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Linear inverse problems

M

Consider a linear inverse problem in the form:

y =AX +e.
® Noisy observational data: y € R™.
® Forward operator: A € R™*",

® Unknown variables: x € R™ with the ground-truth x.

® Measurement noise: e € R™ follows (0, ° L, ).

Goal: Find a good approximation to X, which is robust with respect to the
measurement noise.
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Bayesian inverse problems

® The objective in a Bayesian inverse problem is to find or characterize the posterior
probability density, defined through Bayes’ Theorem as

s (x1) = - Ty ) T ().
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Bayesian inverse problems

® The objective in a Bayesian inverse problem is to find or characterize the posterior
probability density, defined through Bayes’ Theorem as

s (x1) = - Ty ) T ().

® The likelihood density follows from the noise assumption:

1 1
me(y[x) = @m)m/2gm exp <—ﬁ ly — AXHE) :
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Bayesian inverse problems

® The objective in a Bayesian inverse problem is to find or characterize the posterior
probability density, defined through Bayes’ Theorem as

s (x1) = - Ty ) T ().

® The likelihood density follows from the noise assumption:

1 1 2
me(y[x) = @m)m/2gm exp <—ﬁ ly — AXHQ) :
® The prior density can be hierarchical:

Tpr (%, 75 0) = T (X[T, 0) Tt (T) e (6),
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Applications that require edge-preserving prior
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A few examples (crystallography, medical imaging, geophysics):
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Prior models for edge preservation

M

® Heavy-tailed Markov random fields: increase the probability of large jump events by
imposing heavy-tailed distributions on the increments. Some examples: Laplace' and
Cauchy Markov random fields?.

1J. M. Bardsley. “Laplace-distributed increments, the Laplace prior, and edge-preserving
regularization”. In: Journal of Inverse and Ill-Posed Problems 20.3 (2012), pp. 271-285.

2M. Markkanen et al. “Cauchy difference priors for edge-preserving Bayesian inversion”. In: Journal of
Inverse and Ill-posed Problems 27.2 (2019), pp. 225-240.
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Prior models for edge preservation

M

® Heavy-tailed Markov random fields: increase the probability of large jump events by
imposing heavy-tailed distributions on the increments. Some examples: Laplace and
Cauchy Markov random fields .

® Random fields with jump discontinuities: include Besov space priors, Gaussian process,
level-set priors', etc.

M. M. Dunlop et al. “Hierarchical Bayesian level set inversion”. In: Statistics and Computing 27 (2017),
pp. 1555-1584.
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Prior models for edge preservation

M

® Heavy-tailed Markov random fields: increase the probability of large jump events by
imposing heavy-tailed distributions on the increments. Some examples: Laplace and
Cauchy Markov random fields .

® Random fields with jump discontinuities: include Besov space priors, Gaussian process,
level-set priors, etc.

® Machine learning-based models: plug-and-play priors and Bayesian neural nets with
heavy-tailed weights which promotes edge-preservation'.

IC. Li et al. “Bayesian neural network priors for edge-preserving inversion”. In: Inverse Problems and
Imaging 0 (2022), pp. 1-26.
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Prior models for edge preservation

M

® Heavy-tailed Markov random fields: increase the probability of large jump events by
imposing heavy-tailed distributions on the increments. Some examples: Laplace and
Cauchy Markov random fields .

® Random fields with jump discontinuities: include Besov space priors, Gaussian process,
level-set priors, etc.

® Machine learning-based models: plug-and-play priors and Bayesian neural nets with
heavy-tailed weights which promotes edge-preservation .

® Shrinkage priors: are popular in sparse statistics. These models are hierarchical by nature
and include for instance, elastic net, spike-slab, Horseshoe, discrete Gaussian mixtures,
along with many others'.

'N. G. Polson and V. Sokolov. “Bayesian regularization: from Tikhonov to horseshoe”. In: WIREs
Computational Statistics 11.4 (2019), e1463.
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Horseshoe prior

e The standard horseshoe model” imposes a conditionally Gaussian prior to x:

1 1 71
Tpr(X|7,0) = ————————— exp <—fx 3 x) ,
P (27) 3 det(S,.0)3 27 e
where ¥, ¢ = Tzdiag(ef, e ,Hi) € R™*™ is a prior covariance matrix depending on

hyperparameters 7 € R (global)and 8 = [0, .. ., Gn]T € RY, (local).

2C. M. Carvalho et al. “The horseshoe estimator for sparse signals”. In: Biometrika 97.2 (2010),
pp. 465-480.
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Horseshoe prior

e The standard horseshoe model” imposes a conditionally Gaussian prior to x:

1 1 71
Tpr(X|7,0) = ————————— exp <—fx 3 x) ,
P (27) 3 det(S,.0)3 27 e
where ¥, ¢ = Tzdiag(ef, e ,Hi) € R™*™ is a prior covariance matrix depending on

hyperparameters 7 € R (global)and 8 = [0, .. ., Gn]T € RY, (local).

® This hierarchical prior imposes half-Cauchy hyperpriors on the hyperparameters:

1 o
7T§+7'2 and 71'hpr(9)o<1_[1+02

i=1 K

Thpr (T) X

with 7,6; > 0,

where 79 is a scale parameter.

2C. M. Carvalho et al. “The horseshoe estimator for sparse signals”. In: Biometrika 97.2 (2010),
pp. 465-480.
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Horseshoe prior

M
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Figure: Comparison of the horseshoe prior bounds with other probability densities. The
zoom-in highlights the distributions at the tails.

No closed form for the horseshoe prior, but upper and lower bounds:

4 1 2
log (14 = ) < mo(z) < log (1+ = ).
2\/7 Og( +£L'2> —TrP (l‘)_ \/ﬁ Og( +(£2)
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Shrinkage coefficients

Set 7 = 1. The shrinkage coefficients are defined according to the covariance

matrix: 1
Qﬁi:?egg[o,ﬂ, Z:L,Tl
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Shrinkage coefficients

Set 7 = 1. The shrinkage coefficients are defined according to the covariance

matrix:
1

S

0,1, i=1,...,n.

® As ¢; — 0, there is no shrinkage and z; is a non-vanishing component.

® As ¢; — 1, the shrinkage occurs.
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Shrinkage coefficients

Set 7 = 1. The shrinkage coefficients are defined according to the covariance

matrix:
1

S

0,1, i=1,...,n.

® As ¢; — 0, there is no shrinkage and z; is a non-vanishing component.

® As ¢; — 1, the shrinkage occurs.

Since 6, follows a half Cauchy distribution with parameter (0, 1), we can derive the
pdf of ¢;:

L

TG VI =i

that is, ¢, follows a Beta distribution with a shape parameter equal to 1/2.

m(¢i) =
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Shrinkage coefficients

6 —(.5) =
() =
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Hierarchical posterior density

Tpos (X7 T, 9|y) o8 ﬂ-lk(y‘x) Tpr (Xa T, 0)

® The likelihood density follows from the noise assumption:

1
vl ocexp (o ly — 4xl3).

® The prior density is hierarchical horseshoe prior on Dx:

Tpr (x, T, 9) = WPT(X‘T7 O)Whpr(T)ﬂ_hPr(e)v

where we have

1 1 Tw—1
® . (x|T,0 cxiexp<—f Dx)" ¥ Dx),
pr(x[7, 0) FRTSERE 5 (Dx)" Xr 4 (Dx)

® Thpr(T) X with T > 0,

o ﬂ'hpr(e) X H 1—|—792 with @ > 0.

i=1 g
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Hierarchical posterior density

1 1 S IR
s (x,7,0ly) c——— ——|ly - Ax|? - =(Dx)TS-L (D
Tpos (X, T |y>o<det(27,9)% eXP( 552 1y = Axl5 = 5 (Dx) 275 ( X)>

y 1 I
T3+T2i:11+9?

with 7,0 > 0.

The main challenges to explore this posterior:
® the dimension of the parameter space is increased;

® the hyperparameters are endowed with heavy-tailed distributions.
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MAP estimate

A commonly used point estimate for the posterior density is the maximum a
posteriori (MAP) estimate, where one sets the mode of the posterior as the single
point representative of the whole density function:

{x*,7%,0"} € arg MaX Tpos (x,7,0)y) = arg min — Inmpes (x, 7, 0y) .

,7,0 x,T,0
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MAP estimate

A commonly used point estimate for the posterior density is the maximum a
posteriori (MAP) estimate, where one sets the mode of the posterior as the single
point representative of the whole density function:

. 1 o 11 2
omin T 0) =g gy - Axlp + 5112, 6 Dxl;

+3 Mo+ 3 (1 +62) + nlnT + (7 + 72).
i=1 i=1

® 7 is quadratic with respect to x.

® 7 is non-convex with respect to 7 and 6. But the global minimizers of the 7- and
0-subproblems have closed-form.

® 7 is non-convex with respect to (x, 7, ).

® \We can prove that the alternating minimization algorithm converges to a stationary point
of J.
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CT reconstruction

Lo-TV

Lo-HS

X Zoomed x |x — x|

Figure: CT geometry: 45 equidistance angles, 170 detector pixels and 150-by-150
reconstruction resolutions. SNR and SSIM values are: (16.4663, 0.9067) for Lo-TV and
(22.8216, 0.9797) for Lo-HS.
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Explore the posterior by sampling

Tpos (x, 72, 02|y) o T (¥]%) Tpr (X, 72, 02)

oc Tk (y[x) 71'pr(xlTQ» 02) 7Thpr(72) 7Thpr(ez)

We can use Gibbs sampling method to characterize the posterior.
@ Sample 7(x|y, 7,0) < mk(y|x) 7pr (X|7, 0);
@ Sample 7(7|x, 0) o mpr (X|T, 0)Thpr (T);
© Sample w(0|x, 7) o Tpr (X|7, 0)Thpe ().
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Explore the posterior by sampling

Tpos (x, 72, 02|y) o T (Y[%) 7pr (X, 72, 6%)
oc T (y]%) ﬂ'pr(xlTQ, 02) 7Thpr(7'2) 7Thpr(ez)
We can use Gibbs sampling method to characterize the posterior.
@ Sample 7(x[y, 7,0) o< mu(y|x) mpr (x|7, );
@ Sample 7(7|x, 0) o mpr (X|T, 0)Thpr (T);

© Sample w(0|x, 7) o Tpr (X|7, 0)Thpe ().

Main challenge is to sample 7(7|x, 0) and w(0|x, 7).
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Extended horseshoe prior

M

Scale mixture representation of half-Student’s t-distribution

If A and B are random variables such that
2 v v 11
(A%|B) ~ IG (5, E) and B ~ IG (5, ?2) ,

then A ~ t (1,0, ¢).

® JG(+, -) denotes the inverse Gamma distribution depending on shape and scale
parameters;

e t1(., -, ) is the half-Student’s t-distribution depending on degrees of freedom, location and
scale parameters;

® t7 (1,0, c) with v = 1 isidentical to a half-Cauchy distribution.

M. P. Wand et al. “Mean field variational Bayes for elaborate distributions”. In: Bayesian Analysis 6.4
(2011), pp. 847-900.

15 DTU Compute The horseshoe prior for edge-preserving Bayesian inversion 27 Feb. 2024



Extended horseshoe prior

® Extended hierarchical horseshoe prior is

Tor(xI7%,6%) = N (0,(D"=4D) )
11 1 1
Whpr(TQW) =1G (5, ;) ) Thpr (7) = IG ( —) ,

11

2 f— —_ —
mn(016) =16 (3.
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Extended horseshoe prior

® Extended hierarchical horseshoe prior is
Tor(xI7%,6%) = N (0,(D"=4D) )
11 1 1
7Thpr(72|7) =1G (5, ;) ) Thpr (7) = IG ( —) ,

2’72
11 1
M (0160 =16 (3.3 ). merle) =16 (5.1).
® The new posterior density is

WPOS(Xa 7_27 027 Y, £|y) &
1k (Y 1) e (X[77, 6%) e (7°7) T (6% |€) Ttpr (7) Ttpr (€)-
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Gibbs sampler

™ (xy, 72, 0%) o< mi(y|x) mpr (x|72, 6%)

o (72[x, 0%, 7) o mpe (X|72, 0% Thpe (77 )

m3(0%]%, 7%, &) o T (|77, 0%) e (6°€)
Ta(Y|72) X Tape (T2[7) Tpr (7).
75(£16%) o Thpr (6%1€) Tapr (€)-
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Gibbs sampler

™ (xy, 72, 0%) o< mi(y|x) mpr (x|72, 6%)

o (72[x, 0%, 7) o mpe (X|72, 0% Thpe (77 )

m3(0%]%, 7%, &) o T (|77, 0%) e (6°€)
Ta(Y|72) X Tape (T2[7) Tpr (7).
75(£16%) o Thpr (6%1€) Tapr (€)-

o 11 (x]y, 72, 6%) follows Gaussian distribution with the mean fz and the covariance A:
Roo= 2 ATALDTSIAD,  fipe=Ash (54T
0= 3 + o0, Pro=HMre| 34 Y)

® The conditional densities on all hyperparameters, i.e., w2 to 75, follow inverse Gamma
distribution with closed forms.
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1D deconvolution

M

True Data 1 Data 2
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1.0 1.0 1.0
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0.00 025 050 075 100 000 025 050 075 100 000 025 050 075 1.00
Figure: The original signal and noisy observed data with 2% and 5% noise, respectively.

® Aisfrom Gaussian blurring.

® x is sparse under the first order derivative, so we use the first order derivative operator as
D.

® Samples: ns = 2 x 104,nb =2 x 10® and n; = 40.
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Hyperparameters 7 and 6
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Figure: Posterior of 7 with low noise level.
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Figure: Posterior mean and 95% Cl for 6.
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Target parameter x
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High noise
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Figure: The relative errors are: (0.0154, 0.0663) for HS and (0.0536, 0.0927) for Laplace.
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CT reconstruction
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Figure: The ground truth and the sinogram.

ot
o
w
3

Detector pixel
[\
wt
~
1)

o
0

® Aisfrom Radon transform with 32 equidistance angles and 64 detector pixels.
® x is sparse under the first order derivatives, so we use the gradient operator as D.

® The resolution of the reconstruction is 64-by-64. The noise level is 1%.
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CT reconstruction: Target parameter x
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Thank you!

For your interest:
® Reference:

® Uribe, F.,, Dong, Y. and Hansen, P. C.: Horseshoe priors for edge-preserving linear
Bayesian inversion, SIAM Journal on Scientific Computing, Vol. 45(3), pp. 337-365,
2023.

® Dong, Y. and Pragliola, M.: Inducing sparsity via horseshoe prior in imaging problems,
Inverse Problems, Vol. 39(7), 074001, 2023.

® CUQI project: https://www.compute.dtu.dk/english/cuqi
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https://www.icms.org.uk/UQIPI24

UQIPI24: UQ for Inverse Problems and Imaging

9 16-20Sep2024 Q ICMS, Bayes Centre, Edinburgh
Openin google maps
& Enquiries

This workshop will bring together specialists in UQ for inverse problems and imaging, and we invite talks related to the Plenary Speakers

development of theory, methodology, and software. We also invite talks about interesting applications of UQ in imaging. The
goal is to stimulate networking and collaboration between researchers and students in these areas, and to present state-of-
the-art research results.

Yoann Altmann, Heriot-Watt University

Tatiana Bubba, University of Bath

- Per Christian Hansen, Technical University of Denmark
CUQIpy Software Tranining Course

Aku Seppénen, University of Eastern Finland
CUQIpy is a python software package for computational uncertainty quantification for inverse problems, developed in the

CuQIresearch project.

Julign Tachella, CNRS and ENS de Lyon

Faouzi Triki, Grenoble-Alpes University
Before the main workshop, we give a training course on this software. Participants will learn to use CUQIpy to model statistical

inverse problems and perform UQ on them. The course includes hands-on tutorials (bring your laptop!) with examples from
image deblurring, X-ray CT, and inverse problems based on partial differential equations. Half of the course is devoted to
working on a small use-case with CUQIpy, and participants are encouraged to bring their own case and data.

Programme

Monday morning s devoted to a brief tutorial on Bayesian inference and UQ for inverse problems.

The CUQIpy training course lasts from Monday noon until Tuesday noon; Monday evening is available for the nerds.

The core workshop lasts from Tuesday noon until Friday noon, and consists of plenary talks, contributed talks, and poster sessions. There will be a welcome
reception on Tuesday evening, and on Thursday evening there will be a guided tour followed by the workshop dinner.

For those who stay on Friday afternoon, we arrange a social event - perhaps a visit to a whisky or gin distillery.

24 DTU Compute The horseshoe prior for edge-preserving Bayesian inversion 27 Feb. 2024

=
=
=

M



	Bayesian model
	Horseshoe prior
	Hierarchical posterior density
	MAP estimate of the posterior
	Numerical results (MAP)
	Sample the hierarchical posterior 
	Numerical results (Gibbs)

