

Edge-Preserving Tomographic Reconstruction with Uncertain View Angles

Per Christian Hansen, Technical University of Denmark, pcha@dtu.dk J.M. Bardsley, Univ. Montana; Y. Dong & N.A.B. Riis, DTU; F. Uribe, LUT

Setting the Stage – True and Nominal View Angles

Computed Tomography (CT)

CT data consist of measurements of the attenuation of X-rays passing through an object. We reconstruct an image of the linear attenuation coefficient of the object's interior. For each position of the X-ray source, we measure a set of data referred to as a **view**.

The true view angles may differ from the assumed **nominal view angles**:

- The model for the measured data is $b = A_{tru} x + e$, where e is the measurement noise, x represents the image, and A_{tru} is the forward model for the *unknown* true angles.
- A "naive" and bad reconstruction uses the matrix A_{nom} based on the nominal angles.

How to Handle Uncertain View Angles – The Bayesian Framework

We consider the true view angles as unknowns θ , together with the image x: find $(\mathbf{x}, \boldsymbol{\theta})$ such that $\mathbf{b} = \mathbf{A}(\boldsymbol{\theta}) \mathbf{x} + \mathbf{e}$.

- The distribution of *e* is determined by the measurements; in CT it is log-Poisson and we approximate it by a Gaussian. Hence, $\pi_{\text{lik}}(b|x,\theta)$ is a **Gaussian**.

Here, $A(\theta)$ denotes the forward model corresponding to the view angles θ . We apply the Bayesian framework with a likelihood that involves both x and θ :

 $\pi_{ ext{pos}}(\pmb{x},\pmb{ heta}) \propto \pi_{ ext{lik}}(\pmb{b} | \pmb{x},\pmb{ heta}) imes \pi_{ ext{pri}}(\pmb{x}) imes \pi_{ ext{pri}}(\pmb{ heta}) \;.$

- For $\pi_{pri}(x)$ we use a Laplace distribution of the differences of neighbour pixels (enables sharp edges in the image; related to total variation (TV) regularization.
- For $\pi_{pri}(\theta)$ we use the **von Mises distribution** (i.e., a *periodic* normal distribution).

But wait, there's more. We introduce scalar hyperparameters: λ in the Gaussian likelihood, δ in the Laplace-difference prior for \boldsymbol{x} , and κ in the von Mises prior for $\boldsymbol{\theta}$. All three have exponential distributions $\pi_{hpri}(\cdot) = \beta \exp(-\beta \cdot)$ with $\beta = 10^{-4}$. Thus, the posterior takes the form

 $\pi_{\mathsf{pos}}(\mathbf{x}, \mathbf{ heta}, \lambda, \delta, \kappa) \propto \pi_{\mathsf{lik}}(\mathbf{b} | \mathbf{x}, \mathbf{ heta}, \lambda) imes \pi_{\mathsf{pri}}(\mathbf{x} | \delta) imes \pi_{\mathsf{pri}}(\mathbf{ heta} | \kappa) imes \pi_{\mathsf{hpri}}(\lambda) \pi_{\mathsf{hpri}}(\delta) imes \pi_{\mathsf{hpri}}(\kappa)$

How to Sample – A Hybrid Gibbs Sampler

Performing statistical inference of the full posterior $\pi_{pos}(x, \theta, \lambda, \delta, \kappa)$ is challenging: the number of pixels n is large, the forward model $A(\theta)$ is nonlinear in the view angles θ , and the prior $\pi_{pri}(x|\delta)$ is nondifferentiable due to the 1-norm. We split the posterior and apply different samplers for each parameter, hence the sampler is hybrid.

$$\pi_{1}(\boldsymbol{x} | \boldsymbol{\theta}, \lambda, \delta) \propto \exp\left(-\frac{\lambda}{2} \|\boldsymbol{A}(\boldsymbol{\theta}) \, \boldsymbol{x} - \boldsymbol{b}\|_{2}^{2} - \delta(\|(\boldsymbol{I} \otimes \boldsymbol{D}) \, \boldsymbol{x}\|_{1} + \|(\boldsymbol{D} \otimes \boldsymbol{I}) \, \boldsymbol{x}\|_{1})\right)$$

$$\pi_{2}(\boldsymbol{\theta} | \boldsymbol{x}, \lambda, \kappa) \propto \exp\left(-\frac{\lambda}{2} \|\boldsymbol{A}(\boldsymbol{\theta}) \, \boldsymbol{x} - \boldsymbol{b}\|_{2}^{2} + \kappa \mathbf{1}^{\mathsf{T}} \cos(\boldsymbol{\theta} - \bar{\boldsymbol{\theta}})\right)$$

$$\pi_{3}(\lambda | \boldsymbol{x}, \boldsymbol{\theta}) \propto \lambda^{m/2} \exp\left(-\lambda \left[\frac{1}{2} \|\boldsymbol{A}(\boldsymbol{\theta}) \, \boldsymbol{x} - \boldsymbol{b}\|_{2}^{2} + \boldsymbol{\beta}\right]\right)$$

$$\pi_{4}(\delta | \boldsymbol{x}) \propto \delta^{n} \exp\left(-\delta[\|(\boldsymbol{I} \otimes \boldsymbol{D}) \, \boldsymbol{x}\|_{1} + \|(\boldsymbol{D} \otimes \boldsymbol{I}) \, \boldsymbol{x}\|_{1} + \boldsymbol{\beta}]\right)$$

$$\pi_{5}(\kappa | \boldsymbol{\theta}) \propto I_{0}(\kappa)^{-p} \exp\left(-\kappa \left[-\mathbf{1}^{\mathsf{T}} \cos(\boldsymbol{\theta} - \bar{\boldsymbol{\theta}}) + \boldsymbol{\beta}\right]\right)$$

Initial states $\pmb{x}^{(0)}$, $\pmb{ heta}^{(0)}$, $\lambda^{(0)}$, $\delta^{(0)}$, $\kappa^{(0)}$
For $j = 1, 2,, N_{samp}$
Sample attenuation coefficients $\mathbf{x}^{(j)} \sim \pi_1(\cdot \boldsymbol{\theta}^{(j-1)}, \lambda^{(j-1)}, \delta^{(j-1)})$
Sample view angles $\boldsymbol{\theta}^{(j)} \sim \pi_2(\cdot \boldsymbol{x}^{(j)}, \lambda^{(j-1)}, \kappa^{(j-1)})$
Sample hyperparameters
$\lambda^{(j)} \sim \pi_3 \left(\cdot \boldsymbol{x}^{(j)}, \boldsymbol{\theta}^{(j)} \right), \delta^{(j)} \sim \pi_4 \left(\cdot \boldsymbol{x}^{(j)} \right), \kappa^{(j)} \sim \pi_5 \left(\cdot \boldsymbol{\theta}^{(j)} \right)$

 $\boldsymbol{b} \in \mathbb{R}^m$, $\boldsymbol{x} \in \mathbb{R}^n$, $\boldsymbol{\theta} \in \mathbb{R}^p$, $I_0 = 0$ -order mod. Bessel funct., $\boldsymbol{D} = \text{bidiag}(-1, 1)$, $\overline{\boldsymbol{\theta}} = \text{nominal angles.}$

End

Simulation Results – View Angles $\frac{163.5^{\circ}\,163.6^{\circ}\,163.7^{\circ}\,163.8^{\circ}}{\theta_{42}}$ 46.3° 46.4° 46.2° 46.5° 210 277.1° 277.2° 277.3° 277.4° 313.4° 313.5° 313.6° 313.7°

<u>Left</u>: von Mises prior with the respective densities for selected angles in θ . Right: some component densities and true angles shown as vertical green lines.

Some Details of the Algorithm

 π_1 : non-differentiable due to $\|\cdot\|_1$ and nonlinear in θ . Use Laplace's approximation, i.e., a Gaussian $\pi_{G} = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{H}^{-1})$ with $\boldsymbol{H}(\mathbf{x}^{(j-1)}) \approx \text{Hessian of } -\log \pi_{1}$ and $\boldsymbol{\mu} = \boldsymbol{\mu}(\boldsymbol{x}) = \lambda \boldsymbol{H}^{-1}(\boldsymbol{x}) \boldsymbol{A}(\boldsymbol{\theta})^{\top} \boldsymbol{b} = MAP$ estimator of π_1 ,

Simulation Results – Metallic Grains Phantom

- Left: our method. Right: using the incorrect nominal angles. Top: posterior mean
- Nominal angles give a +0.08blurry image with un-+0.06certain boundaries.
- -0.04We compute a sharper image with uncertain--0.02ty confined to pixels L_{0.00} on grain boundaries.

Appendix – Definition of Priors

Much easier to work with a Gaussian but we miss the heavy tails of π_1 . We use 10 CGLS iterations to compute the LS solution that gives the sample $x^{(j)}$.

 π_2 : samples from π_2 are drawn sequentially by componentwise Metropolis:

$$\theta_1^{[k+1]} \sim \pi_2 \left(\boldsymbol{\theta} \,|\, \boldsymbol{x}, \lambda, \kappa, \begin{bmatrix} \theta_2^{[k]}, \theta_3^{[k]}, \dots, \theta_p^{[k]} \end{bmatrix} \right),$$

$$\theta_2^{[k+1]} \sim \pi_2 \left(\boldsymbol{\theta} \,|\, \boldsymbol{x}, \lambda, \kappa, \begin{bmatrix} \theta_1^{[k+1]}, \theta_3^{[k]}, \dots, \theta_p^{[k]} \end{bmatrix} \right),$$

$$\vdots$$

$$\theta_p^{[k+1]} \sim \pi_2 \left(\boldsymbol{\theta} \,|\, \boldsymbol{x}, \lambda, \kappa, \begin{bmatrix} \theta_1^{[k+1]}, \theta_2^{[k+1]}, \dots, \theta_{p-1}^{[k+1]} \end{bmatrix} \right)$$

After 20 cycles we obtain $\boldsymbol{\theta}^{(j)} = \boldsymbol{\theta}^{[20]}$.

 π_3 and π_4 : can be written and approximated, respectively, in closed form.

 π_5 : sampled with standard random-walk Metropolis.

$$\pi_{\text{pri}}(\boldsymbol{x} | \delta) = \left(\frac{\delta}{2}\right)^{n} \exp\left(-\delta(\|(\boldsymbol{I} \otimes \boldsymbol{D}) \, \boldsymbol{x}\|_{1} + \|(\boldsymbol{D} \otimes \boldsymbol{I}) \, \boldsymbol{x}\|_{1})\right)$$
$$\pi_{\text{pri}}(\boldsymbol{\theta} | \kappa) = \left(\frac{1}{2\pi I_{0}(\kappa)}\right)^{p} \exp\left(\kappa \, \boldsymbol{1}^{\mathsf{T}} \cos(\boldsymbol{\theta} - \bar{\boldsymbol{\theta}})\right)$$

Reference and Funding

F. Uribe, J. M. Bardsley, Y. Dong, P. C. Hansen, N. Riis, A hybrid Gibbs sampler for edge-preserving tomographic reconstruction with uncertain view angles, SIAM/ASA J. Uncertain. Quantific., 10 (2022), pp. 1293–1320, doi: 10.1137/21M1412268.

A part of the project Computational Uncertainty Quantification for Inverse problems (CUQI), funded by Villum Investigator grant no. 25893 from The Villum Foundation.