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The Tokamak Reactor

EILI

A tokamak uses a magnetic field to confine p/asma in the shape of a torus.
Energy produced through fusion is absorbed as heat - electricity by turbines.
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To reach fusion conditions the
plasma is heated by injecting
neutral particles (i.e., particles
with no electric charge) into
the plasma.
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Distribution of Plasma Ion Velocities
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Locally, the magnetic field is uniform and each deuterium ion @ in the
plasma moves in a helix along the magnetic field B:

e v denotes the velocity along the field.

e v, denotes the tangential speed (the radial speed is zero).

We want to know the probability distribution f(v), vy ).

3/14 P. C. Hansen - Tomoraphy in Tokamak Plasmas IMA IP Bath, Sept. 2024



DTU
Towards the Inverse Problem =

When fast plasma ions pass through the neutral beam, they undergo a reaction
that creates a newly-born fast neutral and a photon.
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Image: Birgitte Madsen

The photons are Doppler-shifted depending on the velocity of the fast ion.

The inverse problem:
By measuring the Doppler-shift, we can infer about the wvelocity of the fast ion.

4/14 P. C. Hansen - Tomoraphy in Tokamak Plasmas IMA IP Bath, Sept. 2024



-

The Inverse Problem, Part1 ==

On a spectral detector, we measure the intensity per wavelength g(\, ¢) of the
photons, as a function of their wavelength .

This measurements also depend on the angle ¢ between the magnetic field B
and the line-of-sight u to the photon detector.

The measurements are related to the velocity distribution f(v),v1) via the
integral

g0\, 0) = /O / k(N 650y, 0.) £, 0. ) doy dos |

in which the kernel is given by

k(A o5 v,v) = R-m(A | ¢, v),v1)
(M| ¢,v),v1) = probability density function for A

and R is a constant (for simplicity).
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The Inverse Problem, Part 11
Recall there is a Doppler shift, which we can write

A A— A
)\—)\D:u = & u=-c ) =
& D

i

where A\p = 656.1 nm, ¢ = speed of light, and © = the ion’s velocity component
along the line-of-sight u to the detector. We now switch to the formulation

p— ]{j :
g(”a ¢) /() /_OO (u7 ¢7 U|| 5 UJ_) f(UH ) UJ_) dv” dv | )
with

B 5 o\ —1/2
. . B u — ?J” COS
k(u7 gb? ,UH ? UL) o T 'UJ_ Sin ¢ <]‘ ( /UL Sin ¢ ) ) :

When the argument to ( )~/2 is negative, we set k = 0.

We use quadrature discretization to obtain a linear algebraic system

Az =0b|
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Other Variables: E and p

Instead of working with the velocity distribution in the form f(v,vy),
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physicists often prefer a transformation of variables to energy E and pitch p:

E =12mpo?, p=uv/v

V= 4 /vﬁ + vi : mp = mass of deuterium ion

and instead work with the distribution function F(F,p):

1 o0
I(uacfﬁ)zf_l/O K(u,¢; E,p) F(E,p)dEdp .

From (E,p) to (v, vL):

2K 2K
vy =P m—D, CARES m—D(l—pQ)-
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Utilizing Knowledge about the Physics

Tikhonov regularization in general form, with constraint:

min ||Az — b||s + oL z||3 s.t. x>0,
T

=
=
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where @ = a(F, p) may depend on energy and pitch; Salewski et al. (2016).

Prior Benefit Risk

x>0 Improves solution x < 0 could diagnose data error

L ~ 1. deriv  Gives smooth solutions  Misses spikes and ridges

a(E, p) Accounts for NBI peaks Might introduce spurious peaks.
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Physics Prior via Slowing-Down Functions =

Instead of working with a standard “pixel basis” for F'(F, p), we can use suited
expansion functions 11,9, ..., 1, , and write the reconstruction

F(E,p) =52 i (E.p) .
The discretized and regularized problem for {c;} then takes the basic form

min ||[A W ¢ — b||5 + o?||c||5 U e R*7Md r=Uc,
&

13 1
i B =21keV | R
where the columns of ¥ are samples of the 05} %, pj_ _ ool oo .
W= .
functions 1; = slowing down functions. T o & 5T o
' K . B} = 43keV
05[ , 08| 7 J 0.3
: .. i : ipj=0.
Each 1; is a distribution F' excited by a 9- i e e B e
function d(u;, ¢,) corresponding to (E;,p;), e e
revealing how the plasma ions “slow down” | Bty R ..
.« e L p; = —0.77 :
due to collisions. = |y e B
, , ol S . Fj=63keV
Hence, the basis functions 1); represent the | ‘, Y| /by =044
thSiCS Of the plasma, o 20 a0 e 80 | 7o 20 a0 e 0
E [keV] E [keV]
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Interpretation of Basis with Physics Prior =
The case nsq =n — as many slowiggs ~ wn functions as pixels (a basis)
U is square and we assume it B ' alz=Vc & c= U 1g:

minAUe— b3 +a?|c|} & min|Az— b3 +a?| v a]3 .

C X
We can interpret the use of U as a regularizer ¥~! for z in the reg. term.
(a) E=21keV, p=-024 () E=43keV, p=0.3

In the Bayesian framework, the regulariza- | os e o . -
tion term || ¥ ~1x||5 represents a Gaussian [= o ' "= ' 150
prior for x with covariance matrix 05 2 / o

1

4
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This C, ensures smoothness by correlating
a given pixel to the pixels in its vicinity.

Rows of C, reshaped to (£, p) domain
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Interpretation, Part 11

And now: the standard-form transformation
frgn|\A$—b\|3+a2\|Lx\|§ & Hléinll(AL#)ﬁ—ngﬂLOéQHSH%
where € = Lz < ¢ = L7¢, and L™ = some kind of inverse of L.

For the case on the previous slide (n = ngq) we immediately identify L = U1,

The case ngg > n — more exp. functions than pixels (overcomplete system)

The matrix W = is “obese” and we assume it has full rank. In this case

L# = L' = pseudoinverse of L, cf. (H, 2010, §8.4 case 2).

Hence we identify _

L'=V  andthus L= (LN =0!

and
Cp = (2(INTUN ™ = o720 UT | gimilar to before.
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Interpretation, Part I11

The case ngg < n — fewer expansion functions than pixels

U =| |is “tall & skinny” and we assume full row rank.

Write

R

U=(Q, Qo) (O) =QR, range(Qo) = range(¥)+ = null(¥1) .

For a general x we must have:

r=Uc+Qow < QRc=z—Qw < c=RQTz=0z.

Let P = Qo QY = orthogonal projector on null(¥?).

We want x € range(V) and hence Qow = Pz = 0, and we arrive at
min |[Az — b||3 + || T z]|2 s.t. Px=0.
o
The constraint is always satisfied because ¢ = UTx. Thus, we get

Cp = (@2(UNTIN ™! = 20 w7 | similar to before.
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Ex: Covariance Matrix for a "Skinny” Basis

Recap: we want to interpret the role of the slowing-down basis ¥ via,

e the regularization term o? || UTz||

e the covariance matrix C, = =20 U7

HE

< Tikhonov approach

< Bayesian approach

We continue with the case where ¥ € R%29%170 ig “ta]]l & skinny,” i.e., we have
fewer basis functions v; than the number of unknowns (pixels in the image).

We show rows of C, reshaped to

(E,p anna;leent local

averaging.

ﬁ

For lower energy E the cor-
relation in pitch p increases.
This confirms the intuition of
the physicists.
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Conclusion

= The slowing-down functions provide a set of basis vectors that represent
the behavior of the ions in the plasma.

= We can interpret this as a regularization term in the Tikhonov formulation.
= Specifically, the use of these basis functions imposes local smoothing.
= The smoothing that we observe confirms the intuition of the physicists.

= Next step: deal with linearly dependent expansion functions.
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