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The CUQI Project, 2019-2025 VILLUM FONDEN

X

A unique collaborative effort to develop a mathematical, statistical and computational
framework for applying uncertainty quantification (UQ) to inverse problems.

W

We also develop a Python software package CUQIlpy for modeling and computations,
allowing experts as well as non-experts to apply UQ to their inverse problems.

In this talk we look at
some of the ingredients.
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Main Steps of Bayesian Inference and UQ
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CT Model for Uncertain View Angles
Uribe, Bardsley, Dong, Hansen, Riis (2022).

+ True angles . ). o
‘\ - Neminal angles FOT' each position of the X-ray source, we measure a set of data = a view.
!

dg‘;gg}gl}.f o : The true view angles may differ from the assumed nominal view angles.
- e The description of the measured data uses the unknown true angles.
e J Xeray e A bad reconstruction uses the nominal angles.
" ; What is new in this work:
Model: b= A(6)x +e, e = noise. e Joint computation of the image and the correct angles.
A(0) = forward model for angles 6. e UQ of the improved angles.

Unknowns: the image @ and the true view angles 8:
Tpos (T, 0) X Tk (b| X, 0) X Tppi () X Tpri(0)

o TM;k(b|x,0) = Gaussian (and approximation to the log-Poisson noise in CT).
e T,i(x) = Laplace distribution of the differences of neighbour pixels — sharp edges in the image.

e T,i(0) = von Mises distribution (i.e., a periodic normal distribution).

We introduce hyperparameters in all three distributions, and use a hybrid Gibbps sampler.
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Some Details of the Algorithm

The likelihood for data b € R™ with Gaussian noise:

i

A m/2 A ,
ik = | 5 exp —§||A(9) x—bl3], A = hyperparameter.
T
The priors for x € R™ and 0 € RP:
5 n
oilal0) = (3 ) (-0 (1T © D)als + (D@ Dal)
Tori (0| k) = ! ! exp (1 1 cos(0 — 0)) 0, K = hyperparameters
Pr 21 lo(K) ’ ’ ’

where Iy = 0-order modified Bessel function, D = bidiag(—1, 1), and @ = nominal angles.

Sampling the image pixels and view angles (see paper for details):

w(2l0,7,) cexp (5 14(®)z - b} ~8(1(1 @ D) ey + (D@ D))

A _
(0 |z, A\, k) x exp (—§||A(9) x — b||5 + k1 cos( — 9))
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Simulation Results - View Angles

i

16.2° 46.3°  464°  [6.5° 163.5°163.6° 163.7° 163.8°
01> 012

277.1°277.2° 277.3° 277 .4° 313.4°313.5°313.6°313.7°
970 6)E‘;-:)

Left: von Mises prior with the respective densities for selected angles in 6.
Right: some component densities and true angles shown as vertical green lines.

Sept. 17, 2024 CUQI - A research initiative in Computational Uncertainty Quantification for Inverse problems Per Christian Hansen



=
—
—

Simulation Resulfs - Metallic 6rains Phantom

i
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== B Structural Priors for Oil/Gas Pipes

Christensen, Riis, Pereyra, Jorgensen (2023)

X-ray CT - cross-sectional images of oil/gas pipes on the seabed.

Detect defects, cracks, etc. in the pipe (expensive to repair). _
Reconstruction

Scan

Defect!
How much
can we
trust the
size and
location?

120

180

Reinforcing bars

240

Projection angle [deg]
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Model:
y = A (z + d) + noise
and x = z + d.

Prior for z represents
the layered, circular
structure.

Prior for d represents
small “spots” of
random shape.

= Structural Prior for the Pipes

What is new in this work:
e Priors that capture completely different geometric features.

e A prior especially suited for sparse solutions with structure.

The structural prior captures the annular structure of the pipe. It is Gaussian:

5 5 =
k=1

k=1
in which
. 1 if Pixel j € Region k
pr=oxl,  My=pydiag(mg),  [my]; = .
0 otherwise
[ Region 1 (Air) . , , . :
[ Region 2 (Stee) Here, in region k: «y is the unknown attenuation coeflicient,
-1 . .

B Region 3 (PU foam) pi 18 the variance,
[ Region 4 (PE rubber) m, defines the region’s “mask.”.

[__1 Region 5 (Concrete)
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Prior for the Defects (thanks, Marcelo)

The key idea is to use a prior that promotes a defect image d that is sparse with small and spatially
coherent structures (it has small “lumps” of nonzeros).

i

This is achieved with a hidden gamma Markov random field (Altmann, Pereyra, McLaughlin 2015) in
the form of a Gaussian distribution with zero mean and a spatially varying variance that

1. pushes pixel values of d towards zero, and at the same time
2. has regions where the variance is large and where the posterior does not “feel” the prior.

The defects can occur in the regions with large variance. The details:
d = vec(A) , A ={4;}, 8ij|sij ~ N(0, ;)
S ={sij}, $ij | W ~IG(w, wgij(W)) (inverse Gamma distrib.)
W ={w;}, wij| S ~G(w, (whi;(S)™") (Gamma distrib.)
gij = /4 (Wi + wig1,; + w11+ Wit jy1)
hij =1/ (51_31 + 5;—11,]' + 57:]'1—1 + 5;—11,3'—1)

m) Note: S is heavy tailed for small w, with correlation between neighbour elements controlled by W. <=
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Simulation Results, 360 View Angles

NE
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Real Data, 360 View Angles

=
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g C: The Horseshoe Prior for Edge-Preservation

Uribe, Dong, Hansen (2023).
We often prefer heavy-tailed priors that promote sharp edges, such as

» the Cauchy or Laplace distribution of the difference between neighbor pixels.
Unfortunately, these priors are computationally demanding.

The horseshoe prior, which resembles 03

. N ettt Gaussie
the Cauchy and Laplace priors, is a L;:f:;em
: : - 0.6 77 aplace
computationally attractive alternative. | — Coucy
E 0.4 Horseshoe ’/r ‘\\ _____________________
N '
"= Why the name 021
| “horseshoe”?
3] OO : : : : : : ]
~ > Appendix. -3 -2 -1 0 1 2 3 4 5
The horseshoe prior's density is guaranteed
-/ to lie in the shaded band.

Sept. 17, 2024 CUQI - A research initiative in Computational Uncertainty Quantification for Inverse problems Per Christian Hansen



=
—
—

Defining The Horseshoe Prior

The standard horseshoe prior is conditionally Gaussian:

i

n(z) x exp (—2z' B(r,0) ) | ¥(71,0) = 7° diag(o?)

with hyperparameters 7 (global shrinkage) and o (local shrinkage):

1

1 n
mr) o 70 (1+7/72) o) 11;11 1402’

To = scale parameter.

The horseshoe prior on pixel differences, with @ = vec(IN x N image):
n(x)air o< exp (—1/22" AT, w) x)

where

A(r,w) = D" (W(g’w) W(iw)) D, W(r,w)=diag(t’w?) ™

_(IN® Dy BN
D_<DN®IN>’ Dy = bidiag(—1,1) .

Next step: make 7 and w hyperparameters — next slide.

Per Christian Hansen
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And Now: Horseshoe With Hyperparameters

In the precision matrix A(7,w), we make 7 and w hyperparameters (ZG = inverse Gamma):

n(7?[y) = ZG(Y2,/v) . m(y) =IG (2 V) . n(w; |&) =IG (Y2 Ye) . m(&) =1IG(1/21)

i

With this formulation, the horseshow prior yields a Cauchy prior on & (see paper).

We use a Gibbs sampler with these steps:

1. Sample & ~ exp (—% (J[Az — b|3 + HAl/QwH%)) using the iterative least-squares solver CGLS.

2. Sample 7 ~ 1§ (nTJrl7 % Z;’b:l [Dx]; 1 %> —_

D)
w3

2
3. Sample w; ~ G (1,%2?:1%+i), 1 =1,2,....,n

%

> |n closed form
4. Sample v ~ ZG (1, -+ %)

5. Sample & ~ TG (1,1+ 12), i=1.2.....n
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== Example: 1D Deconvolution

n =128 and 2% Gaussian noise.

1.51 B 1.51 1.51 ]
[ ] A
1.0 = 1.0
1.0 5
(.51 0.51 0.5
0.0 L . . | 0.0 | | ‘ | 0.0 . ~
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Ground truth Noisy data Posterior median (dashed)

and 95% ClI.

What is new in this work:
e Utilization of Gaussian prior sampled via least squares methods.

e Hyperpriors that can be sampled analytically.

e This allows us to use a Gibbs sampler.
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Putting It All Together

Math.
modeling

i

Software Talks and courses
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[ ] [ ]
= Goal-Oriented UQ in X-Ray CT ikham Done, Hansan (2023)
Afkham, Riis, Dong, Hansen (2024).
modelin Vs

£ :@: Reconstruct the

¢ desired quantity
directly from data

ground truth data boundaries w/ UQ and perform UQ

on this quantity.

= exact boundary
predicted boundary

Example in CT:
: Compute tumor bounda-
, Q ries and their regularity.

What is new in this work: data

« 2D - 1D computational problem, no pixels, no error accumulation. \ Lyonstruction
« Represent the inclusion boundaries as random-field functions. J inge

- Assign a hyper-parameter that controls the boundary’s regularity. /155”“‘3”“"“0”
- Perform UQ by assigning probabilities to the functions and their regularity. boundary
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! Some Details

Model. Define a center for the inclusion, and define its boundary by a radial function

i

radius(f) = ro exp(u(f)) , 6 € [0,27) , u = periodic function )
L e
u(f) = Zozj sin(j0) + 55 cos(j0) .
j=1 >

Prior. Whittle-Matérn prior for © — write the expansion coefficients as: j N\J\/W\W“\/\M s=0.1
_ ' W
a; = vg;_1 (0 + )TV B =y (0 + 52T o = length scale. :W\/\/\//"\/\,\JJ\/\/\M\SZO-i\’
The coeflicients v; are zero-mean random Gaussian. :/\/\/\_/\/\-/\/\/VV\, 5= 1\
The parameter s characterizes the roughness of the function. :M R
_ N

Sampling. Use a Gibbs sampler for the posterior (v, s|y), with y = sinogram.

For:=1,2,... CUIPY

1. Use preconditioned Crank-Nicolson to sample nt(v|y, s;) — ;41

2. Use Metropolis-Hasting to sample ®t(s|y, v;+1) — Sit+1
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DTU . . o
The boundary’s credible interval depends
= Simulation Example y P
> on the angular span of the X-rays.
true phantom Omax = 30° true phantom 0,ax = 30°
< <
gnmx = 60° Qma,\' =90° gmax = 60° gmax = 90°
[4 /,
", & “, ,
2 2 %z 3
99% HDI
. . 99% HDI
true inclusion  tree indlusion
est. inclusion est. inclusion
This phantom belongs to the prior.
Sept. 17, 2024

This phantom does not belong to the prior.
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Signing Out

Talks/posters about stuff not covered in this talk:

« Implicit priors and their interpretation - next talk (Jasper).

« UQ for a PDE-based inverse problem - next next talk (Amal).

* Comparison of RTO and Langevin sampling - talk Wednesday (Rémi).

« CUQIpy = posters Tuesday (Jakob) and Thursday (Andreea & Naoki).
 Random media and passive measurements - talk Thursday (Faouzi Triki, incl. work by Kristoffer).

More CUQI stuff not presented here:

« CT with uncertain geometry or uncertain flat field (Frederik, Jakob, Katrine, Martin)
« UQ in EIT, MREIT, and acousto-electric tomography (Aksel, Amal, Kim)
« Steerable photonic nanojet design with UQ (Amal, Mirza)

« Bayesian approach to inverse Robin problems (Aksel)

« Sampling conditioned on functionals (Lara, Mirza)

» Regularized system identification (Martin)

« Dimensionality challenges (Rafael, Yigiu)

« Large-scale computational UQ (Charlie)

* Machine learning and UQ (Babak)

» Besov priors (Andreas, Yiqiu)
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Why “Horseshoe™?

o
o
oo
10

Recall that | i

T(0;) 5 - |

1+ o |

If we introduce the shrinkage parameter x; = 1/(1 + o?) then we 6/

have the density 5

1

T K;) X I
( ) \/Féz(l — K/i/ N
which (perhaps) has a horseshoe shape. 2"

0 0.2 0.4 0.6 0.8 1

Note that ®(x;) is large for x; =~ 1 which corresponds to o; — 0 which provides a lot of shrinkage.
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Appendix: Simulation Results, 72 View Angles

-—

o
0.20
0.15 0.4
0.10 0.2
0.05 0.0
0.00 —0.2
—0.05 -0.4

(a) Mean of z. (b) Mean of d.

0.006

0.005
© 0.004

0.003

0.002
(d) Std of z. (e) Std of d.
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