
Isabelle/PSPSP
Installation and User Manual

Andreas Hess Sebastian Mödersheim Achim D. Brucker
Anders Schlichtkrull

May 9, 2020

Contents

1 Introduction 2

2 Installation 2
2.1 Installing Isabelle . 2
2.2 Installing the Archive of Formal Proofs . 3
2.3 Registration of Isabelle Components . 4
2.4 Compiling Session Heaps and Final Setup . 4

3 A Brief Overview of Isabelle/PSPSP 5
3.1 Protocol Specification . 7
3.2 Protocol Model Setup . 8
3.3 Fixpoint Computation . 9
3.4 Proof of Security . 9
3.5 Inspecting the Generated Theorems and Definitions 10

4 Common Pitfalls 10
4.1 Not Including an Initial Value-Producing Transaction 10
4.2 Using Value-Typed Database-Parameters in Database-Expressions 11
4.3 Not Ordering the Action Sequences in Transactions Correctly 12
4.4 Declaring Ill-Formed Analysis Rules . 12
4.5 Declaring Public Constants of Type Value . 13
4.6 Forgetting to Terminate Transactions With a period 13

5 Reference Manual 13
5.1 Top-Level Isabelle Commands . 14
5.2 Proof Methods . 15

6 Benchmark 15
6.1 The Benchmark Setup . 15
6.2 Running the Benchmark . 16
6.3 Obtaining the Timings . 16

1

1 Introduction

In this document, we describe the installation and use of Isabelle/PSPSP, the system implementing
the approach described in our CSF submission.
Isabelle/PSPSP is built on top of the latest version of Isabelle/HOL [3], i.e., Isabelle 2020. While

Isabelle is widely perceived as an interactive theorem prover for HOL (Higher-order Logic), we would
mention that Isabelle can be understood as a framework that provides various extension points. In our
work, we make use of this fact by extending Isabelle/HOL with:

• a formalization of the protocol-independent aspects of our approach that is based on a large
formalization (the session is called Automated_Stateful_Protocol_Verification) of security pro-
tocols in Isabelle/HOL that, among others, includes proofs for typing results and protocol com-
positionality. The theory Automated_Stateful_Protocol_Verification.PSPSP is the main entry
point for the security analysis of concrete protocols using Isabelle/PSPSP.

• an encoder (datatype package) that translates a high-level protocol specification (called “trac”)
into HOL. This datatype package provides the high-level command trac.

• a command (called compute_fixpoint) that computes an over-approximation of all messages
that a security protocol can generate.

• a command that, for a specific class of protocols, can fully-automatically prove their security
(protocol_security_proof).

• a command that generates a list of proof obligations (sub-goals) for proving the security of the
specified protocol interactively (manual_protocol_security_proof).

• several proof methods that either can be used interactively or that are used internally by the
fully automated poof setup (protocol_security_proof).

The rest of this document is structured as follows: in Section 2, we explain the steps necessary to
install Isabelle/PSPSP and its dependencies. Thereafter, we give a brief overview of Isabelle/PSPSP
using our simple Keyserver as a running example (Section 3). Next, we discuss common pitfalls
(Section 4 and provide a small reference manual explaining our new top-level Isabelle (Isar) command,
our new proof methods, and the trac specification language (Section 5. Finally, we explain how our
benchmark results presented in the CSF paper can be reproduced (Section 6).

2 Installation

Isabelle/PSPSP extends Isabelle/HOL. Thus, the first step is to install Isabelle 2020. Moreover, we
make use of the Archive of Formal Proofs (AFP), which needs to be installed in a second step. Finally,
we need to register the new Isabelle components and compile the session heaps for faster start up.

2.1 Installing Isabelle

Isabelle 2020 can be downloaded from the Isabelle website (http://isabelle.in.tum.de/). Detailed
installation instructions for all supported operating systems are available at https://isabelle.in.
tum.de/installation.html. For your convenience, we include detailed instructions for Linux and
macOS:

2

http://isabelle.in.tum.de/
https://isabelle.in.tum.de/installation.html
https://isabelle.in.tum.de/installation.html

• Linux: Download http://isabelle.in.tum.de/dist/Isabelle2020_linux.tar.gz and un-
pack the archive, e.g., by executing

Bash
achim@logicalhacking:~$ tar zxvf Isabelle2020_linux.tar.gz

on the command line. This will create a folder Isabelle2020, which contains the Isabelle 2020
application on the top-level. You should be able to start Isabelle as follows:

Bash
achim@logicalhacking:~$./Isabelle2020/Isabelle2020

After the installation of Isabelle application, you should also be able to start Isabelle on the
command line:

Bash
achim@logicalhacking:~$./Isabelle2020/bin/isabelle

• macOS: Download http://isabelle.in.tum.de/dist/Isabelle2020_macos.tar.gz and in-
stall it “as usual.”

Note that the macOS security manager by default blocks all downloaded applications, and to
overcome this, start Isabelle with right-clicking and selecting “open” from the context menu.
Then the security manager at least gives the option “open”. It seems sometimes one has to do
that even a second time before getting the “open” option. Afterwards, normal double-clicking
the application works.

After the installation of the Isabelle application, you should also be able to start Isabelle on the
command line:

Bash
MacBook::~$ /Applications/Isabelle2020.app/Isabelle/bin/isabelle

2.2 Installing the Archive of Formal Proofs

After installing Isabelle, we now need to install the AFP (Archive of Formal Proofs). The AFP () is a
large library of Isabelle formalizations. For Isabelle/PSPSP, please install the AFP version 2020-04-30
by downloading https://www.isa-afp.org/release/afp-2020-04-30.tar.gz.
Next, unpack the archive, e.g.,

• Linux: Depending on your desktop, either open the file or unpack the archive on the command
line, e.g.:

Bash
achim@logicalhacking:~$ tar zxvf afp-2020-04-30.tar.gz

• macOS: Open the downloaded file.

3

http://isabelle.in.tum.de/dist/Isabelle2020_linux.tar.gz
http://isabelle.in.tum.de/dist/Isabelle2020_macos.tar.gz
https://www.isa-afp.org
https://www.isa-afp.org/release/afp-2020-04-30.tar.gz
https://www.isa-afp.org/release/afp-2020-04-30.tar.gz

2.3 Registration of Isabelle Components

Finally, we need to register the AFP as well as Isabelle/PSPSP as Isabelle component. This is done
by editing (or creating, if it does not exist) the file $HOME/.isabelle/Isabelle2020/ROOTS: Please
open this file in a text editor and

• for the AFP, add the path to the thys sub-directory of the AFP. So for instance, after downloading
the AFP (version 2020-04-30) into say the directory $HOME/Desktop/testing, the corresponding
line would be

$HOME/.isabelle/Isabelle2020/ROOTS
$HOME/Desktop/testing/afp-2020-04-30/thys

• for PSPSP, add the top level directory of the provided archive. So for instance, after downloading
our archive (PSPSP.tgz) into say the directory $HOME/Desktop/testing, the corresponding line
would be

$HOME/.isabelle/Isabelle2020/ROOTS
$HOME/Desktop/testing/PSPSP

2.4 Compiling Session Heaps and Final Setup

We recommend1 to “compile” Isabelle/PSPSP (in Isabelle lingo: building the session heaps) on the
command line. This can be done by executing (please take care of the full qualified path of the
isabelle binary for your operating system):

Bash
achim@logicalhacking:~$ isabelle build -b Automated_Stateful_Protocol_Verification
Building Pure ...
Finished Pure (0:00:50 elapsed time, 0:00:50 cpu time, factor 1.00)
Building HOL ...
Finished HOL (0:09:50 elapsed time, 0:31:02 cpu time, factor 3.16)
Building HOL-Library ...
Finished HOL-Library (0:04:49 elapsed time, 0:24:43 cpu time, factor 5.13)
Building Abstract-Rewriting ...
Finished Abstract-Rewriting (0:01:28 elapsed time, 0:04:00 cpu time, factor 2.71)
Building First_Order_Terms ...
Finished First_Order_Terms (0:00:47 elapsed time, 0:01:54 cpu time, factor 2.39)
Building Stateful_Protocol_Composition_and_Typing ...
Finished Stateful_Protocol_Composition_and_Typing (0:08:18 elapsed time, 0:36:38 cpu \

time, factor 4.41)
Building Automated_Stateful_Protocol_Verification ...
Finished Automated_Stateful_Protocol_Verification (0:15:11 elapsed time, 0:50:57 cpu \

time, factor 3.36)
0:41:46 elapsed time, 2:30:06 cpu time, factor 3.59
achim@logicalhacking:~$

1The sessions should also be build automatically on the start of Isabelle’s graphical user interface Isabelle/jEdit. For
this, it is important that you select the session Automated_Stateful_Protocol_Verification as described in
the following paragraph and restart Isabelle. For us, building on the command line has easier to reproduce on different
machines.

4

Figure 1: Isabelle/jEdit on its first startup. Please click on the “Theories” tab on the right hand side
and select the session “Automated_Stateful_Protocol_Verification.”

Isabelle will build all sessions that are required. Note that you might have already some of the heaps
available and, hence, only a subset of the list shown above might be build on your system.
Finally, please start the (graphical) Isabelle application by clicking on the Isabelle icon (macOS) or

by starting Isabelle2020 on the command line (Linux and macOS):

Bash
achim@logicalhacking:~$./Isabelle2020/Isabelle2020

and select the session Automated_Stateful_Protocol_Verification. For doing so, you need to select
the “Theories”-pane on the right hand side and select the session from drop-down menu (see Figure 1).
To persist this configuration, you need to restart Isabelle, i.e., please close Isabelle/jEdit now. On the
next start, Automated_Stateful_Protocol_Verification will be the default session.

3 A Brief Overview of Isabelle/PSPSP

In this section, we briefly explain how to use Isabelle/PSPSP for proving the security of protocols. As
Isabelle/PSPSP is build on top of Isabelle/HOL, the overall user interface and the high-level language
(called Isar) are inherited from Isabelle. We refer the reader to [3] and the system manuals that are
part of the Isabelle distribution. The latter are accessible within Isabelle/jEdit in the documentation
pane on the left-hand side of the main window .

In the following, we will illustrate the use of our system by analysing our simple keyserver protocol.
The complete formalization is part of our benchmark-suite and can be inspected by loading the file
PSPSP-Experiments/Keyserver_3_1_code_simp/Keyserver_3_1.thy Please ensure that the session
Automated_Stateful_Protocol_Verification is active.

When done, please move the text cursor to the section “Proof of Security”. There are some orange
question marks at the side of some lines. These are the comments from Isabelle that indicate the timing
results we ask for: when moving the cursor to the corresponding line, and selecting the Output-Tab on
the bottom of the Isabelle window (ensure that there is a tick-mark on “Auto update”), you see the
timing information provided by Isabelle for each step. Your Isabelle should look similar to Figure 2.

5

Figure 2: Opening Keyserver_3_1.thy in Isabelle/jEdit.

6

The Isabelle IDE (called Isabelle/jEdit) is a front-end for Isabelle that supports most features known
from IDEs for programming languages. The input area (in the middle of the upper part of the
window) supports, e.g., auto completion, syntax highlighting, and automated proof generation as well
as interactive proof development. The lower part shows the current output (response) with respect to
the cursor position.

We will now briefly explain this example in more detail. First, we start with the theory header: As in
Isabelle/HOL, formalization happens within theories. A theory is a unit with a name that can import
other theories. Consider the following theory header:

theory
Keyserver

imports
Automated_Stateful_Protocol_Verification.PSPSP
begin

which opens a new theory Keyserver that is based on the top-level theory of Isabelle/PSPSP, called
Automated_Stateful_Protocol_Verification.PSPSP. Within this theory, we can use all definitions and
tools provided by Isabelle/PSPSP. For example, Isabelle/PSPSP provides a mechanism for measuring
the run-time of certain commands. This mechanism, which we use in our benchmarks can be turned
on as follows:

declare [[pspsp_timing]]

3.1 Protocol Specification

The protocol is specified using a domain-specific language that, e.g., could also be used by a security
protocol model checker. We call this language “trac” and provide a dedicated environment (command)
trac for it:

trac〈

Protocol: Keyserver

Types:
honest = {a,b,c}
dishonest = {i}
agent = honest ++ dishonest

Sets:
ring/1 valid/1 revoked/1 deleted/1

Functions:
Public sign/2 crypt/2 pair/2
Private inv/1

Analysis:
sign(X,Y) -> Y
crypt(X,Y) ? inv(X) -> Y
pair(X,Y) -> X,Y

Transactions:
Out-of-band registration
outOfBand(A:honest)
new PK
insert PK ring(A)

7

insert PK valid(A)
send PK.

Out-of-band registration (for dishonest users; they reveal their private keys to the intruder)
oufOfBandD(A:dishonest)
new PK
insert PK valid(A)
send PK
send inv(PK).

User update key
keyUpdateUser(A:honest,PK:value)
PK in ring(A)
new NPK
delete PK ring(A)
insert PK deleted(A)
insert NPK ring(A)
send sign(inv(PK),pair(A,NPK)).

Server update key
keyUpdateServer(A:agent,PK:value,NPK:value)
receive sign(inv(PK),pair(A,NPK))
PK in valid(A)
NPK notin valid(_)
NPK notin revoked(_)
delete PK valid(A)
insert PK revoked(A)
insert NPK valid(A)
send inv(PK).

Attack definition
attackDef(A:honest,PK:value)
receive inv(PK)
PK in valid(A)
attack.

〉

The command trac automatically translates this specification into a family of formal HOL definitions.
Moreover, basic properties of these definitions are also already proven automatically (i.e., without any
user interaction): for this simple example, already over 350 definitions and theorems are automatically
generated, respectively, formally proven. For example, the following induction rule is derived:
[[Keyserver_Ana_dom ?a0.0; Keyserver_Ana_dom sign =⇒ ?P sign;
Keyserver_Ana_dom crypt =⇒ ?P crypt; Keyserver_Ana_dom pair =⇒ ?P pair;
Keyserver_Ana_dom Keyserver_fun.inv =⇒ ?P Keyserver_fun.inv;
Keyserver_Ana_dom PrivFunSec =⇒ ?P PrivFunSec;∧
uu_. Keyserver_Ana_dom (enum uu_) =⇒ ?P (enum uu_)]]

=⇒ ?P ?a0.0

3.2 Protocol Model Setup

Next, we show that the defined protocol satisfies the requirement of our protocol model (technically,
this is done by instantiating several Isabelle locales, resulting in over 1750 theorems “for free.”). The
underlying instantiation proofs are fully automated by our tool:

8

protocol_model_setup spm: Keyserver

3.3 Fixpoint Computation

Now we compute the fixed-point:

compute_fixpoint Keyserver_protocol Keyserver_fixpoint

We can inspect the fixed-point with the following command:

thm Keyserver_fixpoint_def

Moreover, we can use Isabelle’s value-command to compute its size:

value "let (FP,_,TI) = Keyserver_fixpoint in (size FP, size TI)"

3.4 Proof of Security

After these steps, all definitions and auxiliary lemmas for the security proof are available. Note that
the security proof will fail, if any of the previous commands did fail. A failing command is sometimes
hard to spot for non Isabelle experts: the status bar next to the scroll bar on the right-hand side of the
window should not have any “ ‘dark red” markers.
We can do a fully automated security proof using a new command protocol_security_proof:

protocol_security_proof ssp: Keyserver

This command proves the security protol only using Isabelle’s simplifier (and, hence, everything is
checked by Isabelle’s LCF-style kernel).

Moreover, we provide two alternative configuration, one using an approach called “normalization by
evaluation” (nbe) and one using Isabelle’s code generator for direct code evaluation (eval). Please see
Section 5 and Isabelle’s code generator manual [1] for details.

protocol_security_proof [nbe] ssp: Keyserver

While the stack of code that needs to be trusted for the normalization by evaluation is much smaller
than for the direct code evaluation, direct code evaluation is usually much faster:

protocol_security_proof [unsafe] ssp: Keyserver

Moreover, there is the option to only generate the proof obligations (as sub-goals) for an interactive
security proof:

manual_protocol_security_proof ssp: Keyserver
for Keyserver_protocol Keyserver_fixpoint
apply check_protocol_intro
subgoal by code_simp
subgoal by normalization
subgoal by code_simp
subgoal by normalization
subgoal by code_simp
done

Such an interactive proof allows us to interactively inspect intermedaite proof states or to use
protocol-specific proof strategies (e.g., only partially unfolding the fixed-point).

9

3.5 Inspecting the Generated Theorems and Definitions

We can inspect the generated proofs using the thm:

thm ssp.protocol_secure
thm spm.constraint_model_def
thm spm.reachable_constraints.simps

thm Keyserver_enum_consts.nchotomy
thm Keyserver_sets.nchotomy
thm Keyserver_fun.nchotomy
thm Keyserver_atom.nchotomy
thm Keyserver_arity.simps
thm Keyserver_public.simps
thm Keyserver_Γ.simps
thm Keyserver_Ana.simps

thm Keyserver_protocol_def
thm Keyserver_transaction_outOfBand_def
thm Keyserver_transaction_keyUpdateUser_def
thm Keyserver_transaction_keyUpdateServer_def
thm Keyserver_transaction_attackDef_def

thm Keyserver_fixpoint_def

Finally, the theory needs to be closed:

end

4 Common Pitfalls

This section explains some common pitfalls, along with solutions, that one may encounter when writing
trac specifications.

4.1 Not Including an Initial Value-Producing Transaction

Trac specifications that contain value-typed variables should also declare a transaction that produces
fresh values. Take, for instance, a trac specification that contains only one transaction:

〈 . . . 〈

Transactions:
attackDef(PK:value)

receive PK
attack.

This protocol is technically secure because no values are ever produced. Similarly, if we just look at
the protocol with the following transaction then we find that it is also secure:

〈 . . . 〈

Transactions:
attackDef(PK:value)

attack.

The reason it is secure is because of the occurs-message transformation that is being applied to
each transaction T of the protocol for technical reasons: A receive occurs(PK) action is added to

10

T for each value-typed variable PK declared in T , and a send occurs(PK) is added to T for each
new PK action occurring in T . Since no values are actually produced in any protocol run, then no
occurs-message is produced, and so the attackDef transaction cannot ever be applied. One would,
however, naturally expect that such a protocol is not secure. For this reason we require that each trac
specification includes a value-producing transaction if there are any value-typed variables occurring in
the trac specification at all. For instance, when including such a transaction to our example we get a
valid trac transaction specification:

〈 . . . 〈

Transactions:
valueProducer()

new PK
send PK.

attackDef1(PK:value)
attack.

Another example is the following which is also a valid trac transaction specification because it does
not declare any value-typed variables:

〈 . . . 〈

Transactions:
attackDef2()

attack.

Both protocols have attacks, as expected. Examining the generated Isabelle definitions reveals that
the valueProducer transaction produces an occurs message while the attackDef1 transaction expects
to receive an occurs message:
trac〈

Protocol: ex1

Types:
dummy_type = {dummy_constant}

Sets:
dummy_set/0

Transactions:
valueProducer()

new PK
send PK.

attackDef1(PK:value)
attack.

〉

thm ex1_transaction_valueProducer_def
thm ex1_transaction_attackDef1_def

4.2 Using Value-Typed Database-Parameters in Database-Expressions

Due to the nature of the abstraction that is at the core of our verification approach it is simply not
possible to use value-typed variables in parameters to databases. Hence, a trac specification with the
following transaction would be rejected:

11

〈 . . . 〈

f(PK:value,A:value)
PK in db(A).

As an alternative one could declare A with a type—say, agent—that is itself declared in the Types
section of the trac specification:

〈 . . . 〈

Types:
agent = {a,b,c}

Transactions:
f(PK:value,A:agent)

PK in db(A).

4.3 Not Ordering the Action Sequences in Transactions Correctly

The actions of a transaction should occur in the correct order; first receive actions, then database
checks, then new actions and database updates, and finally send actions.
Hence, the following is an invalid transaction:

〈 . . . 〈

invalid(PK:value)
send f(PK)
receive g(PK).

whereas the following is valid:
〈 . . . 〈

valid(PK:value)
receive f(PK)
send g(PK).

4.4 Declaring Ill-Formed Analysis Rules

Each analysis rule must either be of the form
〈 . . . 〈

Ana(f(X1,...,Xn)) ? t'1,...,t'k -> t1,...,tm

or of the form
〈 . . . 〈

Ana(f(X1,...,Xn)) -> t1,...,tm

where f is a function symbol of arity n, the variables Xi are all distinct, and the variables occurring
in the ti and t'i terms are among the Xi variables.

12

4.5 Declaring Public Constants of Type Value

It is not possible to directly refer to constants of type value. A possible workaround is to instead
add a transaction that generates fresh values and releases them to the intruder (thereby making them
“public”):

〈 . . . 〈

freshPublicValues():
new K
send K.

It is usually beneficial to ensure that all fresh values are inserted into a database before being
transmitted over the network. In this example one could use a database that is not used anywhere
else:

〈 . . . 〈

freshPublicValues():
new K
insert K publicvalues
send K.

Under the set-based abstraction this prevents accidentally identifying values produced from this
transaction with values produced elsewhere in the protocol, since they are now identified with their
own unique abstract value {publicvalues} instead of the more common ”empty“ abstract value {}.

4.6 Forgetting to Terminate Transactions With a period

Transactions must end with a period. Forgetting this period may result in a confusing error message
from the parser. For instance, suppose that we have the following Transaction section where we
forgot to terminate the valueProducer transaction:

〈 . . . 〈

valueProducer()
new PK
send PK

attackDef(PK:value)
attack.

This could result in an error message like the following:
〈 . . . 〈

Error, line 14.13, syntax error: deleting COLON LOWER_STRING_LITERAL

5 Reference Manual

In this section, we briefly introduce the syntax of the most important commands and methods of
Isabelle/PSPSP. We follow, in our presentation, the style of the Isabelle/Isar manual [4]. For details
about the standard Isabelle commands and methods, we refer to the reader to this manual [4].

13

5.1 Top-Level Isabelle Commands

trac

trac
�� �trac-specification

This command takes a protocol in the trac language as argument. The command translates this
high-level protocol specification into a family of HOL definitions and also proves already a number of
properties basic properties over these definitions. The generated definitions are all prefixed with the
name of the protocol, as given as part of the trac specification.

protocol_model_setup

protocol_model_setup
�� �spm:

�� �protocol-name

This command takes one argument, the name of the protocol (as given in the trac specification). In
general, this command proves a large number of properties over the protocol specification that are later
used by our security proof. In particular, the command does internally instantiation proofs showing,
e.g., that the protocol specifications satisifies the requirements of the typing results of [2].

compute_fixpoint

compute_fixpoint
�� �protocol-name fixpoint-name

This command computes the fixed-point of the protocol. It takes two arguments, first the protocol
name (as given in the trac specification) and, second, the name that should be used for constant
to which the generated fixed point is bound. The algorithm for computing the fixed-point has been
specified in HOL. Internally, Isabelle’s code generator is used for deriving an SML implementation that
is actually used. Note that our approach does not rely on the correctness of this algorithm neither on
the correctness of the code generator.

compute_SMP

compute_SMP
�� �protocol-name SMP-set-name

This command computes the SMP set of the protocol. It takes two arguments, first the protocol
name (as given in the trac specification) and, second, the name that should be used for constant to
which the generated SMP set is bound.

protocol_security_proof

protocol_security_proof
�� �[

��� safe�
�nbe

�unsafe

�

]
���ssp:

�� �protocol-name

14

This command executes the formal security proof for the given security protocol. Its internal behavior
can be configured using one of the following three options:

• [safe] (default): use Isabelle’s simplifier to prove the goal by symbolic evaluation. In this mode,
all proof steps are checked by Isabelle’s LCF-style kernel.

• [nbe]: use normalization by evaluation, a partial symbolic evaluation which permits also nor-
malization of functions and uninterpreted symbols. This setup uses the well-tested default
configuration of Isabelle’s code generator for HOL. While the stack of code to be trusted is
considerable, we consider this still a highly trustworthy setup, as it cannot be influenced by
end-user configurations of the code generator.

• [unsafe]: use Isabelle’s code-generator for evaluating the proof goal on the SML-level. While
this is, by far, the fastest setup, it depends on the full-blown code-generator setup. As we do
not modify the code-generator setup in our formalisation, we consider the setup to be nearly as
trustworthy as the normalization by evaluation setup. Still, end-user configurations of the code
generator could, inadvertently, introduce inconsistencies.

For a detailed discussion of these three modes and the different software stacks that need to be
trusted, we refer the reader to the tutorial describing the code generator [1, Section 5.1].

manual_protocol_security_proof

manual_protocol_security_proof
�� �ssp:

�� �protocol-name

This command allows to interactively prove the security of a protocol. As the fully automated
version, it takes the protocol name as argument but it does not execute a proof. Instead, it generated
a proof state with the necessary proof obligations. It is the responsibility of the user to discharge these
proof obligations. Application of this command results in a regular Isabelle proof state and, hence, all
proof methods of Isabelle can be used.

5.2 Proof Methods

In addition to the Isar commands discussed in the previous section, Isabelle/PSPSP also provides a
number of proof methods such as check_protocol_intro or coverage_check_unfold. These domain
specific proof methods are used internally by, e.g., the command manual_protocol_security_proof
and can also be used in interactive mode.

6 Benchmark

6.1 The Benchmark Setup

In this section we explain briefly how to reproduce the benchmark results presented in Table 1 of
the submitted paper. All case studies are in the folder PSPSP-Experiments; for each protocol of the
benchmark set, there are three sub-directories. For example, let us recall the Keyserver model that we
already used in Section 3. The experiment for Keyserver is stored in the following three sub-directories:

15

Keyserver_3_1_code_simp
Keyserver_3_1.thy The protocol specification and security proof
ROOT..Isabelle build-configuration

Keyserver_3_1_nbe
Keyserver_3_1.thy The protocol specification and security proof
ROOT..Isabelle build-configuration

Keyserver_3_1_unsafe
Keyserver_3_1.thy The protocol specification and security proof
ROOT..Isabelle build-configuration

Each configuration of the Keyserver example is “ ‘packaged” as an Isabelle session, i.e., the three
sessions only differ in the argument passed to the protocol_security_proof command. The session
(directory) with the suffix _code_simp uses the default configuration, i.e., Isabelle’s simplifier (the
method code_simp). The session with the suffix _nbe uses normalization by evaluation (the method
normalization) and the session with the suffix _eval uses evaluation (the method eval).
All our example enable the measurement of the run-time of our protocol-related top-level commands,

i.e., all example theories include:

declare [[pspsp_timing]]

6.2 Running the Benchmark

The measured timings are shown in the interactive user interface either by “hovering” over the individual
command (in a small pop-up window) or by placing the cursor directly after the command (the timing
is shown in the output window). Recall Figure 2, which shows the run-time for completing the
protocol_security_proof command (with option “unsafe” for the keyserver protocol).
While one can measure all timings within the graphical user interface, this is not recommended.

Measuring timing in the graphical user interface is unreliable and, hence, we measured the timings using
Isabelle’s batch mode. To execute all benchmarks, execute the following command in the directory
PSPSP-Experiments:

Bash
achim@logicalhacking:~$ cd PSPSP/PSPSP-Experiments
achim@logicalhacking:~/PSPSP/PSPSP-Experiments$ isabelle build -v -c -D .

On hardware with several cores, you can increase the degree of parallelisation using the option -j n.
For example, we obtained the benchmark results on a Linux server with an Intel Xeon CPU E5-2680
v4@2.40GHz that has 14 cores (28 threads) and 256GB main memory by executing:

Bash
achim@logicalhacking:~/PSPSP/PSPSP-Experiments$ isabelle build -v -c -D . -j 18

This instructs Isabelle to run 6 case studies in parallel (note that each case study itself is allowed to
run 4 commands/threads in parallel, given its configuration in the ROOT files).

6.3 Obtaining the Timings

In batch mode, the measured timings are recorded in a log database in Isabelle’s user directory (e.g.,
$HOME/.isabelle/Isabelle2020/heaps/polyml-5.8.1_x86_64_32-linux/log/, note that the ac-
tual path depends on your system architecture). To extract the timings in a more user-friendly way,

16

we provide a small utility that converts the timings into csv format, which can be directly imported
into most spreadsheet applications. In its simplest form, you can just execute

Bash
achim@logicalhacking:~/PSPSP/PSPSP-Experiments$ isabelle scala extract_timing_as_csv. \

scala > results.csv

This will generate a csv-file containing the timing information for all benchmarks in this directory
(as listed in the ROOTS file). Alternatively, you can also select only a single benchmark, e.g.,

Bash
achim@logicalhacking:~/PSPSP/PSPSP-Experiments$ isabelle scala extract_timing_as_csv. \

scala --session Keyserver_3_1
, "Keyserver_3_1_code_simp", "Keyserver_3_1_nbe", "Keyserver_3_1_unsafe"
"Encoding␣trac", "3.640", "3.613", "3.796"
"Setup␣Protocol␣Model", "10.564", "9.889", "10.287"
"Compute␣Fixed␣Point", "6.172", "5.133", "5.085"
"Security␣Proof", "7.960", "20.146", "8.454"
"Total␣Theory␣Processing", "28.385", "38.822", "27.662"
achim@logicalhacking:~/PSPSP/PSPSP-Experiments$

The use of this utility is summarized as follows:
Bash

achim@logicalhacking:~/PSPSP/PSPSP-Experiments$ isabelle scala extract_timing_as_csv.scala \
--help

Usage: isabelle scala extract_timing_as_csv.scala [--help] [--transpose] [--session] \
ROOTS_FILE_OR_SESSION_NAME

--help prints this help message
--transpose prints table in alternative ("transposed") format
--session selects a single session, i.e., ROOTS_FILE_OR_SESSION_NAME should be the \

name of a
session. Without this options, all sessions in the given ROOTS file are \

processed
[ROOTS_FILE_OR_SESSION_NAME] depending on option "--session", this is either the name \

of a session
or the path of a ROOTS file

References

[1] F. Haftmann and L. Bulwahn. Code generation from Isabelle/HOL theories, 2020. URL http:
//isabelle.in.tum.de/doc/codegen.pdf.

[2] A. V. Hess and S. Mödersheim. Formalizing and proving a typing result for security protocols in
Isabelle/HOL. In Computer Security Foundations Symposium, pages 451–463, 2017.

[3] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order
Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002. ISBN 3-540-43376-7.
doi: 10.1007/3-540-45949-9.

[4] M. Wenzel. The Isabelle/Isar reference manual, 2020. URL http://isabelle.in.tum.de/doc/
isar-ref.pdf.

17

http://isabelle.in.tum.de/doc/codegen.pdf
http://isabelle.in.tum.de/doc/codegen.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Installation
	Installing Isabelle
	Installing the Archive of Formal Proofs
	Registration of Isabelle Components
	Compiling Session Heaps and Final Setup

	A Brief Overview of Isabelle/PSPSP
	Protocol Specification
	Protocol Model Setup
	Fixpoint Computation
	Proof of Security
	Inspecting the Generated Theorems and Definitions

	Common Pitfalls
	Not Including an Initial Value-Producing Transaction
	Using Value-Typed Database-Parameters in Database-Expressions
	Not Ordering the Action Sequences in Transactions Correctly
	Declaring Ill-Formed Analysis Rules
	Declaring Public Constants of Type Value
	Forgetting to Terminate Transactions With a period

	Reference Manual
	Top-Level Isabelle Commands
	Proof Methods

	Benchmark
	The Benchmark Setup
	Running the Benchmark
	Obtaining the Timings

