Edge-Preserving Tomographic Reconstruction with Uncertain View Angles

Per Christian Hansen, Technical University of Denmark, pcha@dtu.dk

J.M. Bardsley, Univ. Montana; Y. Dong \& N.A.B. Riis, DTU; F. Uribe, LUT

Setting the Stage - True and Nominal View Angles

CT data consist of measurements of the attenuation of X-rays passing through an object. We reconstruct an image of the linear attenuation coefficient of the object's interior. For each position of the X-ray source, we measure a set of data referred to as a view. The true view angles may differ from the assumed nominal view angles:

- The model for the measured data is $b=A_{\text {tru }} x+e$, where e is the measurement noise, \boldsymbol{x} represents the image, and $A_{\text {tru }}$ is the forward model for the unknown true angles.
- A "naive" and bad reconstruction uses the matrix $\boldsymbol{A}_{\text {nom }}$ based on the nominal angles.

How to Handle Uncertain View Angles - The Bayesian Framework

We consider the true view angles as unknowns θ, together with the image \boldsymbol{x} : find (x, θ) such that $b=A(\theta) x+e$
Here, $\boldsymbol{A}(\boldsymbol{\theta})$ denotes the forward model corresponding to the view angles $\boldsymbol{\theta}$. We apply the Bayesian framework with a likelihood that involves both x and θ : $\pi_{\text {pos }}(x, \theta) \propto \pi_{\text {lik }}(\boldsymbol{b} \mid x, \theta) \times \pi_{\text {pri }}(x) \times \pi_{\text {pri }}(\theta)$

- The distribution of e is determined by the measurements; in CT it is log-Poisson and we approximate it by a Gaussian. Hence, $\pi_{\text {lik }}(\boldsymbol{b} \mid \boldsymbol{x}, \boldsymbol{\theta})$ is a Gaussian.
- For $\pi_{\text {pri }}(\boldsymbol{x})$ we use a Laplace distribution of the differences of neighbour pixels (enables sharp edges in the image; related to total variation (TV) regularization.
- For $\pi_{\text {pri }}(\theta)$ we use the von Mises distribution (i.e., a periodic normal distribution).

But wait, there's more. We introduce scalar hyperparameters: λ in the Gaussian likelihood, δ in the Laplace-difference prior for \boldsymbol{x}, and κ in the von Mises prior for θ. All three have exponential distributions $\pi_{\mathrm{hpri}}(\cdot)=\beta \exp (-\beta \cdot)$ with $\beta=10^{-4}$. Thus, the posterior takes the form

$$
\pi_{\text {pos }}(x, \theta, \lambda, \delta, \kappa) \propto \pi_{\mathrm{lik}}(\boldsymbol{b} \mid \boldsymbol{x}, \theta, \lambda) \times \pi_{\text {pri }}(\boldsymbol{x} \mid \delta) \times \pi_{\text {pri }}(\theta \mid \kappa) \times \pi_{\text {hpri }}(\lambda) \pi_{\text {hpri }}(\delta) \times \pi_{\text {hpri }}(\kappa)
$$

How to Sample - A Hybrid Gibbs Sampler

Performing statistical inference of the full posterior $\pi_{\mathrm{pos}}(\boldsymbol{x}, \boldsymbol{\theta}, \lambda, \delta, \kappa)$ is challenging: the number of pixels n is large, the forward model $\boldsymbol{A}(\boldsymbol{\theta})$ is nonlinear in the view angles $\boldsymbol{\theta}$, and the prior $\pi_{\text {pri }}(\boldsymbol{x} \mid \delta)$ is nondifferentiable due to the 1 -norm. We split the posterior and apply different samplers for each parameter, hence the sampler is hybrid.

$$
\begin{aligned}
\pi_{1}(\boldsymbol{x} \mid \boldsymbol{\theta}, \lambda, \delta) & \propto \exp \left(-\frac{\lambda}{2}\|\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}-\delta\left(\|(\boldsymbol{I} \otimes \boldsymbol{D}) \boldsymbol{x}\|_{1}+\|(\boldsymbol{D} \otimes \boldsymbol{I}) \boldsymbol{x}\|_{1}\right)\right) \\
\pi_{2}(\boldsymbol{\theta} \mid \boldsymbol{x}, \lambda, \kappa) & \propto \exp \left(-\frac{\lambda}{2}\|\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}+\kappa \mathbf{1}^{\top} \cos (\boldsymbol{\theta}-\overline{\boldsymbol{\theta}})\right) \\
\pi_{3}(\lambda \mid \boldsymbol{x}, \boldsymbol{\theta}) & \propto \lambda^{m / 2} \exp \left(-\lambda\left[\frac{1}{2}\|\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}+\beta\right]\right) \\
\pi_{4}(\delta \mid \boldsymbol{x}) & \propto \delta^{n} \exp \left(-\delta\left[\|(\boldsymbol{I} \otimes \boldsymbol{D}) \boldsymbol{x}\|_{1}+\|(\boldsymbol{D} \otimes \boldsymbol{I}) \boldsymbol{x}\|_{1}+\beta\right]\right) \\
\pi_{5}(\kappa \mid \boldsymbol{\theta}) & \propto I_{0}(\kappa)^{-p} \exp \left(-\kappa\left[-\mathbf{1}^{\top} \cos (\boldsymbol{\theta}-\overline{\boldsymbol{\theta}})+\beta\right]\right)
\end{aligned}
$$

$\boldsymbol{b} \in \mathbb{R}^{m}, \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{\theta} \in \mathbb{R}^{p}, I_{0}=0$-order mod. Bessel funct., $\boldsymbol{D}=\operatorname{bidiag}(-1,1), \bar{\theta}=$ nominal angles.

Initial states $\boldsymbol{x}^{(0)}, \boldsymbol{\theta}^{(0)}, \lambda^{(0)}, \delta^{(0)}, \kappa^{(0)}$
For $j=1,2, \ldots, N_{\text {samp }}$
Sample attenuation coefficients

$$
\boldsymbol{x}^{(j)} \sim \pi_{1}\left(\cdot \mid \boldsymbol{\theta}^{(j-1)}, \lambda^{(j-1)}, \delta^{(j-1)}\right)
$$

Sample view angles

$$
\boldsymbol{\theta}^{(j)} \sim \pi_{2}\left(\cdot \mid \boldsymbol{x}^{(j)}, \lambda^{(j-1)}, \kappa^{(j-1)}\right)
$$

Sample hyperparameters

$$
\lambda^{(j)} \sim \pi_{3}\left(\cdot \mid \boldsymbol{x}^{(j)}, \boldsymbol{\theta}^{(j)}\right), \quad \delta^{(j)} \sim \pi_{4}\left(\cdot \mid \boldsymbol{x}^{(j)}\right), \quad \kappa^{(j)} \sim \pi_{5}\left(\cdot \mid \boldsymbol{\theta}^{(j)}\right)
$$

End

Simulation Results - View Angles

Left: von Mises prior with the respective densities for selected angles in θ Right: some component densities and true angles shown as vertical green lines.

Some Details of the Algorithm

π_{1} : non-differentiable due to $\|\cdot\|_{1}$ and nonlinear in θ. Use Laplace's approximation, i.e., a Gaussian $\pi_{\mathrm{G}}=\mathcal{N}\left(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{H}^{-1}\right)$ with $\boldsymbol{H}\left(\boldsymbol{x}^{(j-1)}\right) \approx$ Hessian of $-\log \pi_{1}$ and

$$
\boldsymbol{\mu}=\boldsymbol{\mu}(\boldsymbol{x})=\lambda \boldsymbol{H}^{-1}(\boldsymbol{x}) \boldsymbol{A}(\theta)^{\top} \boldsymbol{b}=\text { MAP estimator of } \pi_{1},
$$

Much easier to work with a Gaussian but we miss the heavy tails of π_{1}. We use 10 CGLS iterations to compute the LS solution that gives the sample $\boldsymbol{x}^{(j)}$
π_{2} : samples from π_{2} are drawn sequentially by componentwise Metropolis:

$$
\begin{aligned}
& \theta_{1}^{[k+1]} \sim \pi_{2}\left(\theta \mid x, \lambda, \kappa,\left[\theta_{2}^{[k]}, \theta_{3}^{[k]}, \ldots, \theta_{p}^{[k]}\right]\right), \\
& \theta_{2}^{[k+1]} \sim \pi_{2}\left(\theta \mid x, \lambda, \kappa,\left[\theta_{1}^{[k+1]}, \theta_{3}^{[k]}, \ldots, \theta_{p}^{[k]}\right]\right), \\
& \quad \\
& \theta_{p}^{[k+1]} \sim \sim \pi_{2}\left(\theta \mid x, \lambda, \kappa,\left[\theta_{1}^{[k+1]}, \theta_{2}^{[k+1]}, \ldots, \theta_{p-1}^{[k+1]}\right]\right) .
\end{aligned}
$$

After 20 cycles we obtain $\theta^{(j)}=\theta^{[20]}$
π_{3} and π_{4} : can be written and approximated, respectively, in closed form. π_{5} : sampled with standard random-walk Metropolis.

Simulation Results - Metallic Grains Phantom

Appendix - Definition of Priors

$$
\begin{gathered}
\pi_{\text {pri }}(\boldsymbol{x} \mid \delta)=\left(\frac{\delta}{2}\right)^{n} \exp \left(-\delta\left(\|(\boldsymbol{I} \otimes \boldsymbol{D}) \boldsymbol{x}\|_{1}+\|(\boldsymbol{D} \otimes \boldsymbol{I}) \boldsymbol{x}\|_{1}\right)\right) \\
\pi_{\text {pri }}(\boldsymbol{\theta} \mid \kappa)=\left(\frac{1}{2 \pi I_{0}(\kappa)}\right)^{p} \exp \left(\kappa \mathbf{1}^{\top} \cos (\boldsymbol{\theta}-\overline{\boldsymbol{\theta}})\right)
\end{gathered}
$$

Reference and Funding

F. Uribe, J. M. Bardsley, Y. Dong, P. C. Hansen, N. Riis, A hybrid Gibbs sampler for edge-preserving tomographic reconstruction with uncertain view angles, SIAM/ASA J. Uncertain. Quantific., 10 (2022), pp. 1293-1320, doi: 10.1137/21M1412268. A part of the project Computational Uncertainty Quantification for Inverse problems (CUQI), funded by Villum Investigator grant no. 25893 from The Villum Foundation.

