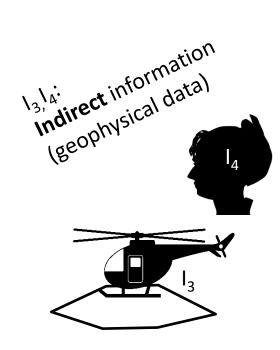
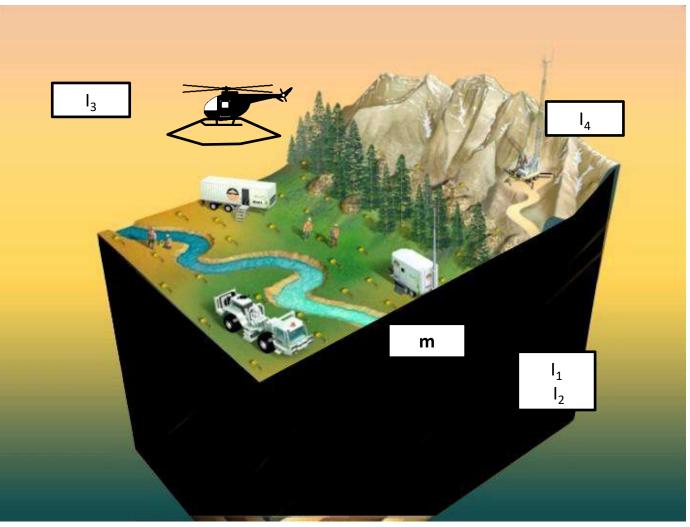
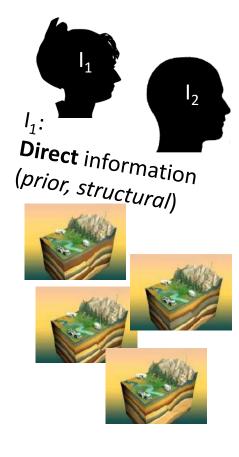
PROBABILISTIC INTEGRATION OF (GEO)-INFORMATION

THOMAS MEJER HANSEN

INTEGRATION OF GEO-INFORMATION







(Tarantola and Valette, 1982; Hansen et al., 2016)

OUTLINE

Probabilistic integration of GEO-information

- Algorithms
- Prior Information
- Modeling error

Examples (Clay?, UXO, Pollution)

Airborne electromagnetic data

- Extended Metropolis algorithm
- Extended rejection sampling
- Machine learning

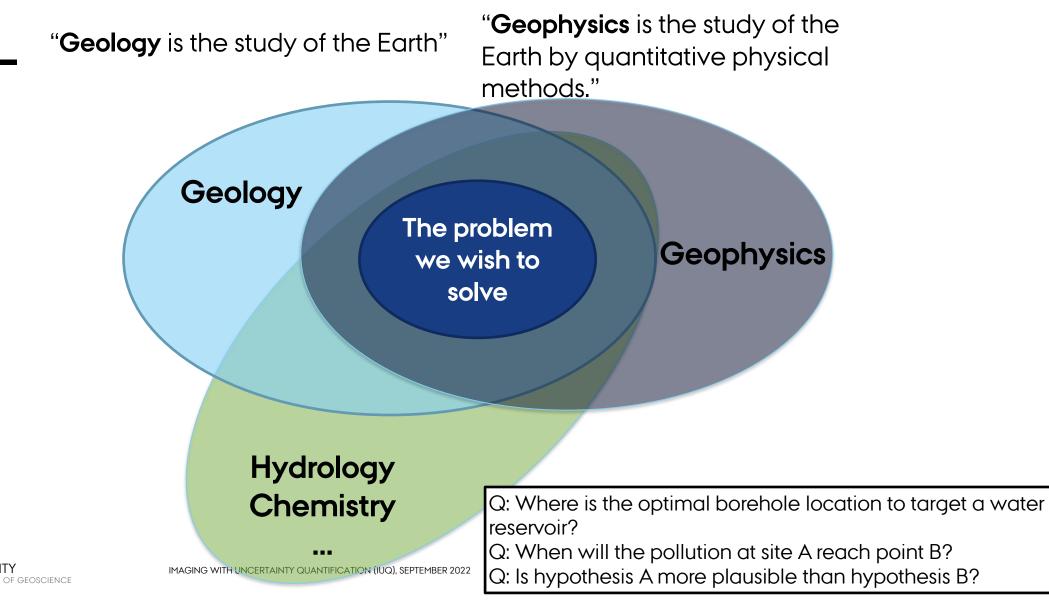
Probabilistic PET image analysis

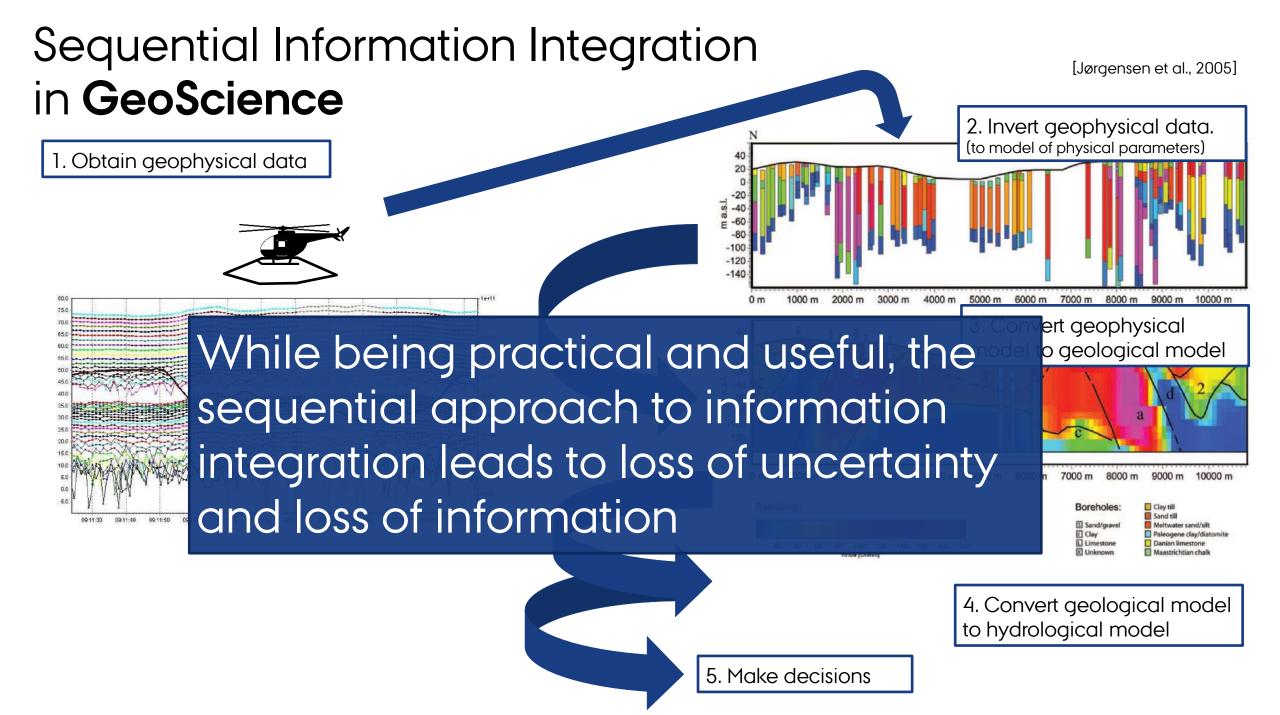
GEOLOGY + GEOPHYSICS = ?

GEOLOGY + GEOPHYSICS = ?

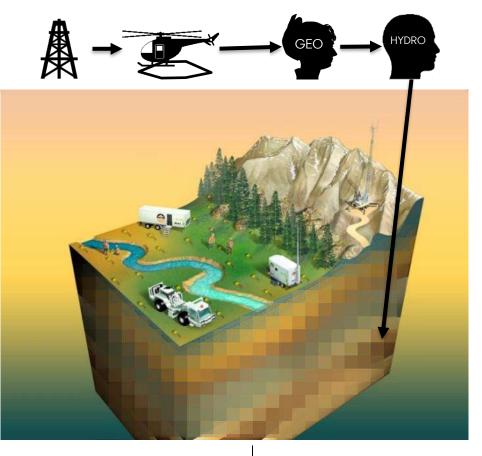
CECLOCY & CEOPHYSICS = ?

GEOLOGY VS. GEOPHYSICS





Sequential workflow One optimal (smooth) model. Mathematical regularization. Consistency ?

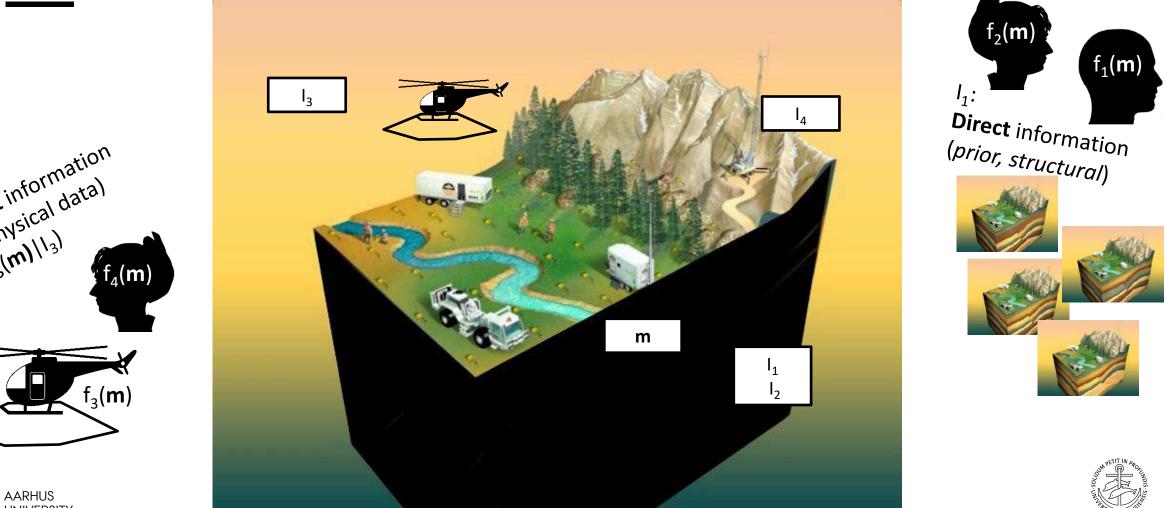


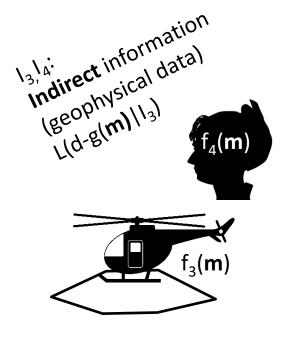
IMAGING WITH UNCERTAINTY QUANTIFICATION (IUQ), SEPTEMBER 2022 THOMAS

THOMAS MEJER HANSEN

PROBABILISTIC INTEGRATION OF GEO-INFORMATION

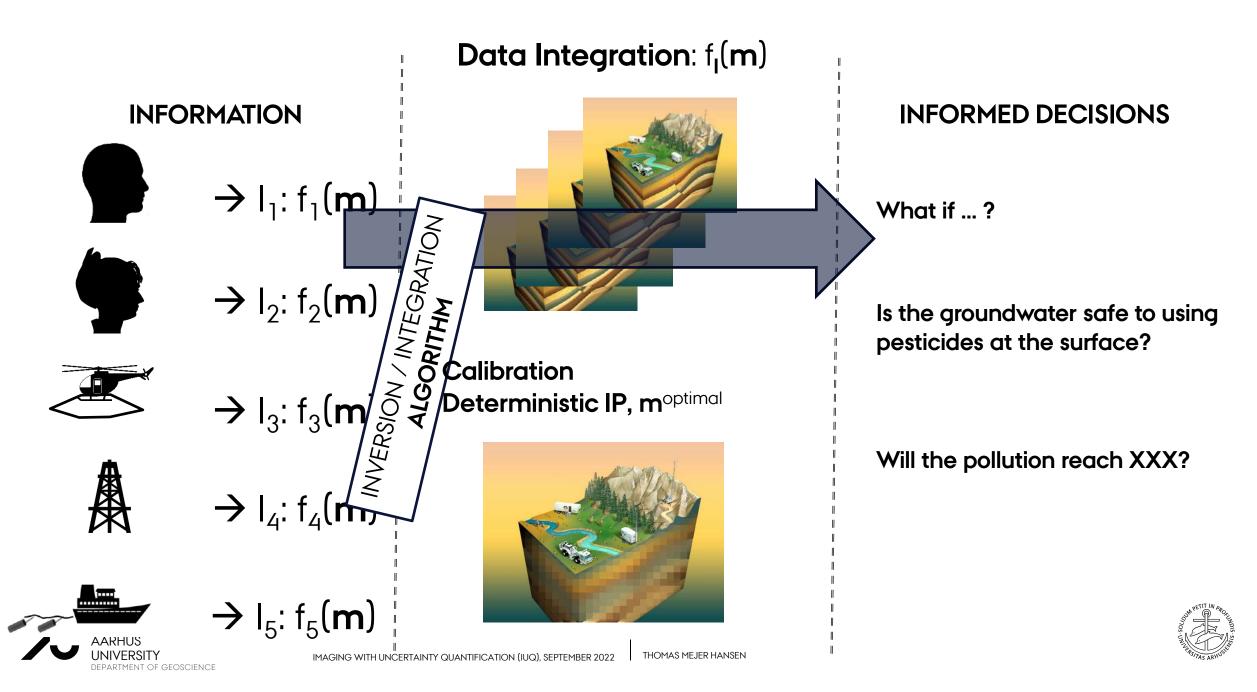
 $f_1(\mathbf{m}) = f(\mathbf{m} | I_1, I_2, I_3, I_4 ...) = k f_1(\mathbf{m}) f_2(\mathbf{m}) f_3(\mathbf{m}) f_4(\mathbf{m}) ...$



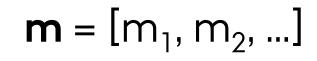


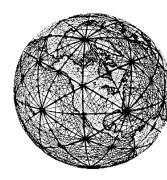
MENT OF GEOSCIENCE

(Tarantola and Valette, 1982; Hansen et al., 2016)



CONJUNCTION OF INFORMATION





[parameterized Earth]

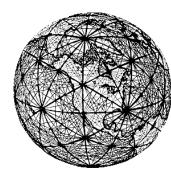
$f_1(\mathbf{m}) \wedge f_2(\mathbf{m}) \wedge f_3(\mathbf{m}) \wedge f_4(\mathbf{m}) \wedge ... \propto \prod_{i=1}^{Ni} f_i(\mathbf{m})$

 $f_i(\mathbf{m})$ must be obtained independently from $f_i(\mathbf{m})$, for all sets of [i,j].

Tarantola and Valette, 1982: Inverse Problems = Quest for information

CONJUNCTION OF INFORMATION

$$\mathbf{m} = [m_1, m_2, ...]$$



[parameterized Earth]

 $\sigma_{M}(\mathbf{m}) = k \rho_{M}(\mathbf{m}) L(\mathbf{m})$

$$L(\mathbf{m}) = \int_{D} d\mathbf{d} \, \frac{\rho_{D}(\mathbf{d})\Theta(\mathbf{d}|\mathbf{m})}{\mu_{D}(\mathbf{d})}$$
$$\approx \rho_{D}(\mathbf{g}(\mathbf{m}))$$

Tarantola and Valette, 1982: Inverse Problems = Quest for information

THE EXTENDED METROPOLIS ALGORITHM

The goal: Sample from $\sigma(\mathbf{m}) = k \rho(\mathbf{m}) L(\mathbf{m})$

0. Propose a starting from $\rho(\mathbf{m}) \rightarrow \mathbf{m}_{cur}$

- 1. Propose a model from $\rho(\mathbf{m}) \rightarrow \mathbf{m}_{pro}$ in the vicinity of \mathbf{m}_{cur}
- 2. Accept the move from \mathbf{m}_{cur} to \mathbf{m}_{pro} with probability
 - Pacc = $L(\mathbf{d}_{obs} g(\mathbf{m}_{pro})) / L(\mathbf{d}_{obs} g(\mathbf{m}_{cur}))$
- + 3. Store the current model, \mathbf{m}_{cur}
- 4. Go to 1 (until enough realizations have been generated).

To apply the extended Metropolis algorithm, one must be able to

- 1) Sample the prior $\rho(\mathbf{m})$, through a random walk.
- 2) Evaluate the likelihood L(**m**) for any model, (solve the forward problem, evaluate the noise)

THE EXTENDED REJECTION SAMPLER

The goal: Sample from $\sigma(\mathbf{m}) = k \rho(\mathbf{m}) L(\mathbf{m})$

1. Propose a model from $\rho(\mathbf{m}) \rightarrow \mathbf{m}^*$

2. Accept **m**^{*} as a realization from the posterior with probability

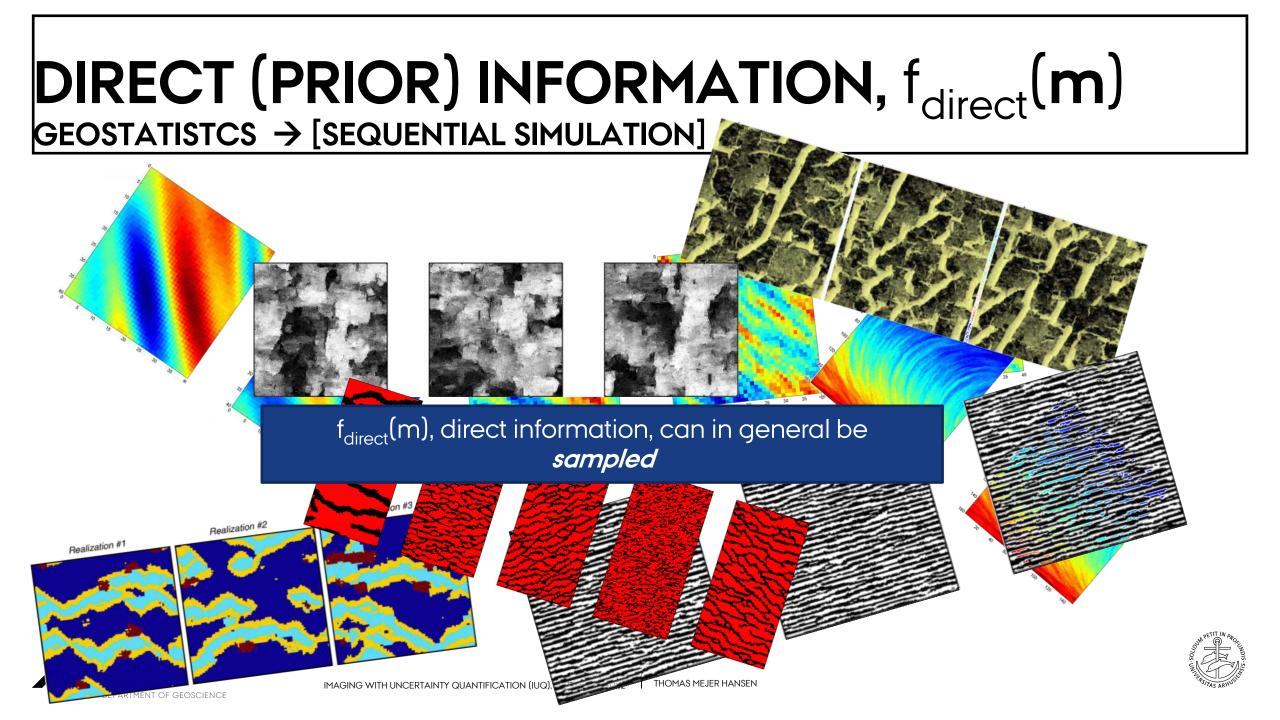
 $Pacc = L(d_{obs} - g(m^*)) / max(L)$

To apply the extended rejection sampler one must be able to

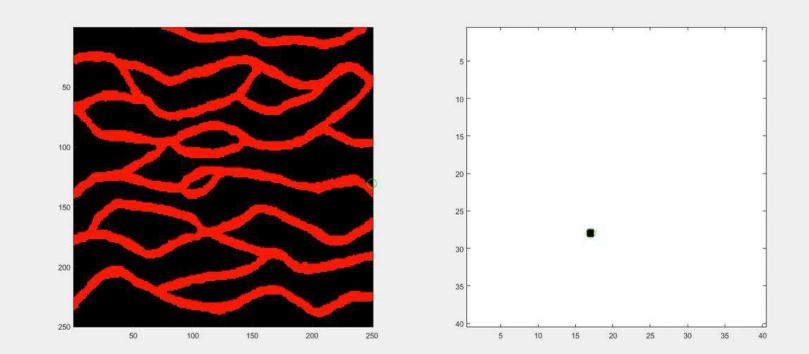
- Sample the prior $\sigma(\mathbf{m})$ 1)
- Evaluate the likelihood L(m) for any model, (solve the forward problem, evaluate the 2) noise)

Lookup table: $[M^*, D^*] \rightarrow$ Compute once, apply for any d_{obs}

Hansen (2



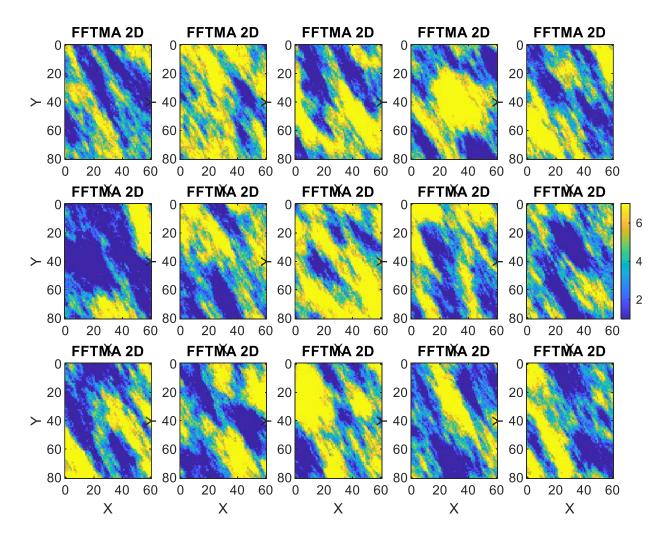
Sequential Simulation $f(m)=f(m_1)f(m_2|m_1^*)f(m_3|m_1^*, m_2^*)...$



2D Gaussian prior

ip=1; prior{ip}.type='FFTMA'; prior{ip}.name='FFTMA 2D'; prior{ip}.x=0:1:60; prior{ip}.y=0:1:80; prior{ip}.m0 = 4; prior{ip}.Wa='10 Sph(10,90,0.3)'; sippi_plot_prior_sample(prior);

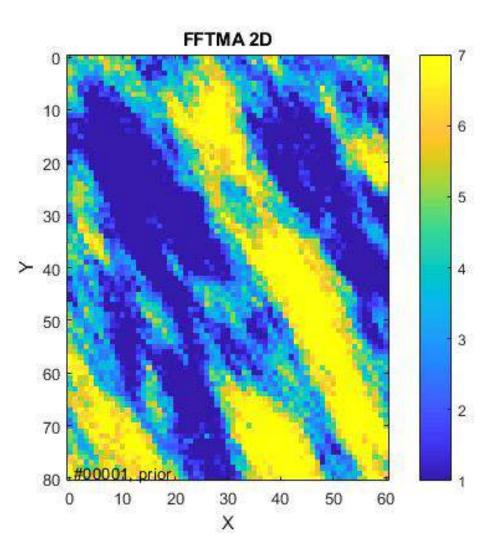
From:
https://github.com/cultpenguin/sippi



2D Gaussian prior - random walk

```
ip=1;
prior{ip}.type='FFTMA';
prior{ip}.name='FFTMA 2D';
prior{ip}.x=0:1:80;
prior{ip}.y=0:1:60;
prior{ip}.m0 = 4;
prior{ip}.Va='10 Sph(10,90,0.3)';
```

prior{ip}.seq_gibbs.step = .02; sippi_plot_prior_movie(prior,200);



2D Gaussian prior – random walk – uncertain cov<u>ariance model parameters</u>

clear prior

ip=1; prior{ip}.type='FFTMA'; prior{ip}.name='FFTMA 2D'; prior{ip}.x=0:1:60; prior{ip}.y=0:1:80; prior{ip}.m0 = 4; prior{ip}.Va='10 Sph(50,30,0.3)'; prior{ip}.cax=[-3 3]+4;

ip=2;

prior{ip}.name='range_1';
prior{ip}.type='uniform';
prior{ip}.min=1;
prior{ip}.max=80;
prior{ip}.prior_master=1;

ip=3;

prior{ip}.name='range_2'; prior{ip}.type='uniform'; prior{ip}.min=1; prior{ip}.max=80; prior{ip}.prior_master=1;

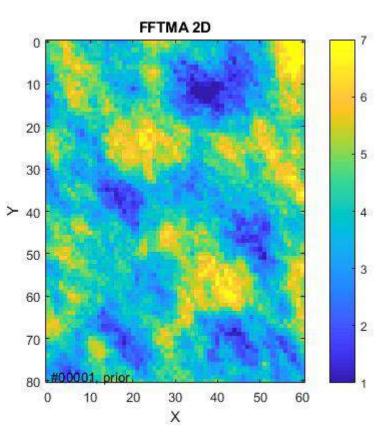
ip=4;

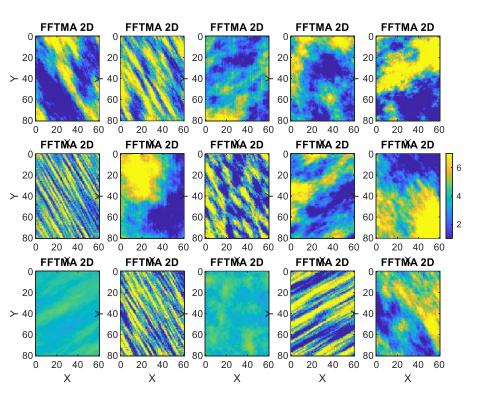
prior{ip}.name='angle_2'; prior{ip}.type='uniform'; prior{ip}.min=-30; prior{ip}.max=30; prior{ip}.max=1;

ip=5;

prior{ip}.name='sill';
prior{ip}.type='uniform';
prior{ip}.min=0;
prior{ip}.max=10;
prior{ip}.prior_master=1;

sippi_plot_prior_movie(prior,200);



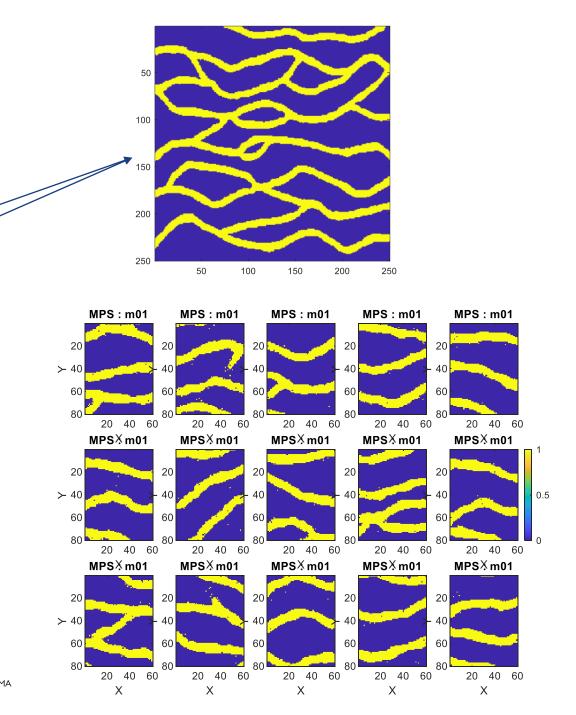


2D Multiple Point Statistical prior

clear prior ip=1; prior{ip}.type='mps'; prior{ip}.method='mps_genesim'; prior{ip}.x=1:1:60; prior{ip}.y=1:1:80; prior{ip}.ti=channels;

figure(1); imagesc(prior{ip}.ti);axis image

sippi_plot_prior_sample(prior);



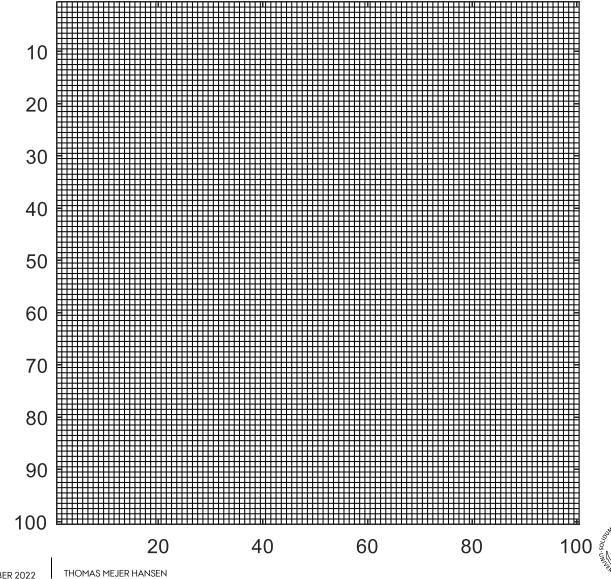
PRIOR ASSUMPTION <-> SUBJECTIVE INFORMATION

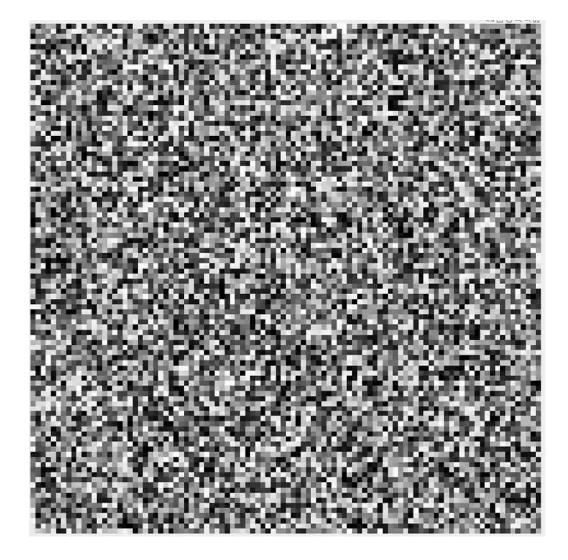
The use/need of prior information has been debated, Scales and Tenorio (1997)

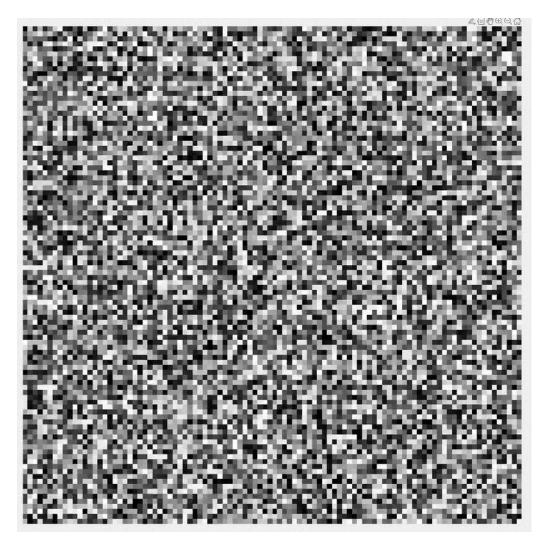
we try to find a noninformative, or conservative, prior that injecting a minimum of artificial information, that is, information not justified by the physical process. Can, and should, we cuoid prior information?

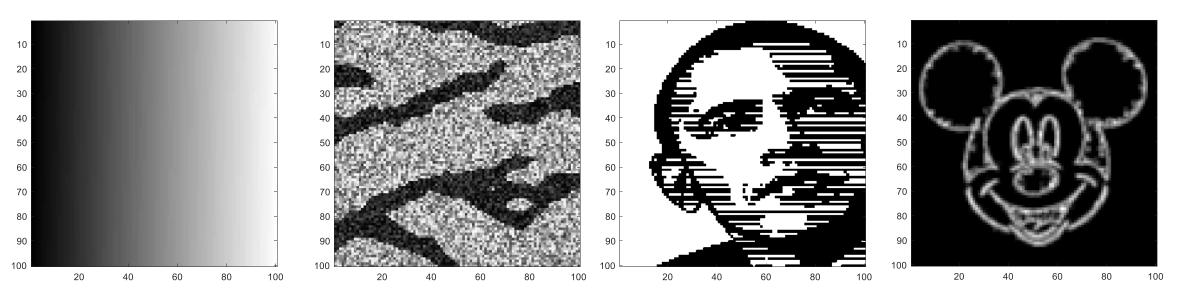
HOW TO AVOID PRIOR/STRUCTURAL INFORMATION?

- $\mathbf{m} = [m_{1,} m_{2,...} m_{10000}]$ represents a 2D gray-scale image.
- f(**m**) represents our information about **m**. A realization **m*** of f(**m**) represents a specific image.
- Assume there is no dependence between individual model parameters f(m_i, m_j)=f(m_i)f(m_j)
 Use a uniform prior distribution f(m_i) = U[0,255]









P(Image looks somewhat like Obama) < 1/250000 = 0.000004 P(Image looks somewhat like any structure) < 0.000004 P(Image look like random noise) > 0.999996

Key take home message:

YES, an uniform prior can represent in principle any image/structure.

BUT, the probability of any other feature than random noise exists, tend to zero (as the pixel size becomes smaller).

One cannot assume a uniform prior in order to avoid choosing a prior **A uniform prior is not an "uninformed prior" but a specific choice of**

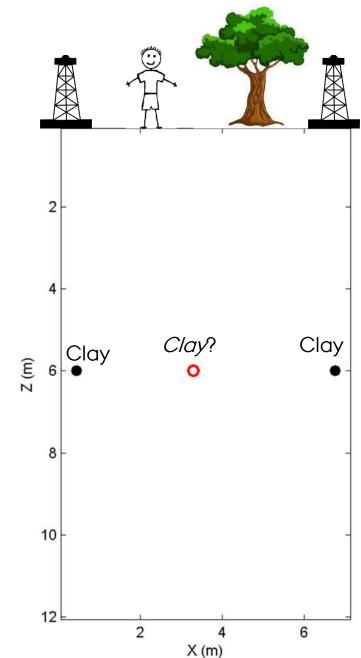
maximum disorder!

EPARTMENT OF GEOSCIENCE

WITH UNCERTAINTY QUANTIFICATION (IUQ), SEPTEMBER 2022 THOMAS MEJER HANSEN

CASE: CLAY OR NOT

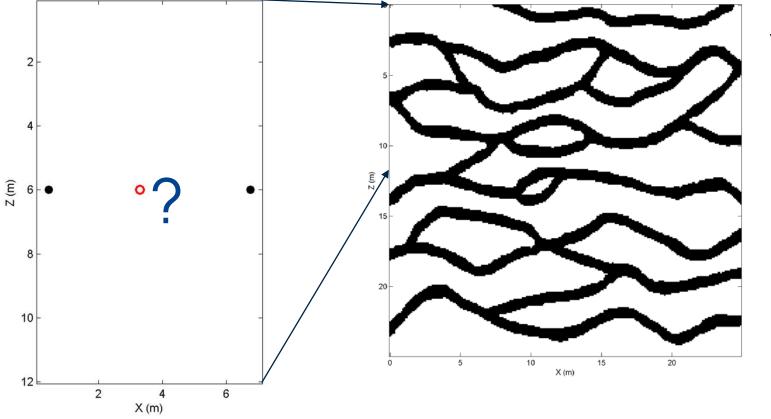
EXAMPLE 1: PROBABILITY OF CLAY

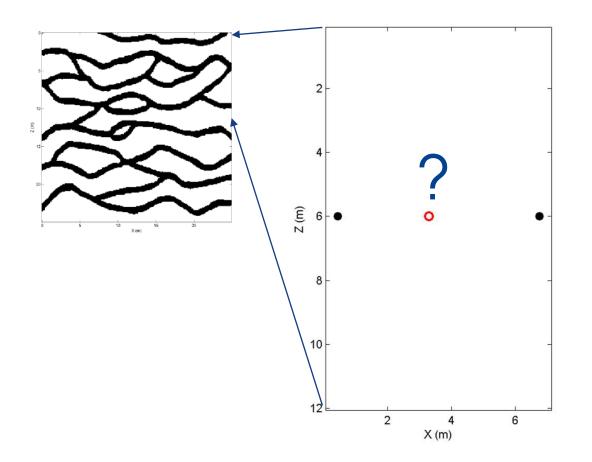


THOMAS MEJER HANSEN

We have 2 observations:

• I₁: Structural information from a training image:



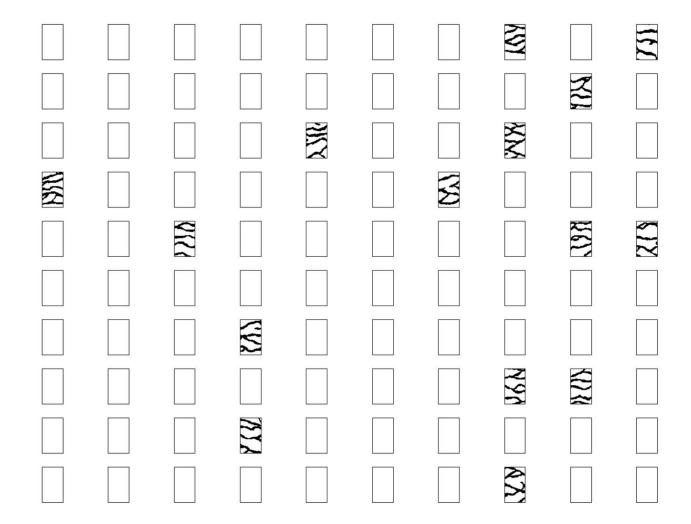


Prior probability of channel/clay: P(o == clay | prior) = 0.30

Posterior probability of channel: P(o == clay | prior, data) = ? QUIZ: P(o == clay | prior, data) < 0.30 P(o == clay | prior, data) >= 0.30

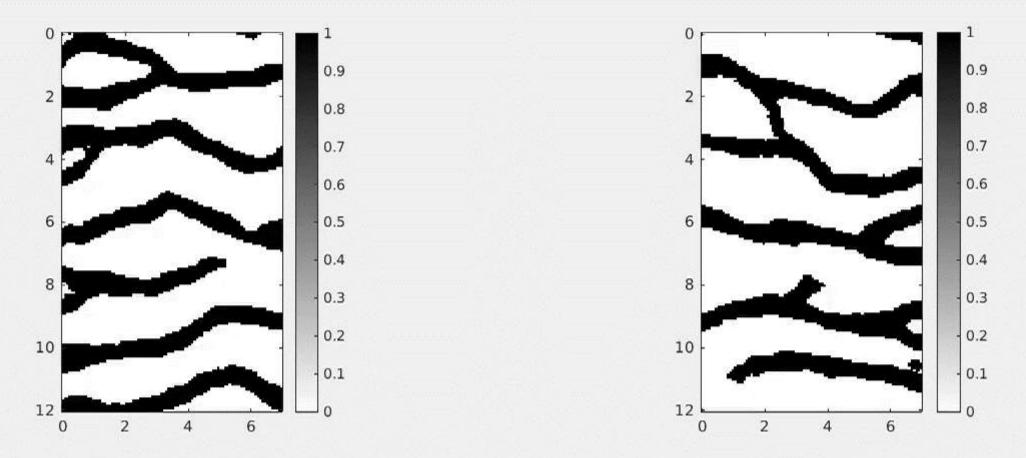
(XX) A CK Y.Y. 111 **VI** KVY N 114 (}) 111 'NN (()) **NV** NN. 3 **N** 111 XII 222 ARM 1(1) XXIII 18% ХX 799 1(1) الا 171 **1**X NKK NKK XVX SS. 3 NY/ Ni **K**IX (Y) (110 X10) Y Y Y 271 $\mathcal{H}\mathcal{V}$ 193 X I S <u>(</u>(N) **6**(1) 777 (XX) **V**V 281 1111 XII X9" NI NI XX X **VVX** 1014 YN/ XK 110 SNV 440 1,18 **NXX** KK VAN y CN NA <u>Ny</u>, NN/ Y X W 18(1) Y & Y NVV NV ())) NA ())/ N11 NV 4XX 25 YNU ΛX NV N **NN** N. XiX 111

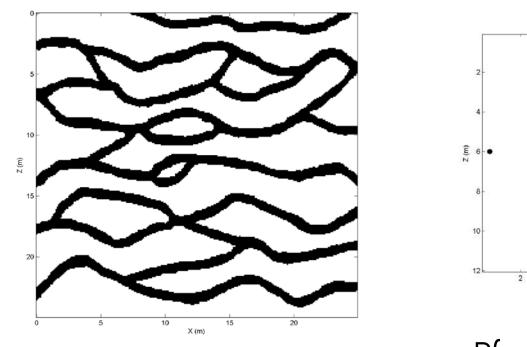
KIN		V.V	121		XX XX	Y Th	KN	121	
	NV.	N		NIV.		X X	114	KI.	N.V
ACU .	YY	<i>₹</i> IJ	NON NON	XXIII	K.		XX	139	
NKN		12M	XXXX		N.V	X	NON.	N	Ni
K ^X	X X	VZA	(QX		1 22		H,V	KIY	XIV
(QX)	5			ICA I	X2X			K S A	
NI NI		N N	VV	NVI.	Y _N	in the	XX (120	
N.V.	100	XX	10	XXX	K		VÅN		N.M
λ <u>ξ</u> ι	182	NV.	Y LU	₩ <mark>\$</mark> X	N/H		MIN	M	
N ^N			1)V	N ³ 1		NX	AX		NII N

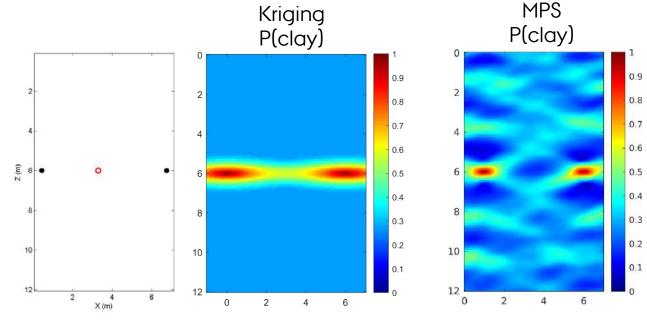


f(m| prior)→m*

f(m| prior,data)→m*





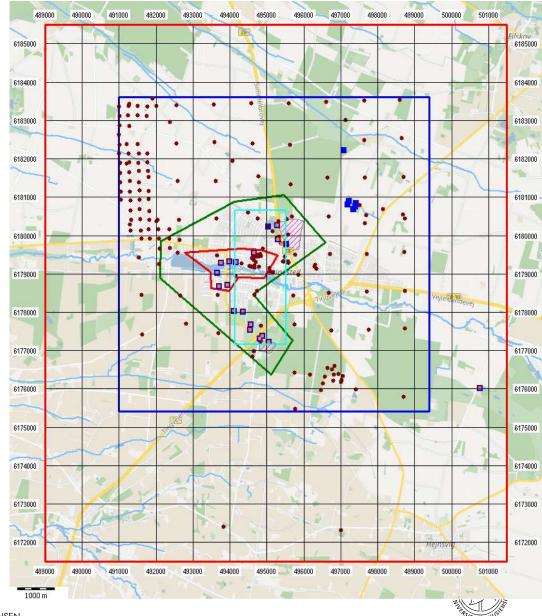


P(o == clay | prior) = 0.30P(o == clay | prior, data) = 0.56**Kriging** P(o == clay | prior, data) = 0.17MPS

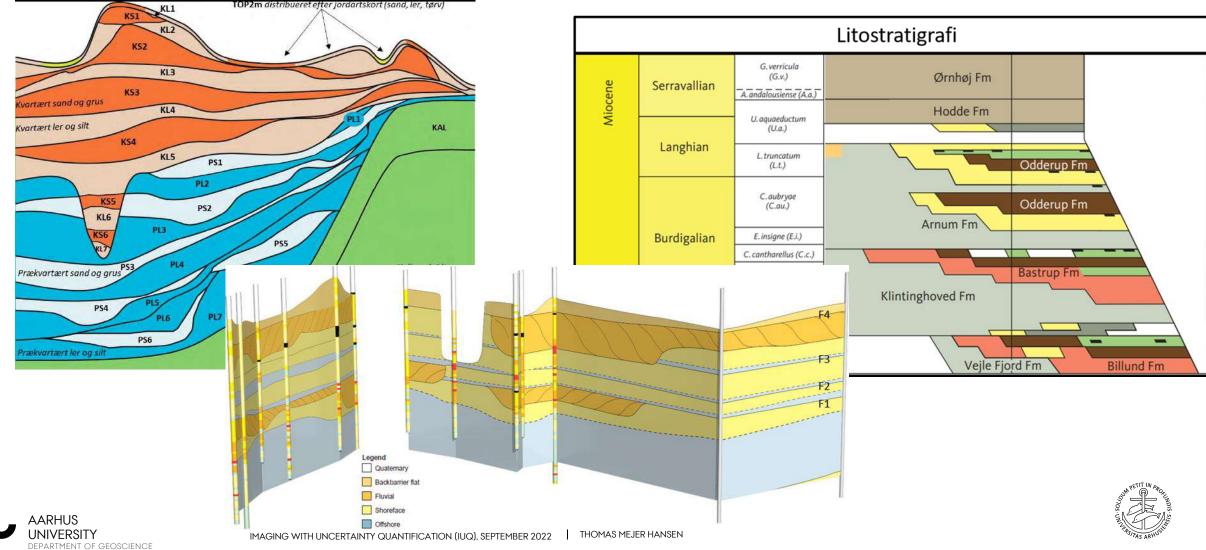
CASE: MAPING POLLUTION USING GEOLOGICALLY INFORMED

WITH, RASMUS BØDKER MADSEN, INGELISE BALLING, GEUS, REGION MIDT.

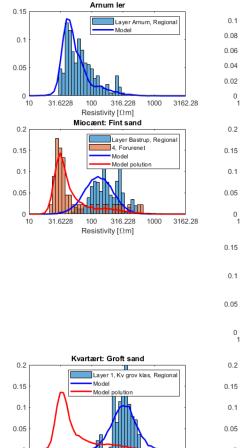
GRINDSTED

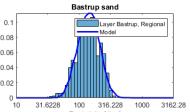


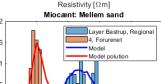
Geological prior information

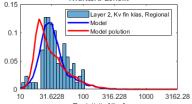


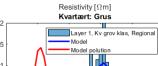
Grainsize -> resistivity modeling f(resistivity|grainsize)

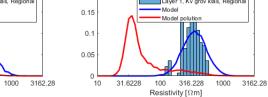


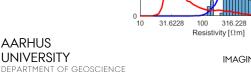




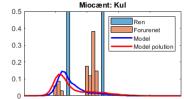




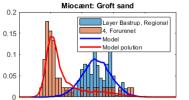


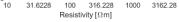


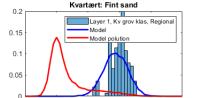
AARHUS

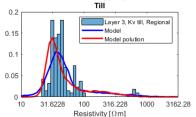


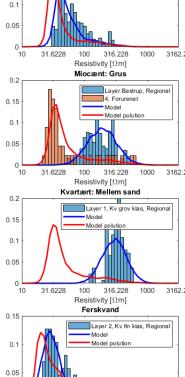












Miocænt: Ler/silt

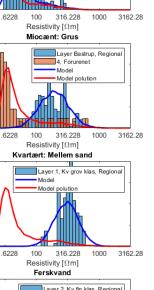
Model

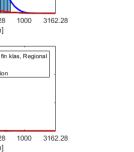
Model polutio

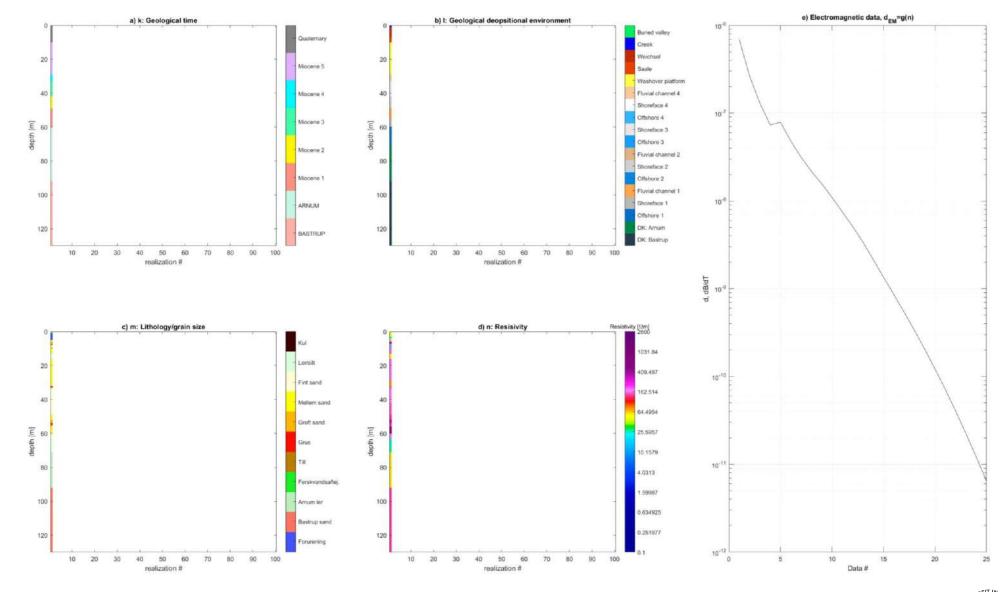
Layer Arnum, Regional

0.2

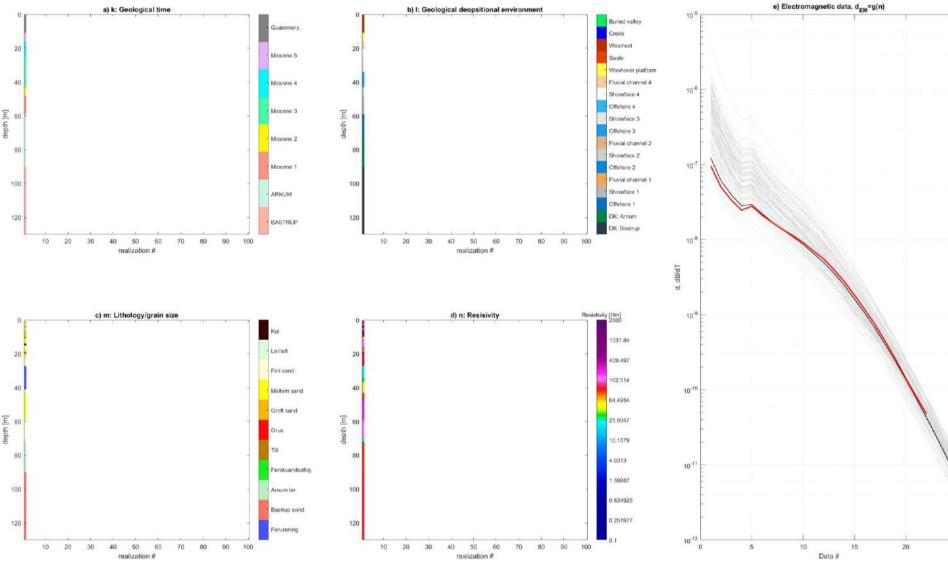
0.15



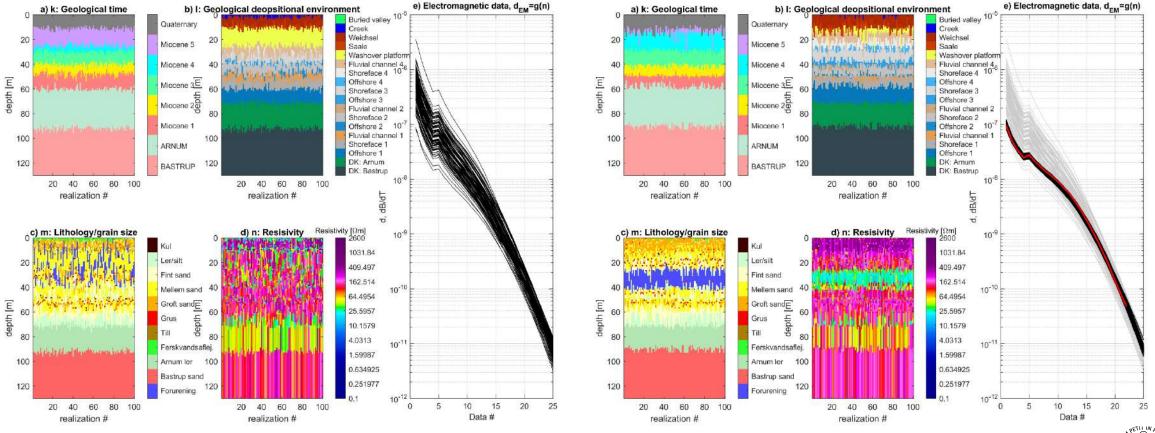




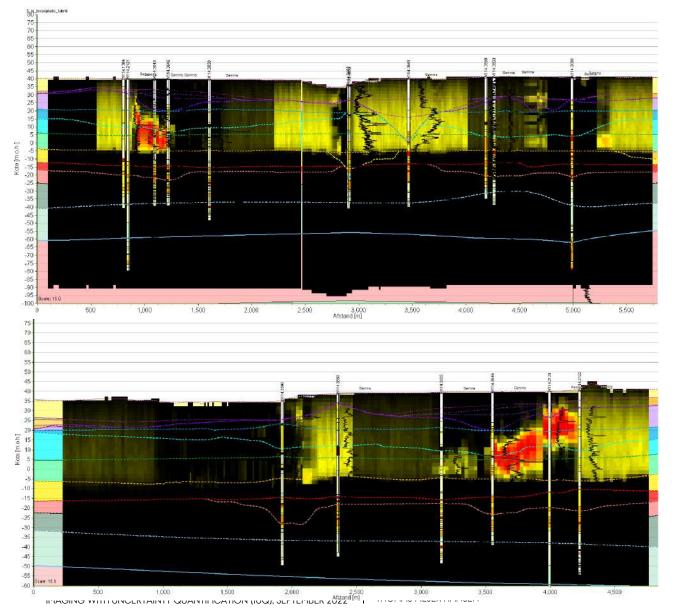
THOMAS MEJER HANSEN



25



Probability of contaminated plume

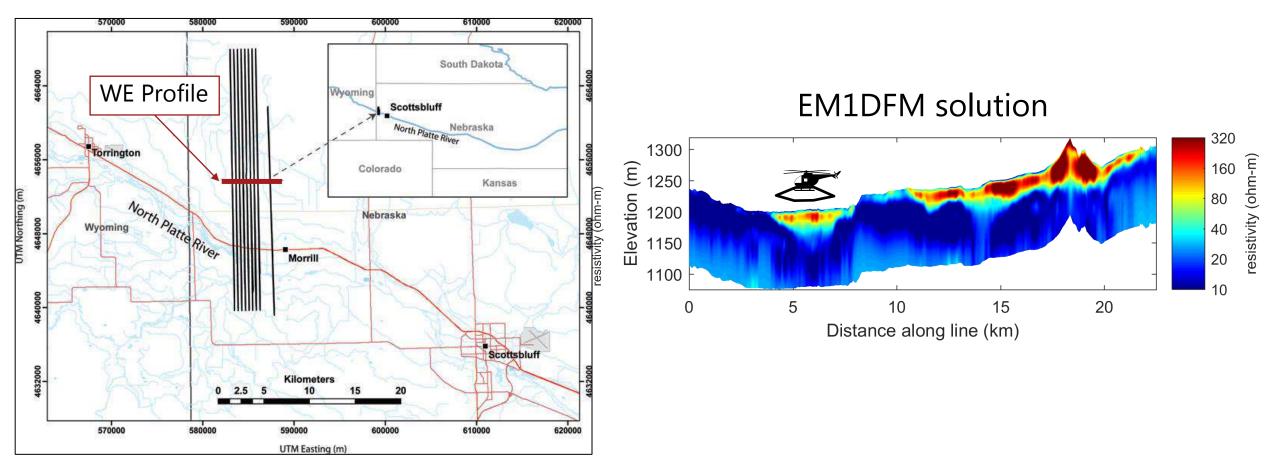


CASE: AIRBORNE EM

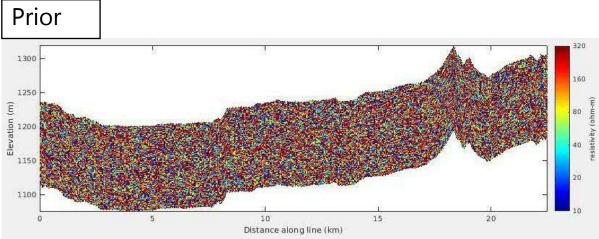
Sampling the posterior distribution using the extended Metropolis algorithm

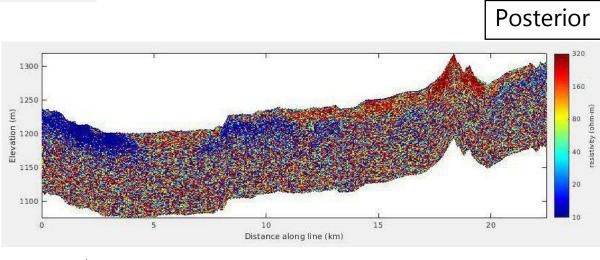
THOMAS MEJER HANSEN AND BURKE MINSLEY

Airborne FD-EM data from Morill, Nebraska



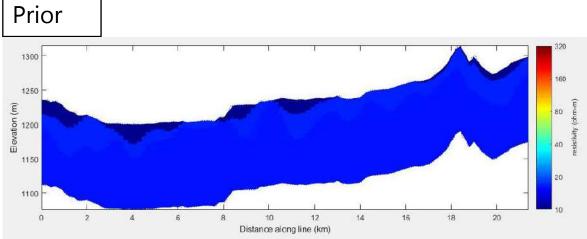
1D inversion along profile – 'no prior' $f_{GEO}(\mathbf{m})$ =constant Purely data driven

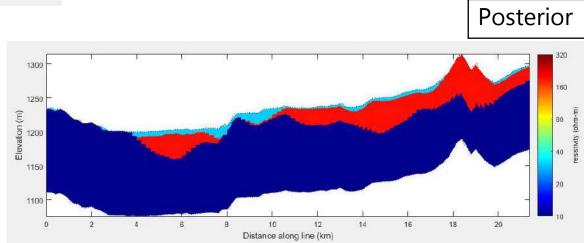




THOMAS MEJER HANSEN

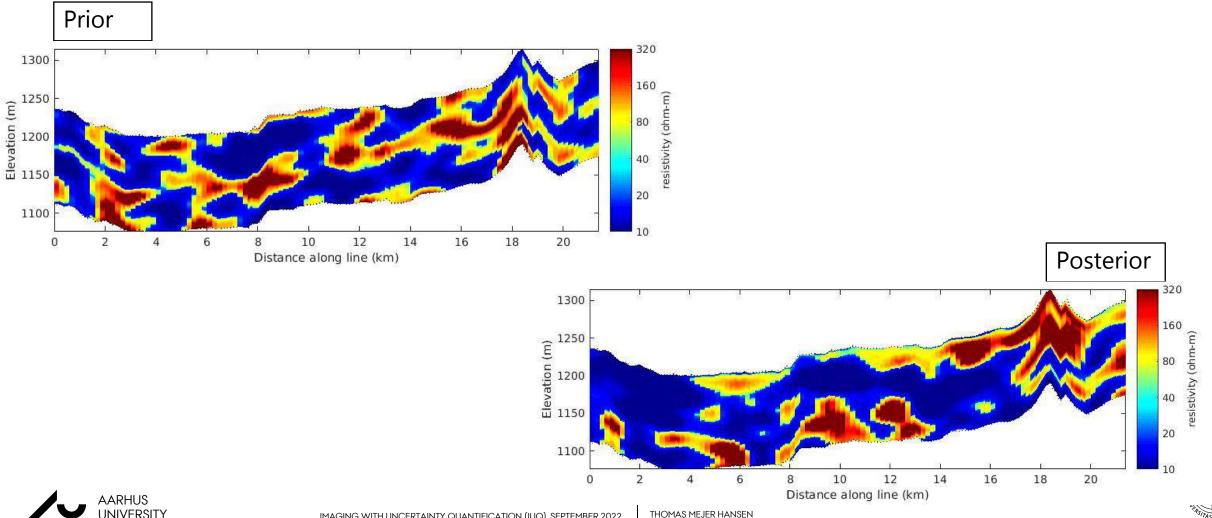
1D inversion along profile – $f_{GEO}(\mathbf{m})$: 3 layer. Too informative prior





THOMAS MEJER HANSEN

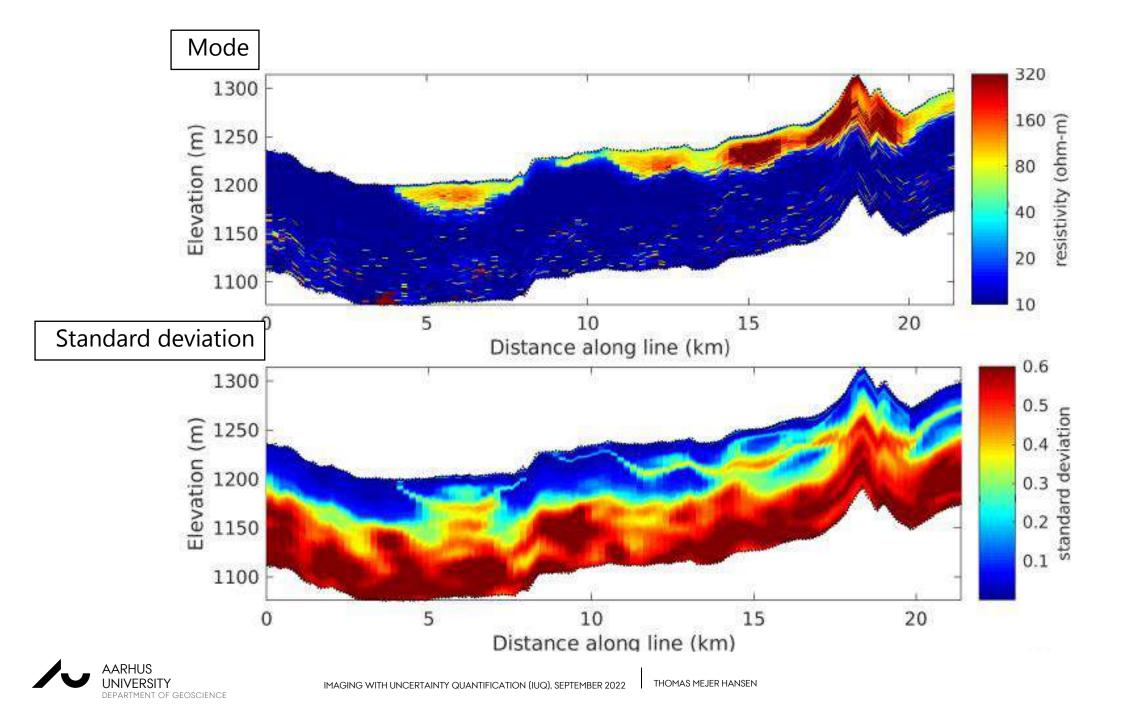
1D inversion along profile $-f_{GFO}(\mathbf{m})$: realistic Trimodal prior inferred from well logs



JNIVERSITY DEPARTMENT OF GEOSCIENCE

IMAGING WITH UNCERTAINTY QUANTIFICATION (IUQ), SEPTEMBER 2022

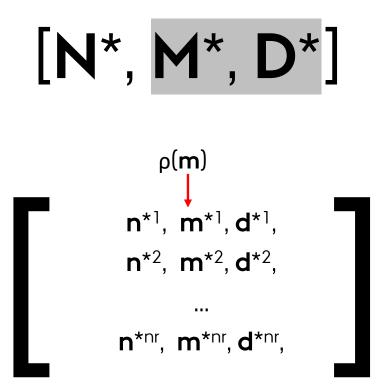
PRSITAS AP

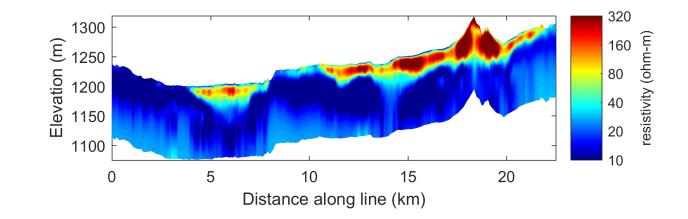


CASE: AIRBORNE EM

Sampling the posterior distribution using the extended rejection sampler

LOCALIZED PROBABILISTIC INVERSION





Localized inversed problem:

When the prior and the forward problem are the same, for different data sets!

THE EXTENDED REJECTION SAMPLER WITH LOOKUP TABLES

The goal: Sample from $\sigma(\mathbf{m}) = k \rho(\mathbf{m}) L(\mathbf{m})$

1. Propose a model from $\rho(\mathbf{m}) \rightarrow \mathbf{m}^*$

2. Accept **m**^{*} as a realization from the posterior with probability

 $Pacc = L(d_{obs} - g(m^*)) / max(L)$

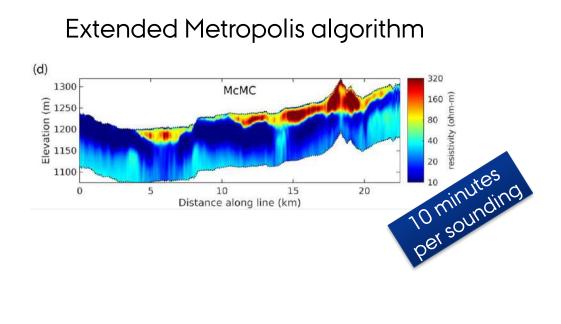
To apply the extended rejection sampler one must be able to

- Sample the prior $\sigma(\mathbf{m})$ 1)
- 2) Evaluate the likelihood L(m) for any model, (solve the forward problem, evaluate the noise)

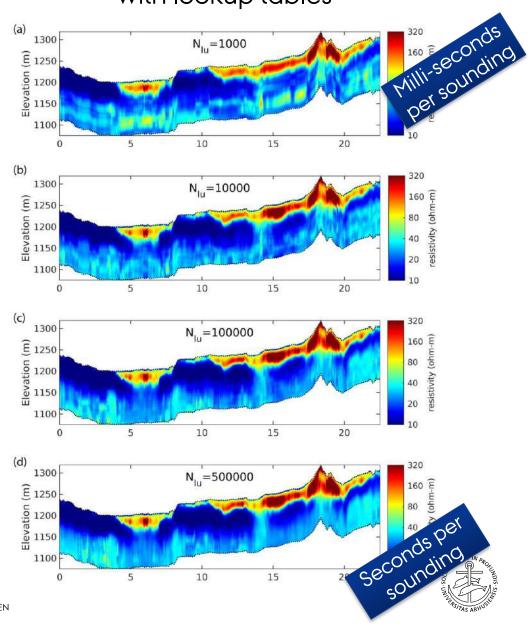
Lookup table: $[M^*, D^*] \rightarrow$ Compute once, apply for any d_{obs}

Hansen (20

POSTERIOR MEAN



Extended rejection sampler with lookup tables



CASE: AIRBORNE EM

Computing statistics of the posterior distribution directly using machine learning,

without sammpling the posterior!

THOMAS MEJER HANSEN AND CHRIS FINLAY

$\sigma(\mathbf{m}) = k \rho(\mathbf{m}) L(\mathbf{d}_{obs} - g(\mathbf{m}))$

Forward model - known

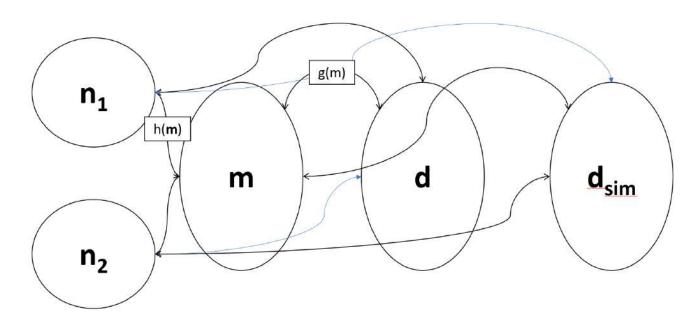
The forward problem

d = g(**m**)

The forward problem -> simulation $\mathbf{d}_{sim} = \mathbf{d} + e(\mathbf{m}) = g(\mathbf{m}) + e(\mathbf{m})$

Sometimes one is not interested in **m**, but in a property **n** related to **m n** = h(**m**)

 $\rightarrow \sigma(\mathbf{n})$

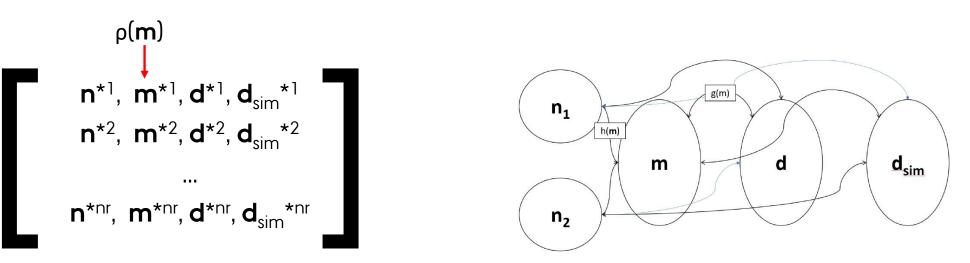


inverse model - unknown

PROBABILISTIC INVERSION USING MACHINE LEARNING

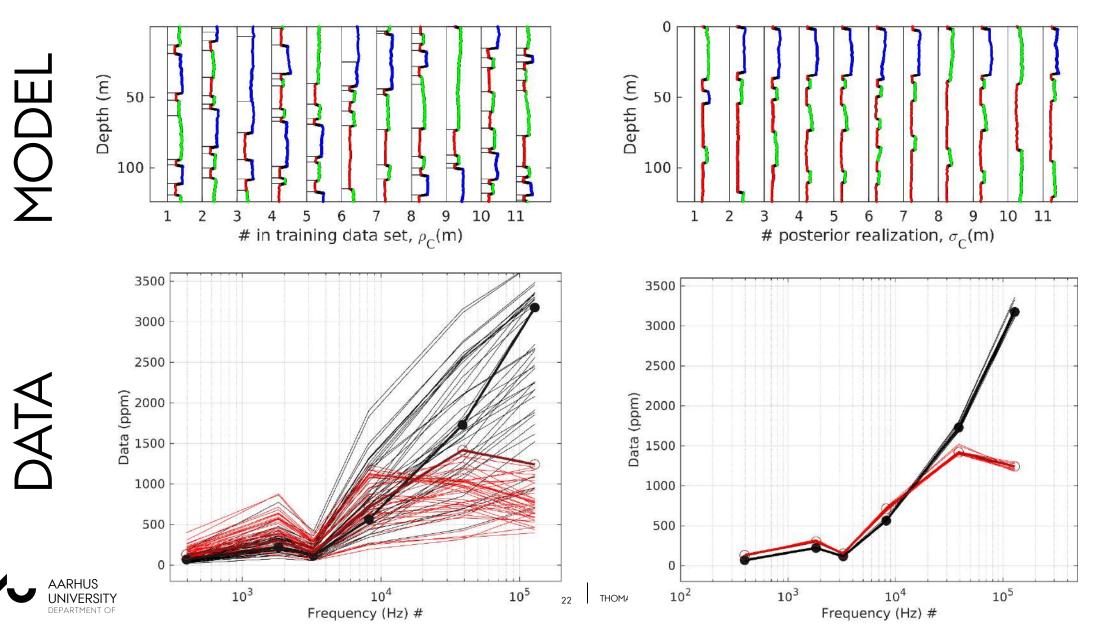
[N*, M*, D*, Dsim*]
$$d_{sim} = d + e(m) = g(m) + e(m)$$

 $n = h(m)$

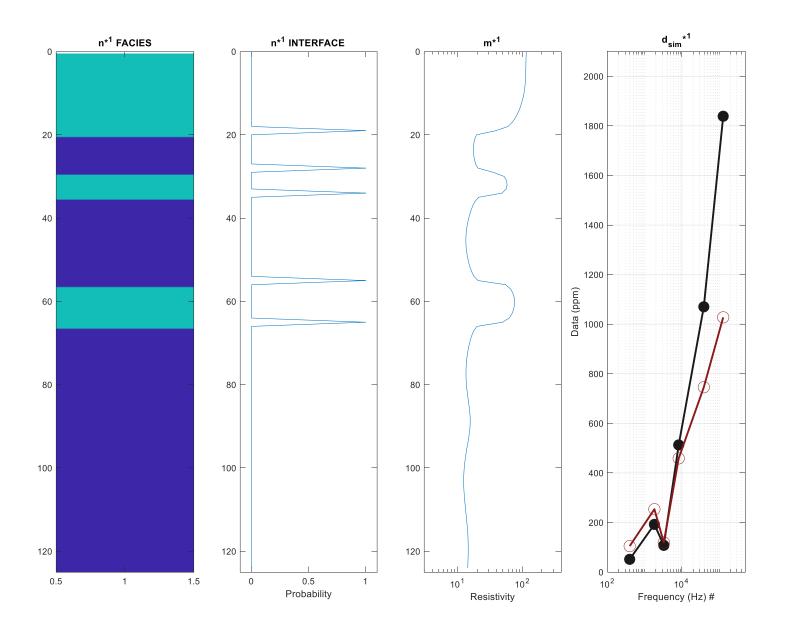


PRIOR ρ(**m**)

POSTERIOR σ(**m**)



CONSTRUCTING A TRAINING DATA SET



CONSTRUCTING A TRAINING DA

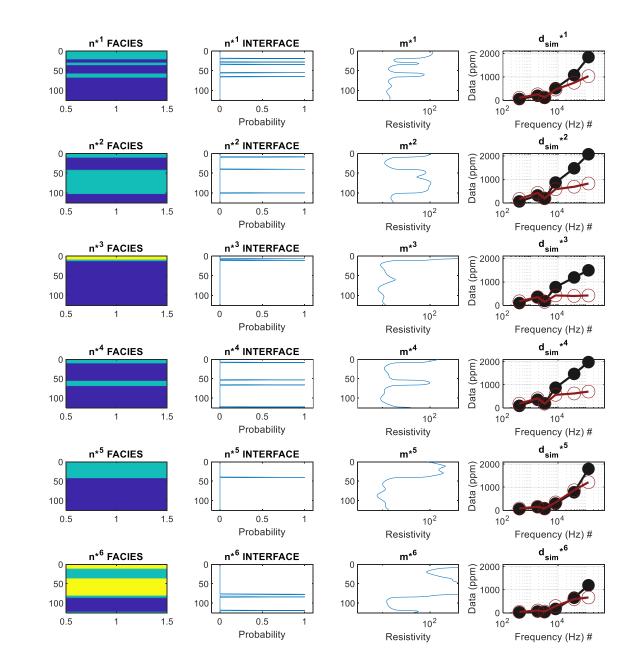
The training data can, in principle, be arbitrarily large

Here the training data set consists of up to 5000000 sets of ${\bf n}, \, {\bf m}$ and ${\bf d}_{\rm sim}$

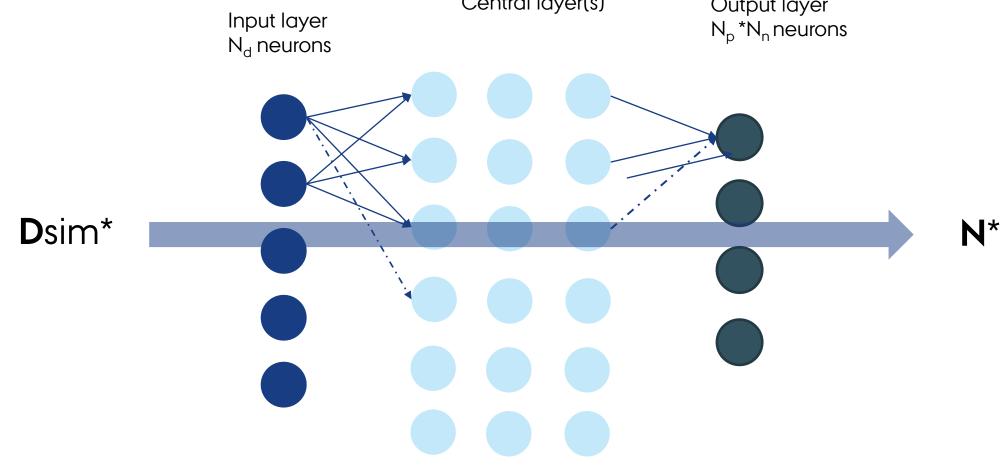
[N*, M*, Dsim*]

This training set express everything we know (as much as can be represented by a finite size sample) about

- The prior
- The forward
- The noise



DESIGNING A SIMPLE MULTILAYER PERCEPTRON NN Central layer(s) Output layer



CHOOSING A LOSS FUNCTION TO MINIMIZE WHEN ADJUSTING THE FREE PARAMETERS OF THE NN

Regression, n is a continuous parameter

Linear activation function in output layer

The output of the NN can for example be the parameters of a multivariate normal distribution N(**m**', **C**m'):

 $f(\mathbf{m}^*) = k \exp(-0.5 \ (\mathbf{m}^{-1} \mathbf{m}^*) \ \mathbf{C} \mathbf{m}^{-1} \ (\mathbf{m}^{-1} \mathbf{m}^*)^{\mathsf{T}} \)$ LOSS = -log(f(\mbox{m}^*)) = -0.5 (\mbox{m}^{-1} \mbox{m}^*) \ \mathbf{C} \mathbf{m}^{-1} \ (\mathbf{m}^{-1} \mathbf{m}^*)^{\mathsf{T}} \

A loss function minimizing this, and many more, distributions can easily be implemented using TensorFlow probability.

https://www.tensorflow.org/probability

Classification, n is a discrete parameter

Softmax activation function in output layer

Loss function: Binary cross entropy

Ensures the output of the NN can be interpreted as $P(n==n^{\circ})$

Direct estimation of the pointwise mean and standard deviation for different size of training data set,

compared to using the extended rejection sampler.

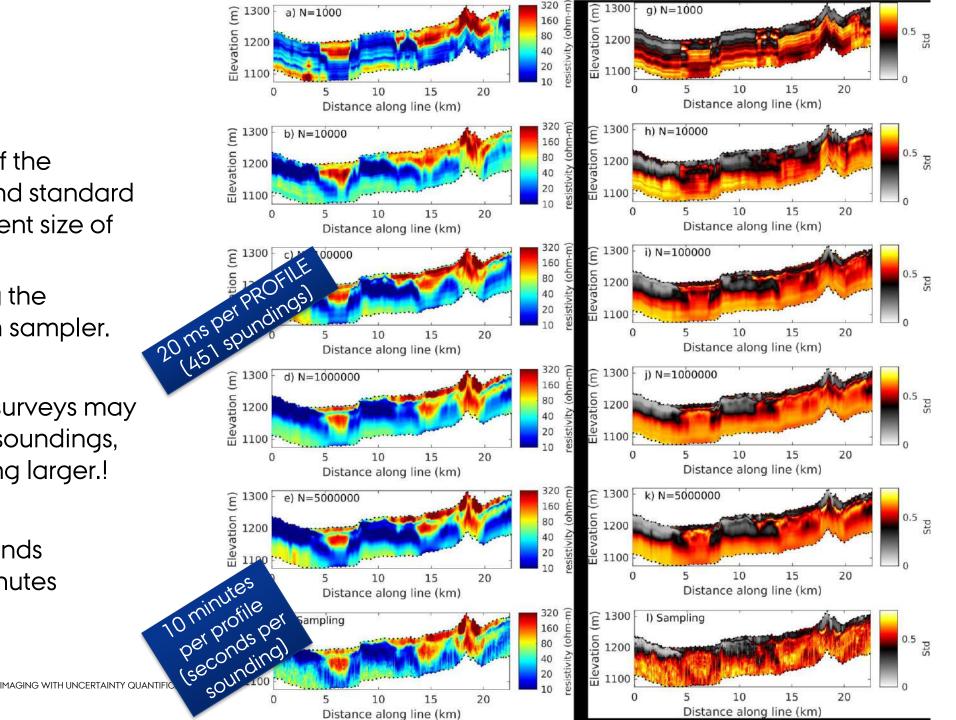
Realistic sized EM surveys may contain +100.000 soundings, and they are getting larger.!

Training time: seconds (N=1000) to 15 minutes (N=5.000.000)

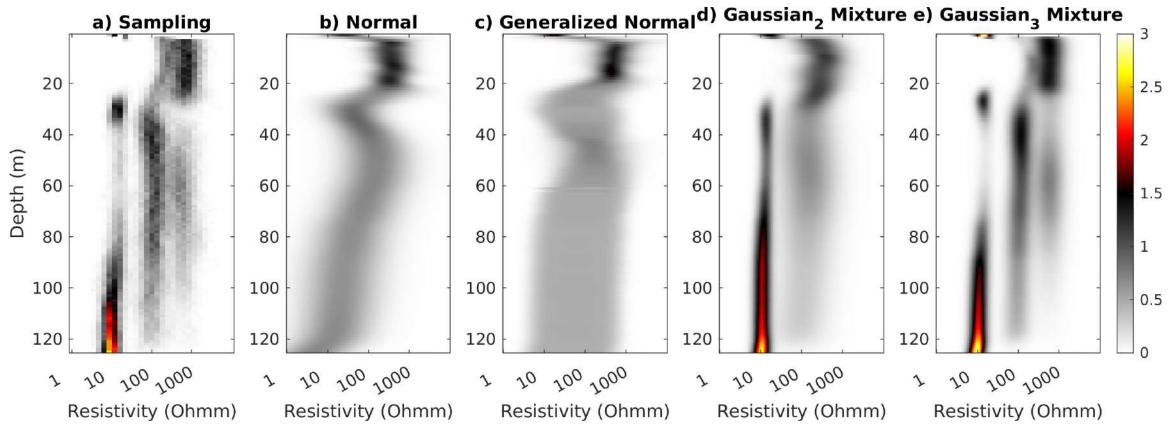
AARHUS

JNIVERSITY

DEPARTMENT OF GEOSCIENCE



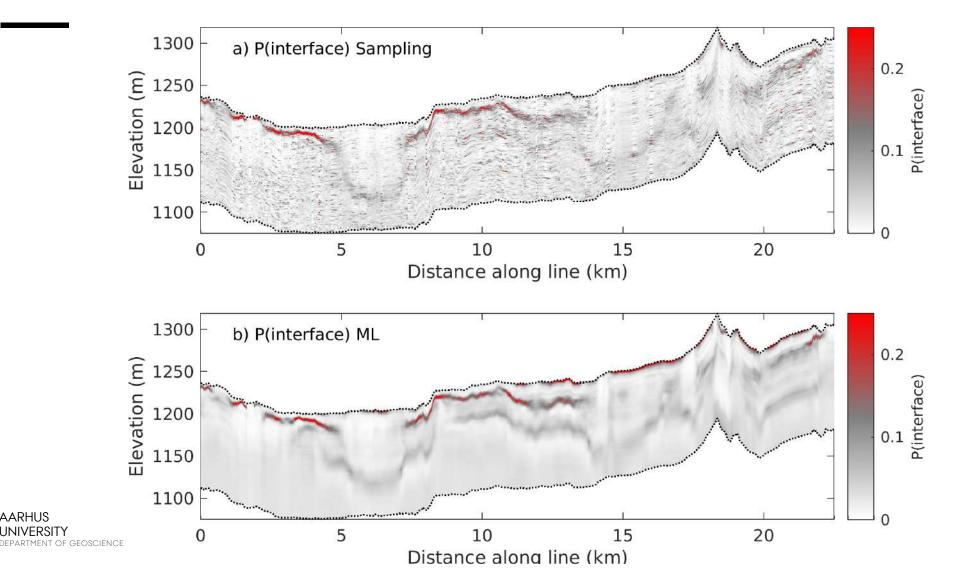
MARGINAL POSTERIOR STATISTICS



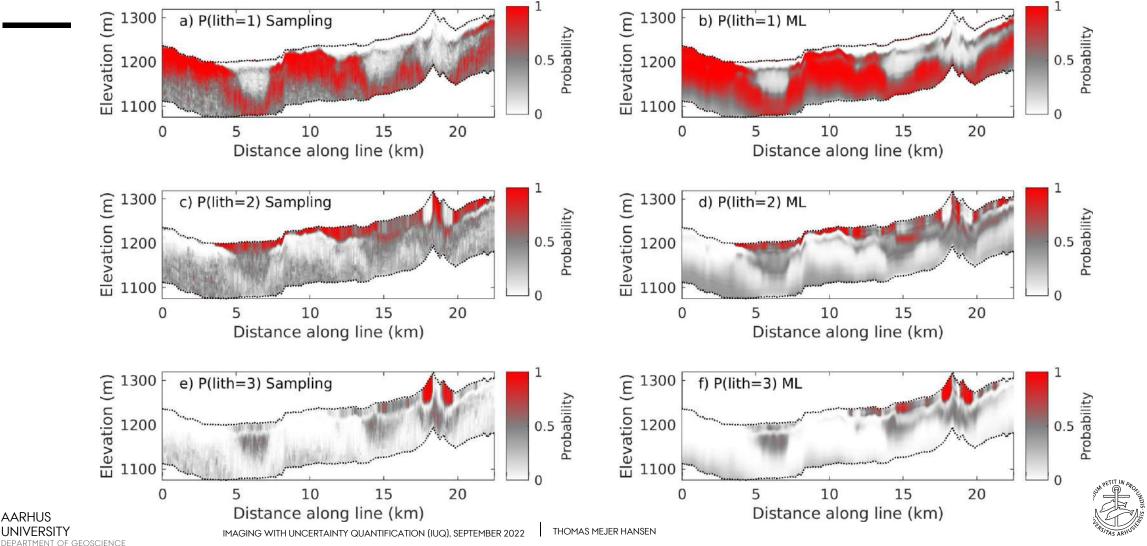
AARHUS

MENT OF GEOSCIENCE

Posterior probability of a layer interface



Posterior probability of lithology



ALGORITHMS FOR SAMPLING

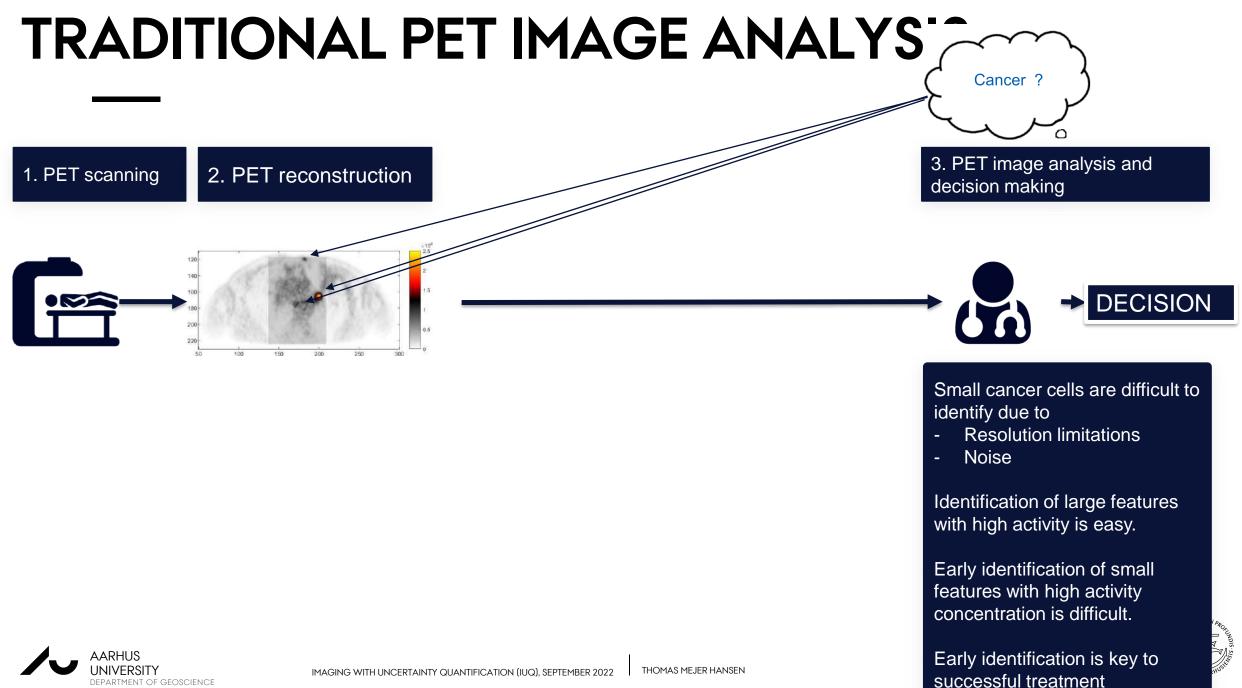
Hansen, Thomas M., and Burke J. Minsley. "Inversion of airborne EM date Minutes per EM sounding choice of prior model." *Geophysical Journal International* 218.2 (2019): 1348-1366.

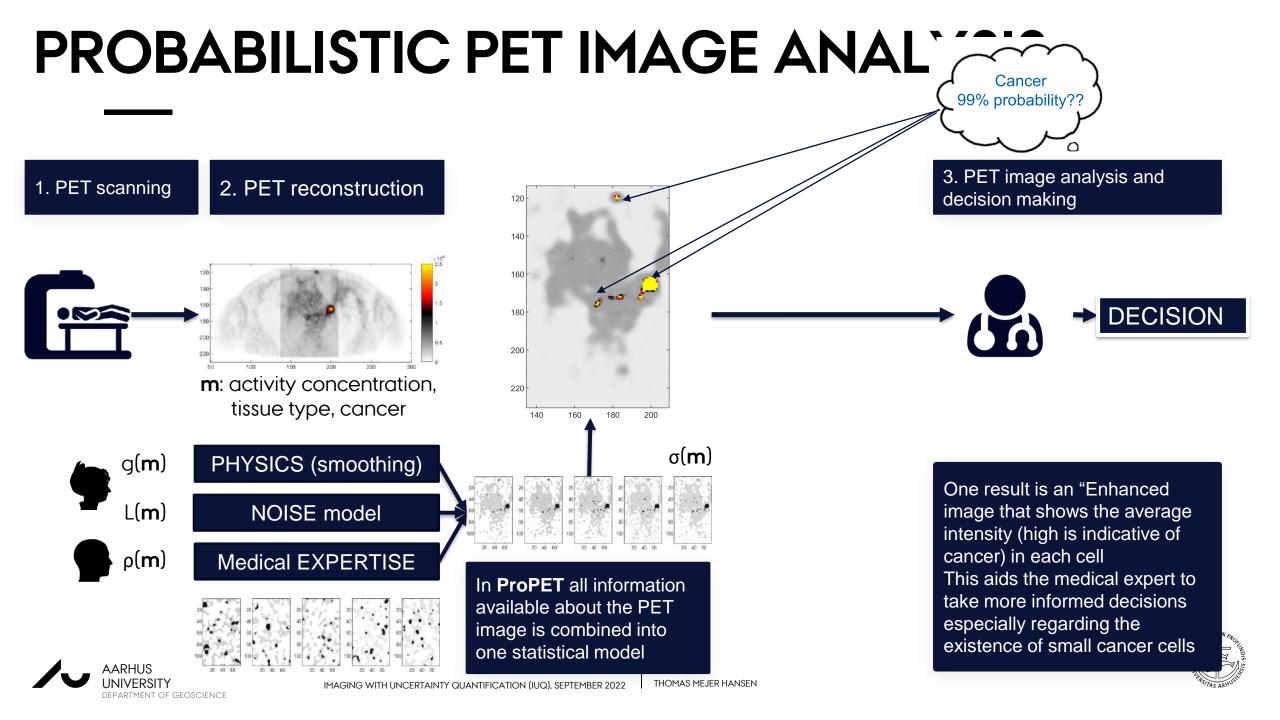
Hansen, Thomas M. "Efficient probabilistic inversion using the rejection seconds per EM sounding exemplified on airborne EM data." *Geophysical Journal International* 224.1 (2021): 543-557.

Hansen, Thomas M., and Christopher C. Finlay. "Use of machine learning to estimate statistics of the posterior distribution in probabilistic inverse problems - an application to airborne EM data." in review/arxiv. <u>https://doi.org/10.31223/X5JS56</u>

CASE: PET IMAGE ANALYSIS

THOMAS MEJER HANSEN, KLAUS MOSEGAARD, SØREN HOLM, FLEMMING ANDERSEN, BARBARA MALENE FISCHER, AND ADAM ESPE HANSEN





DEFINITIONS

 $\mathbf{\Phi} = [\mathbf{\Phi}_1, \mathbf{\Phi}_2, ...]$: The real activity concentration $\mathbf{\Phi}_{PET}$: The reconstructed PET image

The forward model assumption (convolution) $\Phi_{PET} = G \Phi + n(\Phi)$

 $\rho(\Phi)$: The prior distribution of activity concentration

 $\rho_{\Phi}(\Phi_{PET})$: The noise distribution of Φ_{PET} $L(\Phi) = \rho_{\Phi}(G\Phi)$

PROBABILISTIC PET IMAGE ANALYSIS

- A: Quantify information
 - A1: ρ(Φ) Quantify prior information
 - A2: $L(\Phi) = \rho_{\Phi}(G\Phi)$ Quantify noise and the forward model

B: Combine information

• Sample from $\sigma(\mathbf{\Phi}) \propto k \rho(\mathbf{\Phi}) L(\mathbf{\Phi})$

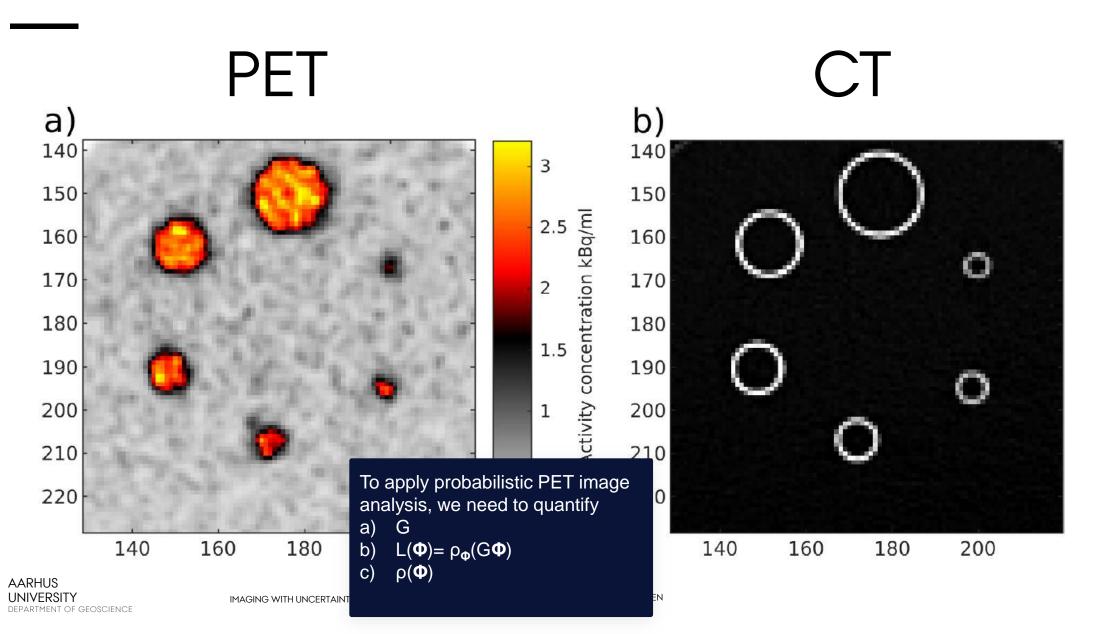
C: Clinical quantitative analysis

The *extended* Metropolis sampler:
We need to be able to
1) sample ρ(Φ), and
2) evaluate L(Φ).
ρ(Φ) can be represented by an algorithm!

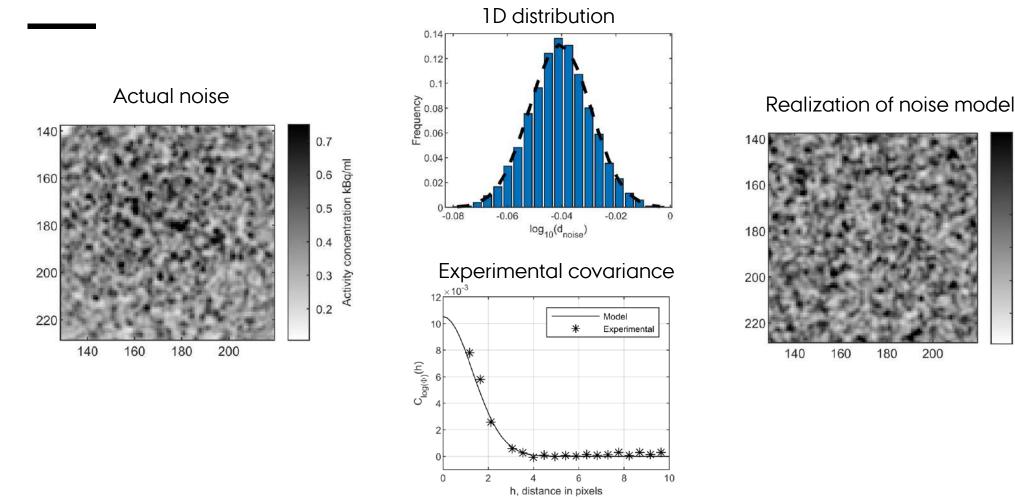
[Mosegaard and Tarantola, 1995]

• Statistical analysis of the obtained sample from $\sigma(\mathbf{\Phi})$

PHANTOM CASE DATA



PHANTOM CASE: THE NOISE, **MULTIVARIATE CORRELATED LOG-NORMAL**



0.7

0.6 kBa/r

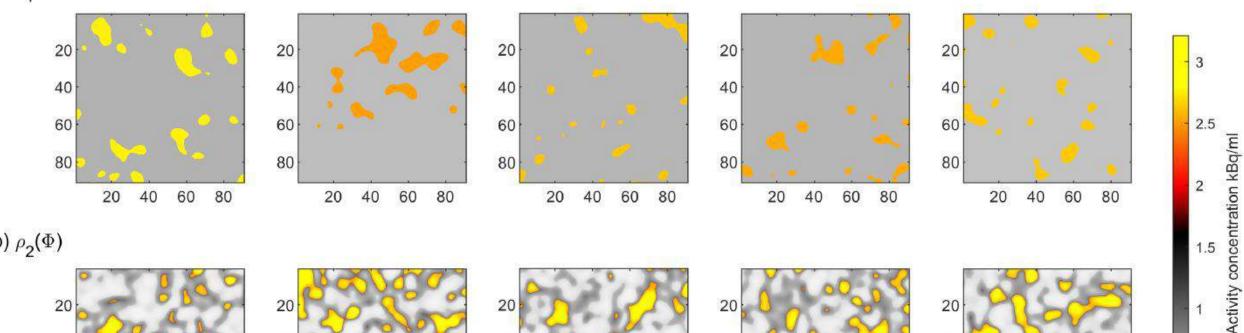
0.5

0.4

0.2

Activity 0.3

PHANTOM CASE, THE PRIOR

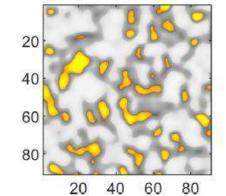


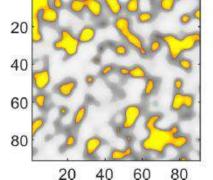
20

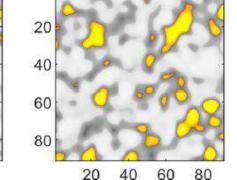
60

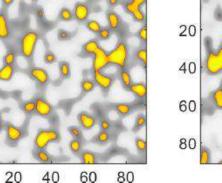
80

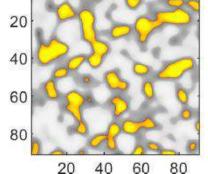
b) $\rho_2(\Phi)$











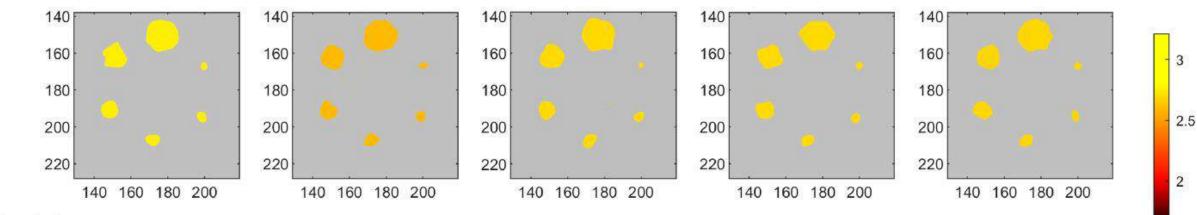
1.5

0.5

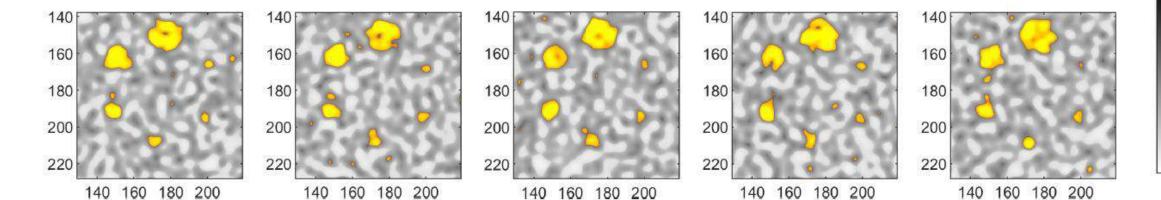
0

PHANTOM CASE, SAMPLING THE

a) $\sigma_1(\Phi)$



b) $\sigma_2(\Phi)$



Activity concentration kBq/ml

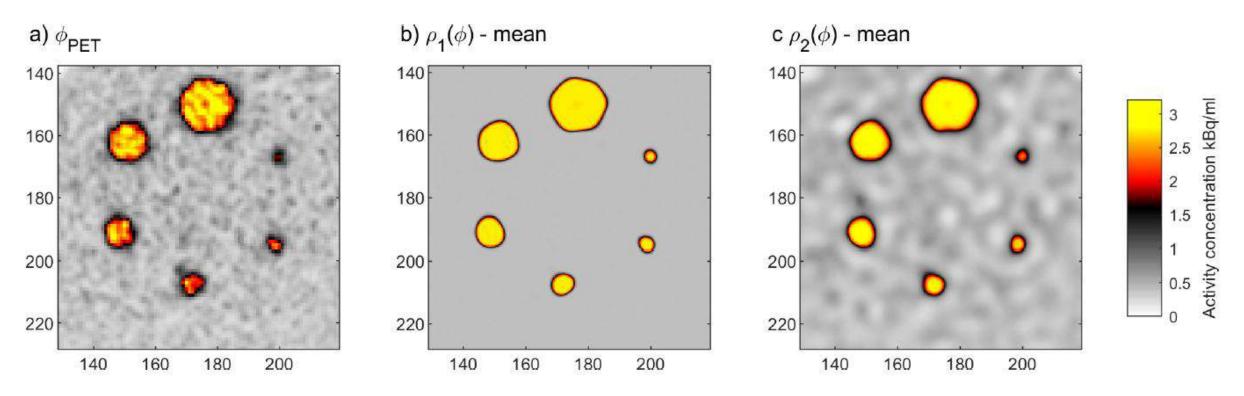
1.5

0.5

0

THOMAS MEJER HANSEN

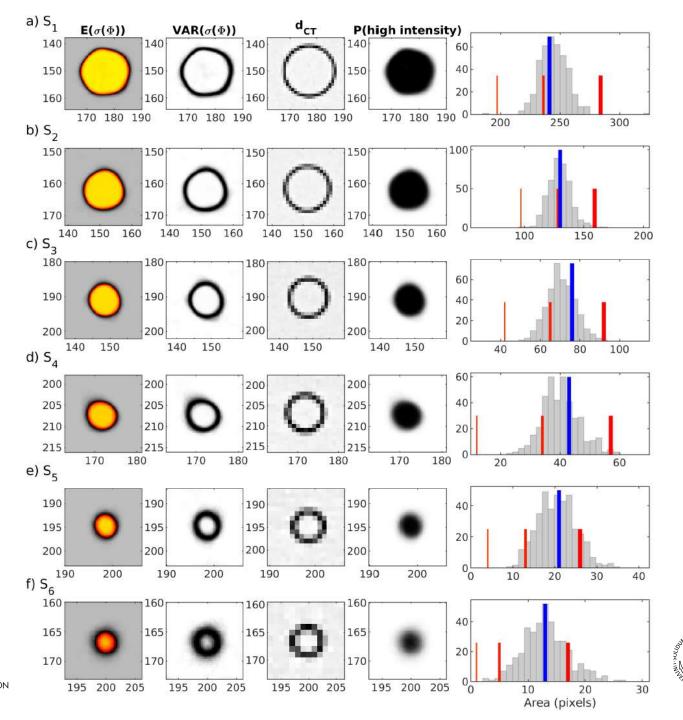
PHANTOM CASE – STATISTICS OF THE POSTERIOR



Pixel size 2 mm x 2 mm

Pixel size 0.5 mm x 0.5 mm

SUB PIXEL RESOLUTION



AARHUS UNIVERSITY DEPARTMENT OF GEOSCIENCE

IMAGING WITH UNCERTAINTY QUANTIFICATION

CONCLUSIONS

Tarantola and Valette (1982) provide a framework for probabilistic integration of information, that naturally allow accounting for uncertainty information.

In order to implement the method in practice we need to be able to quantify available information:

- (Algorithms that can quantify) prior information
 - The choice of choosing/quantifying prior information cannot be avoided
- Algorithms that compute the forward problem (physics)
- Quantification of modelling errors
- Algorithms for integration of information
 - Linear least squares, rejection sampler, Metropolis algorithm, Machine learning.

