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1 Introduction
Besov priors are a family of wavelet based pri-
ors used in Bayesian inversion as a model that
promotes Besov space function regularity, for ex-
ample, a Besov prior can promote discontinuous
functions. Besov priors are important since:
• they are discretization invariant
• they can preserve edges in imaging applica-

tions
• they can promote sparsity in a wavelet basis

2 The problem
Consider a discrete linear inverse problem

y = Af + ϵ, (1)

• A ∈ Rm×n is the linear forward operator.
• f ∈ Rn is the unknown assumed to follow a

Besov prior.
• y ∈ Rm is the observed data.
• ϵ ∼ N (0, σ2Im) is the noise with σ > 0.
We seek the solution to eq. (1) in terms of the
posterior distribution

Posterior
π(f |y) ∝ exp(− 1

2σ2∥Af − y∥
2
2 − λ∥Bf ∥pp), (2)

• B ∈ Rn×n is a weighted wavelet transform

Bf =
[
c0, w0,0, · · · , 2j(s−1/2−1/p)wj,k, · · ·

]T
. (3)

• {c0, wj,k} are discrete wavelet coefficients as-
sociated with a suitable wavelet basis {ψj,k}.

• λ, s > 0, and p ≥ 1 are prior parameters.

Goal
Sample from the posterior in eq. (2).

3 Sampling Method
The randomize-then-optimize method [1] (RTO)
draws samples from a target posterior

πtrg(f |y) ∝ exp(−
1

2
∥F (f )∥22), (4)

where F (f ) : Rn → Rn+m.

RTO procedure
1. Draw proposal sample by solving

fprop = argmin
f

1

2
∥QTF (f )− ξ∥22, (5)

where Q ∈ R(m+n)×n is an orthogonal pro-
jection and ξ ∼ N (0, In).

2. Correct the proposal sample to the target
with the Metropolis-Hastings algorithm.

RTO properties
• Optimization based.
• Independence sampler.

Challenge
RTO only works for posteriors on the form
eq. (4).

We introduce a prior transform from Besov f
to standard Gaussian f̃ given by

f̃ = g−1(Bf ), (6)

where g : Rn → Rn is an invertible mapping
from a p-Gaussian to a standard Gaussian con-
structed by an inverse CDF method. Chang-
ing variables using the prior transformation yields
a transformed posterior on the form

π(f̃ |y) ∝ exp
(
− 1
2σ2∥AB

−1g(f̃ )− y∥22 − 12∥f̃ ∥
2
2

)
. (7)

4 Numerical Test
For the numerical test, we will use an inpainting
problem. The inpainting problem is to recover
features of a signal in regions of missing measure-
ments. The test scenario is shown in fig. 1.
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Figure 1: True signal, noisy data, and inpainting
region.

We conduct 2 numerical tests with the following
setup:
• For both tests, we draw 10000 samples from

the posterior using RTO and compute the pos-
terior mean and the posterior 95% credible in-
terval (CI)

• Case 1:
– Fixing s = 1.2, p = 1.5, and λ = 0.025.
– Varying the wavelet basis {ψj,k} be-

tween Daubechies-1 (discontinuous) and
Daubechies-8 (smooth) wavelets [2].
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Figure 2: Case 1: Posterior estimates for
the Daubechies-1 wavelet case (top) and for the
Daubechies-8 wavelet case (bottom).

Notice that the Daubechies-1 wavelet prior fills
the inpainting region with a jump while the
Daubechies-8 wavelet prior fills the inpainting re-
gion with a smooth transition, as seen in fig. 2.
• Case 2:

– Fixing the wavelet basis {ψj,k} to
Daubechies-8 and λ = 0.025.

– Varying the parameters between s ∈
{0.8, 1.4} and p ∈ {1.5, 2.0}.
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Figure 3: Case 2: Posterior estimates where the
base case (s = 0.8, p = 1.5) is in the middle and s
increases in the top while p increases in the bottom
with respect to the base case.

Notice that increasing s and p reduces the width
of the 95% CI and makes the posterior mean get
closer to the true signal in the smooth part of
the inpainting region, as seen in fig. 3.

5 Conclusion
The numerical results suggest that:
• The smoothness of the wavelet basis deter-

mines the smoothness of the posterior mean
estimate.

• The prior parameters regularizes the poste-
rior estimates and concentrates the posterior
around the mean.
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