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Bayesianmodel
Linear inverse problems

Consider a linear inverse problem in the form:

y = Ax̄ + e.

• Noisy observational data: y ∈ Rm.

• Forward operator: A ∈ Rm×n.

• Unknown variables: x ∈ Rn with the ground-truth x̄.

• Measurement noise: e ∈ Rm followsN (0, σ2Im).

Goal: Find a good approximation to x̄, which is robust with respect to the
measurement noise.
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Bayesianmodel
Bayesian inverse problems

• The objective in a Bayesian inverse problem is to find or characterize the posterior
probability density, defined through Bayes’ Theorem as

πpos (x|y) =
1

Z
πlk(y|x)πpr(x).

• The likelihood density follows from the noise assumption:

πlk(y|x) =
1

(2π)m/2σm
exp

(
− 1

2σ2
‖y −Ax‖22

)
.

• The prior density can be hierarchical:

πpr(x, τ,θ) = πpr(x|τ,θ)πhpr(τ)πhpr(θ),
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Bayesianmodel
Applications that require edge-preserving prior

A few examples (crystallography, medical imaging, geophysics):
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Bayesianmodel
Prior models for edge preservation

• Heavy-tailed Markov random fields: increase the probability of large jump events by
imposing heavy-tailed distributions on the increments. Some examples: Laplace1 and
Cauchy Markov random fields2.

• Random fields with jump discontinuities: include Besov space priors, Gaussian process,
level-set priors , etc.

• Machine learning-basedmodels: plug-and-play priors and Bayesian neural nets with
heavy-tailed weights which promotes edge-preservation .

• Shrinkage priors: are popular in sparse statistics. These models are hierarchical by nature
and include for instance, elastic net, spike-slab, Horseshoe, discrete Gaussian mixtures,
along with many others .

1J. M. Bardsley. “Laplace-distributed increments, the Laplace prior, and edge-preserving
regularization”. In: Journal of Inverse and Ill-Posed Problems 20.3 (2012), pp. 271–285.

2M. Markkanen et al. “Cauchy di�erence priors for edge-preserving Bayesian inversion”. In: Journal of
Inverse and Ill-posed Problems 27.2 (2019), pp. 225–240.
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Horseshoe prior
Horseshoe prior

• The standard horseshoemodel2 imposes a conditionally Gaussian prior to x:

πpr(x|τ,θ) =
1

(2π)
n
2 det(Στ,θ)

1
2

exp

(
−1

2
xTΣ−1

τ,θ x

)
,

whereΣτ,θ = τ2diag(θ21, . . . , θ
2
n) ∈ Rn×n is a prior covariance matrix depending on

hyperparameters τ ∈ R>0 (global) and θ = [θ1, . . . , θn]T ∈ Rn>0 (local).

• This hierarchical prior imposes half-Cauchy hyperpriors on the hyperparameters:

πhpr(τ) ∝ 1

τ20 + τ2
and πhpr(θ) ∝

n∏
i=1

1

1 + θ2i
with τ, θi > 0,

where τ0 is a scale parameter.

2C. M. Carvalho et al. “The horseshoe estimator for sparse signals”. In: Biometrika 97.2 (2010),
pp. 465–480.
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Horseshoe prior
Horseshoe prior
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Figure: Comparison of the horseshoe prior bounds with other probability densities. The
zoom-in highlights the distributions at the tails.

No closed form for the horseshoe prior, but upper and lower bounds:

1

2
√

2π3
log

(
1 +

4

x2

)
≤ πpr(x) ≤ 1√

2π3
log

(
1 +

2

x2

)
.
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Horseshoe prior
Shrinkage coe�icients

Set τ = 1. The shrinkage coe�icients are defined according to the covariance
matrix:

φi =
1

1 + θ2i
∈ [0, 1] , i = 1, . . . , n .

• As φi → 0, there is no shrinkage and xi is a non-vanishing component.
• As φi → 1, the shrinkage occurs.

Since θi follows a half Cauchy distribution with parameter (0, 1), we can derive the
pdf of φi:

π(φi) =
1

π

1√
φi

1√
1− φi

,

that is, φi follows a Beta distribution with a shape parameter equal to 1/2.
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Horseshoe prior
Shrinkage coe�icients

θi ∼ C+(0, 1) θi ∼ G(α, β) θi ∼ IG(α, β)
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Hierarchical posterior density
Hierarchical posterior density

πpos (x, τ,θ|y) ∝ πlk(y|x)πpr(x, τ,θ).

• The likelihood density follows from the noise assumption:

πlk(y|x) ∝ exp

(
− 1

2σ2
‖y −Ax‖22

)
.

• The prior density is hierarchical horseshoe prior onDx:

πpr(x, τ,θ) = πpr(x|τ,θ)πhpr(τ)πhpr(θ),

where we have

• πpr(x|τ,θ) ∝ 1

det(Στ,θ)
1
2

exp

(
−1

2
(Dx)TΣ−1

τ,θ (Dx)

)
,

• πhpr(τ) ∝ 1

τ20 + τ2
with τ > 0,

• πhpr(θ) ∝
n∏
i=1

1

1 + θ2i
with θ > 0.
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Hierarchical posterior density
Hierarchical posterior density

πpos (x, τ,θ|y) ∝ 1

det(Στ,θ)
1
2

exp

(
− 1

2σ2
‖y −Ax‖22 −

1

2
(Dx)TΣ−1

τ,θ (Dx)

)
× 1

τ20 + τ2

n∏
i=1

1

1 + θ2i
with τ,θ > 0.

Themain challenges to explore this posterior:
• the dimension of the parameter space is increased;
• the hyperparameters are endowed with heavy-tailed distributions.
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MAP estimate of the posterior
MAP estimate

A commonly used point estimate for the posterior density is the maximum a
posteriori (MAP) estimate, where one sets the mode of the posterior as the single
point representative of the whole density function:

{x∗, τ∗,θ∗} ∈ arg max
x,τ,θ

πpos (x, τ,θ|y) = arg min
x,τ,θ
− lnπpos (x, τ,θ|y) .

• J is quadratic with respect to x.
• J is non-convex with respect to τ and θ. But the global minimizers of the τ - and
θ-subproblems have closed-form.
• J is non-convex with respect to (x, τ,θ).
• We can prove that the alternating minimization algorithm converges to a stationary point
ofJ .
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2σ2
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1

2
‖Σ− 1

2

τ,θDx‖22
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n∑
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n∑
i=1

ln(1 + θ2i ) + n ln τ + ln(τ20 + τ2).
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Numerical results (MAP)
CT reconstruction

L 2
-T
V

L 2
-H
S

x Zoomed x |x− x̄|
Figure: CT geometry: 45 equidistance angles, 170 detector pixels and 150-by-150
reconstruction resolutions. SNR and SSIM values are: (16.4663, 0.9067) for L2-TV and
(22.8216, 0.9797) for L2-HS.
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Sample the hierarchical posterior
Explore the posterior by sampling

πpos
(
x, τ2,θ2|y

)
∝ πlk(y|x)πpr(x, τ

2,θ2)

∝ πlk(y|x)πpr(x|τ2,θ2)πhpr(τ
2)πhpr(θ

2)

We can use Gibbs sampling method to characterize the posterior.
1 Sample π(x|y, τ,θ) ∝ πlk(y|x)πpr(x|τ,θ);

2 Sample π(τ |x,θ) ∝ πpr(x|τ,θ)πhpr(τ);

3 Sample π(θ|x, τ) ∝ πpr(x|τ,θ)πhpr(θ).

Main challenge is to sample π(τ |x,θ) and π(θ|x, τ).
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Sample the hierarchical posterior
Extended horseshoe prior

Scale mixture representation of half-Student’s t-distribution

IfA andB are random variables such that

(A2|B) ∼ IG
(ν

2
,
ν

B

)
and B ∼ IG

(
1

2
,

1

c2

)
,

thenA ∼ t+(ν, 0, c).

• IG(·, ·) denotes the inverse Gamma distribution depending on shape and scale
parameters;
• t+(·, ·, ·) is the half-Student’s t-distribution depending on degrees of freedom, location and
scale parameters;
• t+(ν, 0, c)with ν = 1 is identical to a half-Cauchy distribution.

M. P. Wand et al. “Mean field variational Bayes for elaborate distributions”. In: Bayesian Analysis 6.4
(2011), pp. 847–900.
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Sample the hierarchical posterior
Extended horseshoe prior

• Extended hierarchical horseshoe prior is

πpr(x|τ2,θ2) = N
(
0, (DTΣ−1

τ,θD)−1
)
,

πhpr(τ
2|γ) = IG

(
1

2
,

1

γ

)
, πhpr(γ) = IG

(
1

2
,

1

τ20

)
,

πhpr(θ
2
i |ξi) = IG

(
1

2
,

1

ξi

)
, πhpr(ξi) = IG

(
1

2
, 1

)
.

• The new posterior density is

πpos(x, τ
2,θ2, γ, ξ|y) ∝

πlk(y|x)πpr(x|τ2,θ2)πhpr(τ
2|γ)πhpr(θ

2|ξ)πhpr(γ)πhpr(ξ).
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Sample the hierarchical posterior
Gibbs sampler

π1(x|y, τ2,θ2) ∝ πlk(y|x)πpr(x|τ2,θ2)

π2(τ2|x,θ2, γ) ∝ πpr(x|τ2,θ2)πhpr(τ
2|γ)

π3(θ2|x, τ2, ξ) ∝ πpr(x|τ2,θ2)πhpr(θ
2|ξ)

π4(γ|τ2) ∝ πhpr(τ2|γ)πhpr(γ),

π5(ξ|θ2) ∝ πhpr(θ2|ξ)πhpr(ξ).

• π1(x|y, τ2,θ2) follows Gaussian distribution with the mean µ̃ and the covariance Λ̃:

Λ̃τ,θ =
1

σ2
ATA+DTΣ−1

τ,θD, µ̃τ,θ = Λ̃−1
τ,θ

(
1

σ2
ATy

)
.

• The conditional densities on all hyperparameters, i.e., π2 to π5, follow inverse Gamma
distribution with closed forms.
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Numerical results (Gibbs)
1D deconvolution
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Figure: The original signal and noisy observed data with 2% and 5% noise, respectively.

• A is from Gaussian blurring.
• x is sparse under the first order derivative, so we use the first order derivative operator as
D.
• Samples: ns = 2× 104, nb = 2× 103 and nt = 40.
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Numerical results (Gibbs)
Hyperparameters τ and θ

HORSESHOE PRIOR FOR LINEAR BAYESIAN INVERSION 15

has converged and it is well-mixed. We obtain similar results for the large noise data set and thus we omit528
the figure.
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Figure 5. Posterior of �obs (first row) and ⌧ (second row) using the low noise data set. Histogram, chain, cumulative
mean and sample autocorrelation.

529
Figure 6 shows the posterior mean and 95% credible interval for the local weight parameter w. Note530

that the local parameter captures the locations where the signal edges are placed. The uncertainty is large531
at those particular locations and essentially zero in the rest of the domain. We observe that as the noise532
increases, the magnitude of the weights decreases and the point estimators become less sharp. Nevertheless,533
the posterior is still able to capture the edges correctly.

Figure 6. Posterior statistics for w using the low noise (left) and high noise (right) data sets. Posterior mean (solid
line) and 95% credible interval (shaded area).

534
Finally, the main posterior statistics for the target parameter x are shown in Figure 7 together with the535

underlying true signal. Similar to the local weights, we plot the posterior mean and 95% credible interval.536
The relative reconstruction errors based on the mean, for the low and high noise cases, are 1.54⇥ 10�2 and537
6.63⇥ 10�2, respectively. We compare the results based on the horseshoe prior to the method in [48] which538
is based on a Laplace Markov random field prior. For the latter, we use the same number of samples, burn-in539
and thinning. In the case of the Laplace Markov random field prior, we obtain the reconstruction errors540

This manuscript is for review purposes only.

Figure: Posterior of τ with low noise level.
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1Figure: Posterior mean and 95% CI for θ.
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Numerical results (Gibbs)
Target parameter x

Low noise High noise
L
ap

la
ce

p
ri

or
H

or
se

sh
oe

p
ri

or

0.0 0.2 0.4 0.6 0.8 1.0
Domain

0.0

0.5

1.0

1.5
x

0.0 0.2 0.4 0.6 0.8 1.0
Domain

0.0

0.5

1.0

1.5

x

0.0 0.2 0.4 0.6 0.8 1.0
Domain

0.0

0.5

1.0

1.5

x

0.0 0.2 0.4 0.6 0.8 1.0
Domain

0.0

0.5

1.0

1.5

x

11Figure: The relative errors are: (0.0154, 0.0663) for HS and (0.0536, 0.0927) for Laplace.
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Numerical results (Gibbs)
CT reconstruction
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Figure: The ground truth and the sinogram.

• A is from Radon transformwith 32 equidistance angles and 64 detector pixels.
• x is sparse under the first order derivatives, so we use the gradient operator asD.
• The resolution of the reconstruction is 64-by-64. The noise level is 1%.

21 DTU Compute The horseshoe prior for edge-preserving Bayesian inversion 27 Feb. 2024



Numerical results (Gibbs)
CT reconstruction: Target parameter x
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Thank you!

For your interest:
• Reference:

• Uribe, F., Dong, Y. and Hansen, P. C.: Horseshoe priors for edge-preserving linear
Bayesian inversion, SIAM Journal on Scientific Computing, Vol. 45(3), pp. 337-365,
2023.
• Dong, Y. and Pragliola, M.: Inducing sparsity via horseshoe prior in imaging problems,
Inverse Problems, Vol. 39(7), 074001, 2023.

• CUQI project: https://www.compute.dtu.dk/english/cuqi
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https://www.icms.org.uk/UQIPI24
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