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Linear inverse problems

Consider a linear inverse problem in the form:

y =AX +e.
® Noisy observational data: y € R™.
® Forward operator: A € R™*",

® Unknown variables: x € R™ with the ground-truth x.

® Measurement noise: e € R™ follows (0, ° L, ).

Goal: Find a good approximation to X, which is robust with respect to the
measurement noise.
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Bayesian inverse problems

® The objective in a Bayesian inverse problem is to find or characterize the posterior
probability density, defined through Bayes’ Theorem as

s (x1) = - Ty ) T ().
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Bayesian inverse problems

® The objective in a Bayesian inverse problem is to find or characterize the posterior
probability density, defined through Bayes’ Theorem as

s (x1) = - Ty ) T ().

® The likelihood density follows from the noise assumption:

1 1
me(y[x) = @m)m/2gm exp <—ﬁ ly — AXHE) :
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Bayesian inverse problems

® The objective in a Bayesian inverse problem is to find or characterize the posterior
probability density, defined through Bayes’ Theorem as

s (x1) = - Ty ) T ().

® The likelihood density follows from the noise assumption:

1 1 2
me(y[x) = @m)m/2gm exp <—ﬁ ly — AXHQ) :
® The prior density can be hierarchical:

Tpr (%, 75 0) = T (X[T, 0) Tt (T) e (6),
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Applications that require edge-preserving prior
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A few examples (crystallography, medical imaging, geophysics):
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Prior models for edge preservation

M

® Heavy-tailed Markov random fields: increase the probability of large jump events by
imposing heavy-tailed distributions on the increments. Some examples: Laplace' and
Cauchy Markov random fields?.

1J. M. Bardsley. “Laplace-distributed increments, the Laplace prior, and edge-preserving
regularization”. In: Journal of Inverse and Ill-Posed Problems 20.3 (2012), pp. 271-285.

2M. Markkanen et al. “Cauchy difference priors for edge-preserving Bayesian inversion”. In: Journal of
Inverse and Ill-posed Problems 27.2 (2019), pp. 225-240.
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Prior models for edge preservation

M

® Heavy-tailed Markov random fields: increase the probability of large jump events by
imposing heavy-tailed distributions on the increments. Some examples: Laplace and
Cauchy Markov random fields .

® Random fields with jump discontinuities: include Besov space priors, Gaussian process,
level-set priors', etc.

M. M. Dunlop et al. “Hierarchical Bayesian level set inversion”. In: Statistics and Computing 27 (2017),
pp. 1555-1584.
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Prior models for edge preservation

M

® Heavy-tailed Markov random fields: increase the probability of large jump events by
imposing heavy-tailed distributions on the increments. Some examples: Laplace and
Cauchy Markov random fields .

® Random fields with jump discontinuities: include Besov space priors, Gaussian process,
level-set priors, etc.

® Machine learning-based models: plug-and-play priors and Bayesian neural nets with
heavy-tailed weights which promotes edge-preservation'.

IC. Li et al. “Bayesian neural network priors for edge-preserving inversion”. In: Inverse Problems and
Imaging 0 (2022), pp. 1-26.
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Prior models for edge preservation

M

® Heavy-tailed Markov random fields: increase the probability of large jump events by
imposing heavy-tailed distributions on the increments. Some examples: Laplace and
Cauchy Markov random fields .

® Random fields with jump discontinuities: include Besov space priors, Gaussian process,
level-set priors, etc.

® Machine learning-based models: plug-and-play priors and Bayesian neural nets with
heavy-tailed weights which promotes edge-preservation .

® Shrinkage priors: are popular in sparse statistics. These models are hierarchical by nature
and include for instance, elastic net, spike-slab, Horseshoe, discrete Gaussian mixtures,
along with many others'.

'N. G. Polson and V. Sokolov. “Bayesian regularization: from Tikhonov to horseshoe”. In: WIREs
Computational Statistics 11.4 (2019), e1463.
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Horseshoe prior

e The standard horseshoe model” imposes a conditionally Gaussian prior to x:

1 1 71
Tpr(X|7,0) = ————————— exp <—fx 3 x) ,
P (27) 3 det(S,.0)3 27 e
where ¥, ¢ = Tzdiag(ef, e ,Hi) € R™*™ is a prior covariance matrix depending on

hyperparameters 7 € R (global)and 8 = [0, .. ., Gn]T € RY, (local).

2C. M. Carvalho et al. “The horseshoe estimator for sparse signals”. In: Biometrika 97.2 (2010),
pp. 465-480.
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Horseshoe prior

e The standard horseshoe model” imposes a conditionally Gaussian prior to x:

1 1 71
Tpr(X|7,0) = ————————— exp <—fx 3 x) ,
P (27) 3 det(S,.0)3 27 e
where ¥, ¢ = Tzdiag(ef, e ,Hi) € R™*™ is a prior covariance matrix depending on

hyperparameters 7 € R (global)and 8 = [0, .. ., Gn]T € RY, (local).

® This hierarchical prior imposes half-Cauchy hyperpriors on the hyperparameters:

1 o
7T§+7'2 and 71'hpr(9)o<1_[1+02

i=1 K

Thpr (T) X

with 7,6; > 0,

where 79 is a scale parameter.

2C. M. Carvalho et al. “The horseshoe estimator for sparse signals”. In: Biometrika 97.2 (2010),
pp. 465-480.
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Horseshoe prior
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Figure: Comparison of the horseshoe prior bounds with other probability densities. The
zoom-in highlights the distributions at the tails.

No closed form for the horseshoe prior, but upper and lower bounds:

4 1 2
log (14 = ) < mo(z) < log (1+ = ).
2\/7 Og( +£L'2> —TrP (l‘)_ \/ﬁ Og( +(£2)
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Shrinkage coefficients

Set 7 = 1. The shrinkage coefficients are defined according to the covariance

matrix: 1
Qﬁi:?egg[o,ﬂ, Z:L,Tl
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Shrinkage coefficients

Set 7 = 1. The shrinkage coefficients are defined according to the covariance

matrix:
1

S

0,1, i=1,...,n.

® As ¢; — 0, there is no shrinkage and z; is a non-vanishing component.

® As ¢; — 1, the shrinkage occurs.
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Shrinkage coefficients

Set 7 = 1. The shrinkage coefficients are defined according to the covariance

matrix:
1

S

0,1, i=1,...,n.

® As ¢; — 0, there is no shrinkage and z; is a non-vanishing component.

® As ¢; — 1, the shrinkage occurs.

Since 6, follows a half Cauchy distribution with parameter (0, 1), we can derive the
pdf of ¢;:

L

TG VI =i

that is, ¢, follows a Beta distribution with a shape parameter equal to 1/2.

m(¢i) =
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Shrinkage coefficients
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Hierarchical posterior density

Tpos (X7 T, 9|y) o8 ﬂ-lk(y‘x) Tpr (Xa T, 0)

® The likelihood density follows from the noise assumption:

1
vl ocexp (o ly — 4xl3).

® The prior density is hierarchical horseshoe prior on Dx:

Tpr (x, T, 9) = WPT(X‘T7 O)Whpr(T)ﬂ_hPr(e)v

where we have

1 1 Tw—1
® . (x|T,0 cxiexp<—f Dx)" ¥ Dx),
pr(x[7, 0) FRTSERE 5 (Dx)" ¥. 4 (Dx)

® Thpr(T) X with T > 0,

e+ 72
n

° ﬂhpr(e) X H H#QQ with 6 > 0.

i=1 g
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Hierarchical posterior density

1 1 S IR
s (x,7,0ly) c——— ——|ly - Ax|? - =(Dx)TS-L (D
Tpos (X, T |y>o<det(27,9)% eXP( 552 1y = Axl5 = 5 (Dx) 275 ( X)>

y 1 I
T3+T2i:11+9?

with 7,0 > 0.

The main challenges to explore this posterior:
® the dimension of the parameter space is increased;

® the hyperparameters are endowed with heavy-tailed distributions.
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MAP estimate

A commonly used point estimate for the posterior density is the maximum a
posteriori (MAP) estimate, where one sets the mode of the posterior as the single
point representative of the whole density function:

{x*,7%,0"} € arg MaX Tpos (x,7,0)y) = arg min — Inmpes (x, 7, 0y) .

,7,0 x,T,0
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MAP estimate

A commonly used point estimate for the posterior density is the maximum a
posteriori (MAP) estimate, where one sets the mode of the posterior as the single
point representative of the whole density function:

. 1 o 11 2
omin T 0) =g gy - Axlp + 5112, 6 Dxl;

+3 Mo+ 3 (1 +62) + nlnT + (7 + 72).
i=1 i=1

® 7 is quadratic with respect to x.

® 7 is non-convex with respect to 7 and 6. But the global minimizers of the 7- and
0-subproblems have closed-form.

® 7 is non-convex with respect to (x, 7, ).

® \We can prove that the alternating minimization algorithm converges to a stationary point
of J.
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CT reconstruction

Lo-TV

Lo-HS

X Zoomed x |x — x|

Figure: CT geometry: 45 equidistance angles, 170 detector pixels and 150-by-150
reconstruction resolutions. SNR and SSIM values are: (16.4663, 0.9067) for Lo-TV and
(22.8216, 0.9797) for Lo-HS.
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Explore the posterior by sampling

Tpos (x, 72, 02|y) o T (¥]%) Tpr (X, 72, 02)

oc Tk (y[x) 71'pr(xlTQ» 02) 7Thpr(72) 7Thpr(ez)

We can use Gibbs sampling method to characterize the posterior.
@ Sample 7(x|y, 7,0) < mk(y|x) 7pr (X|7, 0);
@ Sample 7(7|x, 0) o mpr (X|T, 0)Thpr (T);
© Sample w(0|x, 7) o Tpr (X|7, 0)Thpe ().

14 DTU Compute The horseshoe prior for edge-preserving Bayesian inversion 27 Sep. 2022

=
—
=

M



Explore the posterior by sampling

Tpos (x, 72, 02|y) o T (Y[%) 7pr (X, 72, 6%)
oc T (y]%) ﬂ'pr(xlTQ, 02) 7Thpr(7'2) 7Thpr(ez)
We can use Gibbs sampling method to characterize the posterior.
@ Sample 7(x[y, 7,0) o< mu(y|x) mpr (x|7, );
@ Sample 7(7|x, 0) o mpr (X|T, 0)Thpr (T);

© Sample w(0|x, 7) o Tpr (X|7, 0)Thpe ().

Main challenge is to sample 7(7|x, 0) and w(0|x, 7).
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Extended horseshoe prior
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Scale mixture representation of half-Student’s t-distribution

If A and B are random variables such that
2 v v 11
(A%|B) ~ IG (5, E) and B ~ IG (5, ?2) ,

then A ~ t (1,0, ¢).

® JG(+, -) denotes the inverse Gamma distribution depending on shape and scale
parameters;

e t1(., -, ) is the half-Student’s t-distribution depending on degrees of freedom, location and
scale parameters;

® t7 (1,0, c) with v = 1 isidentical to a half-Cauchy distribution.

M. P. Wand et al. “Mean field variational Bayes for elaborate distributions”. In: Bayesian Analysis 6.4
(2011), pp. 847-900.
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Extended horseshoe prior

® Extended hierarchical horseshoe prior is
Tor(x|7%,6%) = N (0,(D"=3D) '),
2y —1a (L L gl L
ﬂ—hpr(T |7)_IG (257)7 ﬂ—hpr(’y)_IG (237_3)3
11 1
M (0160 =16 (3.3 ). merle) =16 (5.1).
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Extended horseshoe prior

® Extended hierarchical horseshoe prior is
Tor(xI7%,6%) = N (0,(D"=4D) )
5 11 11
ﬂ—hpr(T |'V) = IG (5? ;) ) 7Thpr('y) = IG (53 ?g) ’
11 1
M (0160 =16 (3.3 ). merle) =16 (5.1).
® The new posterior density is

WPOS(Xa 7_27 027 Y, £|y) &

e (Y1) o (X]7, %) Thpr (72 |7) Tapr (6% 1€) T (7) Thpe (€)-
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Gibbs sampler

™ (xy, 72, 0%) o< mi(y|x) mpr (x|72, 6%)

o (72[x, 0%, 7) o mpe (X|72, 0% Thpe (77 )

m3(0%]%, 7%, &) o T (|77, 0%) e (6°€)
Ta(Y|72) X Tape (T2[7) Tpr (7).
75(£16%) o Thpr (6%1€) Tapr (€)-
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Gibbs sampler

m1(x[y, 7%, 67) o< mi(y[x) mpe (%[ 72, 6%)
ma(721%, 6%, 7) o¢ o (x|, 0 )T (7))
m3(0°[x, 7%, ) o mpr(X|7%, %) mupe (6°1€)
w4 (V[7?) o< Tpe (T2 17) Tpe (),
5 (€16%) o Tupr (6% |€) e (€)-
o 11 (x]y, 72, 6%) follows Gaussian distribution with the mean fz and the covariance A:

~ 1 _ ~ ~_ 1
ATae = PATA + DTET,éDv IJ’T,G = AT,é (;ATY) .

® The conditional densities on all hyperparameters, i.e., w2 to 75, follow inverse Gamma
distribution with closed forms.
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1D deconvolution
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True Data 1 Data 2
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1.0 1.0 1.0
0.5 0.5 0.5
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0.00 025 050 075 100 000 025 050 075 100 000 025 050 075 1.00
Figure: The original signal and noisy observed data with 2% and 5% noise, respectively.

® Aisfrom Gaussian blurring.

® x is sparse under the first order derivative, so we use the first order derivative operator as
D.

® Samples: ns = 2 x 104,nb =2 x 10® and n; = 40.
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Hyperparameters 7 and 6
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Figure: Posterior of 7 with low noise level.
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Figure: Posterior mean and 95% Cl for 6.
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Target parameter x
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High noise
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Figure: The relative errors are: (0.0154, 0.0663) for HS and (0.0536, 0.0927) for Laplace.
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CT reconstruction

‘ 1.00
o 49
‘ : 2
: T2°  144°  216° 288°
View angle
g 0.00

Figure: The ground truth and the sinogram.
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® Aisfrom Radon transform with 32 equidistance angles and 64 detector pixels.
® x is sparse under the first order derivatives, so we use the gradient operator as D.

® The resolution of the reconstruction is 64-by-64. The noise level is 1%.
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CT reconstruction: Target parameter x
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Thank you!

For your interest:
® Reference:

® Uribe, F.,, Dong, Y. and Hansen, P. C.: Horseshoe priors for edge-preserving linear
Bayesian inversion, arXiv:2207.09147, (2022).

® Dong, Y. and Pragliola, M.: Inducing sparsity via horseshoe prior in imaging problems,
submitted, (2022).

® CUQI project: https://www.compute.dtu.dk/english/cuqi

® Open postdoc positions: TAPP-project, "Tomography of Alpha Particles in Fusion Plasma".
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