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1 Introduction

Besov priors are a family of wavelet based pri-

ors used In Bayesian inversion as a model that

promotes Besov space function regularity, for ex-

ample, a Besov prior can promote discontinuous

functions. Besov priors are important since:

e they are discretization invariant

e they can preserve edges In imaging applica-
tions

e they can promote sparsity In a wavelet basis

2 The problem

Consider a discrete linear inverse problem
y = Af + €, (1)

o A c R s the linear forward operator.

e f € R" Is the unknown assumed to follow a
Besov prior.

e y € R" Is the observed data.

e ¢ ~ N(0,0%l,) is the noise with o > 0.

We seek the solution to eq. (1) in terms of the

posterior distribution

Posterior
m(fly) o exp(—5=||Af — y |53 — A Bf[5), (2)

e B c R"™" s a weighted wavelet transform

1" (3)

® {Cy, W} are discrete wavelet coefficients as-
sociated with a suitable wavelet basis {1; « }.
e \,s >0, and p > 1 are prior parameters.

Goal
Sample from the posterior in eq. (2).

Bf = [Co, Wo o, " 2](5—1/2—1/0)\/‘/]’/(’ ..

3 Sampling Method

The randomize-then-optimize method [1] (RTO)
draws samples from a target posterior

To(Fly) o exp(— | F(NIR) (@

where F(f) : R" — R™".

RTO procedure
1. Draw proposal sample by solving

!
fuop = argmin S|QTF() ~ €3, (5

where @ € Rt is an orthogonal pro-
jection and £ ~ N (0, /,,).

2. Correct the proposal sample to the target
with the Metropolis-Hastings algorithm.

RTO properties
e Optimization based.
e |[ndependence sampler.

Challenge
RTO only works for posteriors on the form

eq. (4).

We Introduce a prior }ransform from Besov f
to standard Gaussian f given by

f =g '(Bf), (6)

where g : R” — R” 1s an invertible mapping
from a p-Gaussian to a standard Gaussian con-
structed by an inverse CDF method. Chang-
Ing variables using the prior transformation yields
a transformed posterior on the form

T(Fly) o< exp (5| AB2g(F) — yII5 — 2IF13). (7)

4 Numerical Test

For the numerical test, we will use an inpainting
problem. The inpainting problem i1s to recover
features of a signal in regions of missing measure-
ments. The test scenario 1s shown In fig. 1.
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Figure 1: True signal, noisy data, and inpainting
region.

We conduct 2 numerical tests with the following

setup:

e [For both tests, we draw 10000 samples from
the posterior using RTO and compute the pos-
terior mean and the posterior 95% credible in-
terval (Cl)

o Case 1.

—Fixings=1.2, p=1.5, and A = 0.025.

— Varying the wavelet basis {vY;«} be-
tween Daubechies-1 (discontinuous) and
Daubechies-8 (smooth) wavelets [2].
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Figure 2: Case 1. Posterior estimates for
the Daubechies-1 wavelet case (top) and for the

Daubechies-8 wavelet case (bottom).

Notice that the Daubechies-1 wavelet prior fills
the npainting region with a jump while the
Daubechies-8 wavelet prior fills the inpainting re-
gion with a smooth transition, as seen In fig. 2.

e Case 2
— Fixing the wavelet basis
Daubechies-8 and A = 0.025.
— Varying the parameters between s €
{0.8,1.4} and p € {1.5,2.0}.
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Figure 3: Case 2: Posterior estimates where the
base case (s = 0.8, p = 1.5) is in the middle and s
Increases In the top while p increases in the bottom
with respect to the base case.

Notice that increasing s and p reduces the width
of the 95% Cl and makes the posterior mean get
closer to the true signal in the smooth part of
the inpainting region, as seen In fig. 3.

B Conclusion

The numerical results suggest that:

e [he smoothness of the wavelet basis deter-
mines the smoothness of the posterior mean
estimate.

e [he prior parameters regularizes the poste-
rior estimates and concentrates the posterior
around the mean.
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