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Setting the Stage � True and Nominal View Angles

CT data consist of measurements of the attenuation of X-rays passing through an object.

We reconstruct an image of the linear attenuation coe�cient of the object's interior.

For each position of the X-ray source, we measure a set of data referred to as a view.

The true view angles may di�er from the assumed nominal view angles:

� The model for the measured data is b = Atru x + e, where e is the measurement noise,

x represents the image, and Atru is the forward model for the unknown true angles.

� A �naive� and bad reconstruction uses the matrix Anom based on the nominal angles.

How to Handle Uncertain View Angles � The Bayesian Framework

We consider the true view angles as unknowns �, together with the image x :

�nd (x ; �) such that b = A(�) x + e :

Here, A(�) denotes the forward model corresponding to the view angles �.

We apply the Bayesian framework with a likelihood that involves both x and �:

πpos(x ; �) / πlik(b jx ; �)� πpri(x)� πpri(�) :

� The distribution of e is determined by the measurements; in CT it is log-Poisson and

we approximate it by a Gaussian. Hence, πlik(b jx ; �) is a Gaussian.

� For πpri(x) we use a Laplace distribution of the di�erences of neighbour pixels

(enables sharp edges in the image; related to total variation (TV) regularization.

� For πpri(�) we use the von Mises distribution (i.e., a periodic normal distribution).

But wait, there's more. We introduce scalar hyperparameters: � in the Gaussian likelihood, � in the Laplace-di�erence prior for x , and � in the von Mises prior for �.

All three have exponential distributions πhpri(�) = � exp(�� �) with � = 10�4. Thus, the posterior takes the form

πpos(x ; �; �; �; �) / πlik(b jx ; �; �)� πpri(x j�)� πpri(� j�)� πhpri(�) πhpri(�)� πhpri(�)

How to Sample � A Hybrid Gibbs Sampler

Performing statistical inference of the full posterior πpos(x ; �; �; �; �) is challenging: the number of pixels n is large, the forward model A(�) is nonlinear in the view angles �,

and the prior πpri(x j�) is nondi�erentiable due to the 1-norm. We split the posterior and apply di�erent samplers for each parameter, hence the sampler is hybrid.
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b 2 Rm, x 2 Rn, � 2 Rp, I0 = 0-order mod. Bessel funct., D = bidiag(�1; 1), �� = nominal angles.

Initial states x (0); �(0); �(0); �(0); �(0)

For j = 1; 2; : : : ; Nsamp
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Simulation Results � View Angles
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Left: von Mises prior with the respective densities for selected angles in �.

Right: some component densities and true angles shown as vertical green lines.

Some Details of the Algorithm

π1: non-di�erentiable due to k � k1 and nonlinear in �. Use Laplace's approximation,

i.e., a Gaussian πG = N
(
x ;�;H�1

)
with H(x (j�1)) � Hessian of � log π1 and

� = �(x) = �H�1(x)A(�)>b = MAP estimator of π1,

Much easier to work with a Gaussian but we miss the heavy tails of π1. We use 10

CGLS iterations to compute the LS solution that gives the sample x (j).

π2: samples from π2 are drawn sequentially by componentwise Metropolis:
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After 20 cycles we obtain �(j) = �[20].

π3 and π4: can be written and approximated, respectively, in closed form.

π5: sampled with standard random-walk Metropolis.

Simulation Results � Metallic Grains Phantom
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Left: our method.

Right: using the incor-

rect nominal angles.

Top: posterior mean

Bottom: st. dev.

Nominal angles give a

blurry image with un-

certain boundaries.

We compute a sharper

image with uncertain-

ty con�ned to pixels

on grain boundaries.

Appendix � De�nition of Priors
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