have the form

π(x |y) ∝ π(y |x)π(x) (19)

∝ exp

{
−1

2
‖Le(y − f (x)− ηe)‖2 − 1

2
‖Lx (x − ηx )‖2

}
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In large dimensional tomographic inverse problems, we compute
point estimates to approximate the posterior distribution
We calculate the maximum a posteriori (MAP) estimate

x̂ = arg min
x

{
1
2
‖Le(y − f (x)− ηe)‖2 +

1
2
‖Lx (x − ηx )‖2

}
(20)

The minimisation problem can be solved using methods of
non-linear computational optimisation
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To evaluate the credibility of the estimates, we approximate the
forward solution using the first order Taylor series

f (x) ≈ f (x̂) + J(x̂)(x − x̂) (21)

where J(x̂) is the Jacobian matrix of f (x) evaluated at x̂
By substituting the Taylor approximation into the observation
model, a Gaussian approximation for the posterior distribution can
be achieved

π(x |y) ∼ N (η̂, Γ̂)

where η̂ = x̂ is the MAP estimate and

Γ̂ = (J(x̂)TΓ−1
e J(x̂) + Γ−1

x )−1 (22)

is the covariance matrix

Credible intervals [x̂ − pσx̂ , x̂ + pσx̂ ] where σx̂j
=
√

Γ̂(j , j)
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Simulations

We studied the optical inverse problem of QPAT
The data was simulated using Monte Carlo method for light
transport
In the inverse problem, the diffusion approximation (DA) was used
Modelling of errors due to using the DA as the forward model was
studied using Bayesian approximation error modelling
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MAP-estimates
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MAP-estimates
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Cross-section
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Cross-section
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Marginal densities
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Marginal densities
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Summary

Inverse problem of PAT was approached in the Bayesian
framework
The posterior distribution as well as point estimates and their
reliability were investigated
Prior information and modelling of errors are important in
quantitative tomography: if inaccurately modelled, the
photoacoustic image may look qualitatively good but they may not
be quantitatively reliable

Future work and challenges:
Computationally efficient methods for 3D
Examining the safety of the uncertainty estimates
Realistic imaging situations
More accurate forward models
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Thank you for your attention!
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