
Accountable Banking Transactions

Sebastian Mödersheim 1 and Siyu Chen2

Abstract: This paper shows how to apply the idea of Three branches of Accountability by Mödersheim
and Cuellar to make banking transactions accountable, i.e., neither can the customer later deny to
have placed the order, nor can the bank execute a transaction that the customer did not order. This is
done in a general way that deliberately gives freedom to instantiate the system in several different
ways, as long as it follows a few basic principles, and we show accountability holds in every instance.

Keywords: Accountability, Formal Verification, Security Protocols

1 Introduction

A security expert (whose identity we do not disclose here) once complained in a conversation
with the authors about the following seemingly pointless security hurdle: after logging
into his online banking system with a national Single-Sign On system (SSO), whenever he
ordered a transfer, the bank would require another interaction with the SSO system. This
nuisance, the expert argued, would only help if a user would leave open their machine
unattended and this should better be prevented by automatic logout after short inactivity.

There is of course a different reason for the confirmation, and it is in fact very similar to the
classic non-electronic banking. Here, a customer would in general need to show the bank
clerk some identity document to authenticate themselves. Still, in order to make a bank
transfer, the customer would have to fill out a form and sign it. The point of this signature is
not authentication (the bank clerk already knows the identity of the customer), but gives the
bank a proof that the customer indeed ordered this transaction. This proof is transferable, i.e.,
it can be shown to others. Thus, neither could a dishonest customer later deny a transaction
they made, nor could a dishonest bank clerk (or dishonest bank) execute a transaction that
had not been ordered without a substantial risk to themselves. In the electronic scenario,
the second involvement of the SSO replaces the customer’s signature, since typically the
customers have no public/private key pairs with legal binding to their identity.

Accountability (see for instance [KTV10]) is a concept that protects security goals which
cannot be enforced directly by cryptography, e.g., the goal that a customer never makes
unfounded claims or a bank does not perform illegal transactions. Making the transactions
accountable thus means that the actors cannot later deny what they did which can involve
punishment in case of wrongdoing. We later discuss the relation with the common notion of
non-repudiation.

1 DTU Compute, Kgs. Lyngby, Denmark, samo@dtu.dk, https://orcid.org/0000-0002-6901-8319
2 DTU Compute, Kgs. Lyngby, Denmark,

https://orcid.org/0000-0002-6901-8319
mailto:samo@dtu.dk
https://orcid.org/0000-0002-6901-8319
https://orcid.org/0000-0002-6901-8319


We use in this paper the framework Three Branches of Accountability by Mödersheim
and Cuellar [MC22]. A main idea is here not to study a particular protocol, but define
through a legislative framework which messages have legal meaning and what actions are
illegal. Agents are thus free to do anything that is not forbidden, and the legislation does
not prescribe the protocols to be used, e.g., whether a bank has to use TLS to secure the
connection with the customers. This considerably departs from standard paths of security
protocol design and verification. Normally, we have a set of honest agents that follow the
protocol and an intruder who can act as a participant, but who does not necessarily follow
the protocol. What the intruder can do is defined by the common Dolev-Yao model: the
intruder controls the communication medium and can apply encryption and decryption
functions with known keys. In our accountability model, all agents are like such intruders
communicating over a network where everybody can add messages and everybody can see
(but possibly not decrypt) all messages. This gives us a transition system in which agents
can truly “do whatever they want”. We will make a restriction on the agents behavior, but
essentially the goal is to verify that this large transition system has no attack state, i.e., a
state that violates given security goals.

The legislative is the first branch of accountability, giving us a definition for every state in
this transition system whether an agent has committed a crime (even though this is possibly
not detectable for police and justice) and what legal terms hold in this state, e.g., that a
public key PK is legally bound to agent 𝐴. The second branch is the executive branch which
does not play any role in our case, and third is the judicial branch. It will be invoked in
our case when a customer complains about a transaction, and should decide whether the
customer or the bank is guilty of violating the law. The judicial branch is modeled as special
transitions where an honest judge follows a protocol to interact with other participants. The
participants can choose what to say to the judge (again within the Dolev-Yao model), and at
the end of the protocol one or more participants are convicted.

There are now two things to prove: first, that this system is lawful in the sense that the
innocent cannot be wrongly convicted, and that a violation of the security goal leads to
some conviction.3 We assume then that actors only commit a crime if it as perfect crime,
i.e., where they are sure that they cannot be convicted. Under this assumption it then follows
that the security goals are never violated.

The contributions of this paper are to formalize the accountability for banking transactions
with SSO in a very generic way that can be instantiated by many concrete bank transaction
systems and protocols. We then prove the lawfulness and accountability, i.e., violation of
security goals leads to a conviction. We also show a minor variant that corresponds to a
simple oversight where accountability would not hold.

3 The security goals in general do not require to prevent every illegal action: there may be illegal actions that the
security goals are not directly concerned with (e.g., a user sharing their password with a friend). Moreover, we
may have security goals that are not enforced by the three branches.



2 The Legislative

𝐴 𝐵 idp

• oo

Customer browses
bank website

// •

•

Initiate transfer
𝐹 = transferForm(. . .)

// •

• •
𝑁𝐵oo

•

𝑇 = transfer(𝐹, 𝐴, 𝑁𝐴, 𝑁𝐵)
requestpw(𝐴, pw(𝐴), 𝑇)

+3 •

• •
sign(inv(pk(idp)), 𝑇)

oo

•
sign(inv(pk(idp)), 𝑇)

// •
Fig. 1: Generic schema of a bank transaction between customer A, Bank B, and identity provider idp.

Figure 1 shows the generic schema of a transaction. It starts with a customer A who browses
the website of their bank 𝐵, e.g., looking at their account balance. Typically, this entire
communication is secured using a protocol like TLS and some authentication mechanism
like a login with password. At some point 𝐴 may decide to order a money transfer. For
this purpose we assume there is an electronic form transferForm that contains a number
of fields like the sender’s and receiver’s IBAN number, the amount (and currency) to be
transfered. Such a form is some (non-cryptographic) way of structuring the information
to be entered into the form, e.g., XML. Up to this point, we do not specify exactly how
the interaction between 𝐴 and 𝐵 should work: this is up to the bank how to design their
web interface, what authentication mechanism to use, and how to encrypt the transfer.4
𝐵 will now generate a random number 𝑁𝐵 and ask the user the authorize the transfer
in an accountable way using 𝑁𝐵. To that end, since 𝐴 does not have a legally registered
public/private key pair, 𝐴 turns to the identity provider idp in order to get the transfer signed
by the idp. 𝐴 first creates 𝑇 = transfer(𝐹, 𝐴, 𝑁𝐴, 𝑁𝐵), another electronic form that contains
the transfer form 𝐹, the name of 𝐴, a random number 𝑁𝐴 created by 𝐴 as well as 𝑁𝐵 from
before. 𝐴 packs this into yet another form requestpw(𝐴, pw(𝐴), 𝑇) that contains the name
and password that 𝐴 has with idp. This distinction of three forms is just for conceptual
simplicity: the transferForm(...) contains the information that would also be present on a

4 In fact, for the purpose of the accountability proof below, the communication does not even have to be encrypted.
However, for privacy this would be terrible: everybody on the network could observe 𝐴’s interactions with the
bank; also the authentication mechanism obviously cannot be password-based if messages were unencrypted.



non-electronic bank transfer form and is thus only banking-related without other technical
aspects; the transfer(...) form is what should actually be signed by the idp containing the
random numbers; and finally requestpw(...) is the message that 𝐴 sends to the idp and that
should not be observed by anybody else. This message indeed has to be encrypted in a way
that only the idp can read, because it contains the user’s password, and this will be part of
the legal requirements below. We have in fact depicted this transmission in the figure using
a double arrow to highlight that this transmission crucially needs confidentiality. Again,
we do not require a particular way of achieving this: while one typically uses TLS, simply
encryption with the public key of idp would be sufficient. If everything is fine, the idp
signs the request and sends it back to the customer who can forward it to the bank, which
then executes the transfer. Here pk(idp) is the public key of idp and inv(pk(idp)) is the
corresponding private key.

This protocol schema has some assumptions: the idp must be honest, otherwise there are
trivial attacks against this. (In contrast, 𝐴 and 𝐵 may well be dishonest.) Further, nobody
except 𝐴 and idp knows pw(𝐴), and everybody knows that pk(idp) is the public key of idp
(and can thus verify the signatures produced here).

We call this a protocol schema because it leaves many details open and therefore gives banks
the freedom to implement their online banking systems as they see fit, as long as they obey
a few legal regulations. The three named formats transferForm, transfer and requestpw
have distinct legal meaning, and thus the law must fix a particular way to implement these
forms, e.g., as XML formats. Similarly, some cryptographic parameters must be fixed like
permissable signature schemes and key sizes. We assume here that these details are fixed
already.

The legal system now consists of the following laws; as is standard in legal text, some
“commentary” will be given as footnotes:

§1 There is a public key legally bound to the identity provider, denoted pk(idp) in
the following. If any agent other than idp posses the corresponding private key
inv(pk(idp)), then idp is punishable.5

§2 There is a set of actors who are registered as banks. To each bank 𝐵 a public key
denoted pk(𝐵) is legally bound. If any agent other than 𝐵 posses the corresponding
private key inv(pk(𝐵)), then 𝐵 is punishable.

§3 There is a set of actors who are registered as citizens, they each have a unique identifier
and password registered with the idp. The password of citizen 𝐴 is denoted pw(𝐴). If
anybody other than 𝐴 and the idp knows pw(𝐴), then 𝐴 is punishable.6

5 As said before, we will assume that the idp is honest and therefore will never leak their private key, so they will
never be punished.

6 The logistic requirements are fulfilled for instance in Denmark by the fact that every legal resident has a CPR
number and authentication credentials with the national identity provider MitID. We do not consider here
two-factor authentication for simplicity or mechanisms for changing the password for simplicity. The problem
that an honest actor may lose their password is discussed below.



§4 When a client 𝐴 wants to order a bank transfer, then they are required to generate a
random number 𝑁𝐴 and ask the bank for a random number 𝑁𝐵. Then they may issue
the format 𝑇 = transfer(𝐹, 𝐴, 𝑁𝐴, 𝑁𝐵) with 𝐹 the fields of the transfer, and issue
the format requestpw(𝐴, pw(𝐴), 𝑇). Producing this message legally binds 𝐴 to this
transfer detailed by 𝐹, and 𝐴 is punishable if 𝑁𝐴 has been used in a different transfer.
The client is also obliged to encrypt the message in such a way that only the idp can
read it and that no agent can change the content of the message.7

§5 When the idp receives a message requestpw(𝐴, pw(𝐴), 𝑇) that uses the correct
password pw(𝐴) of 𝐴 and 𝑇 is a format transfer containing sender name 𝐴, then
the idp may sign the message 𝑇 with their private key inv(pk(idp)). If the idp signs
with inv(pk(idp)) a transfer message other than according to this law, then the idp is
punishable.8

§6 When a bank 𝐵 receives transfer message 𝑇 signed by the identity provider, it may
execute the transfer requested in 𝑇 , provided that: the random number 𝑁𝐵 contained
in 𝑇 was freshly generated by 𝐵 and has not been used in any other transaction, the
name 𝐴 corresponds to a legal account holder at 𝐵 denoted by the IBAN number of
the sender in 𝑇 . A bank who performs a transfer without a signed transfer message 𝑇
according to this law is punishable. The bank is obliged to save the signed 𝑇 message
and produce it when subpoenaed by a judge; if the bank fails to answer the subpoena
to a transaction they have performed, they are also punishable.

§7 A customer can complain to a judge if a bank has performed a transfer without the
customer having legally requested it. The client is punishable if they issue such a
complaint while they did legally request that transfer.

3 The Judicial Branch

The second branch of The Three Branches of Accountability paper is the executive branch:
the police who may discover some criminal activity, and provide the evidence to the judicial
branch. This is not necessary in our case, so we directly come to the third branch, the judicial
branch. This is about declaring how a judge should proceed when a customer 𝐴 registers a
complaint that a bank 𝐵 made a transfer from 𝐴’s account without 𝐴 ordering that.

The judge has to follow a simple procedure: they subpoena the bank 𝐵 to provide a signed
transfer form that § 6 requires before the bank can make a transfer. If 𝐵 does not produce
a signed transfer form that matches the transaction, then 𝐵 is convicted. Otherwise the
customer 𝐴 is convicted.
7 The requirement that no other agent than idp can learn it follows already from §3; here it also required that no

other agent can alter the message. Note that the law leaves open how this is done, e.g., by public key encryption
or TLS.

8 Note that the law only says may, because the idp shall not be punishable for instance for downtimes. Moreover
the law does not forbid the idp to use its private key for other purposes, as long as the signed message is not of
the transfer format.



Thus we have a procedure for the judge that will identify one participant as guilty, whenever
a customer complains about a bank transfer they allegedly did not order. It may seem
intuitively clear that this procedure is never convicting somebody who is innocent, i.e.,
somebody who abided the law. However, this is not the case as demonstrated by the following
attack.

3.1 Breaking and Fixing the Transfer Protocol

Suppose an agent 𝐴 issues a transfer request to the idp who signs it, and the client forwards
this signed request to the bank 𝐵. Suppose now 𝐵 is malicious and executes the exact same
transfer two times, effectively doubling the amount that 𝐴 transfers. Now 𝐴 is intuitively
right to complain about the second transfer (or alternatively about the first one). However, if
they complain to the judge and the judge subpoenas 𝐵, 𝐵 can show a valid signed request
that matches the transaction, and thus, with the above judge procedure, the client would
now be convicted without having broken any laws.

To fix the situation, recall that we have required that the transfer contains random numbers
𝑁𝐴 and 𝑁𝐵, and that each side is obliged to create them freshly. Note that this is also subtle,
because the bank cannot prevent that a nonce 𝑁𝐵 they created could be used by a malicious
customer in several different requests, so it is not so easy to tell in general who has failed to
adhere to the protocol.

However, if the judge looks at two (or more) identical transfers that 𝐵 has executed, and
subpoenas for all of them, and 𝐵 presents for each the same signed transfer form, including
the same nonce 𝑁𝐵 used in each of them, then 𝐵 is actually punishable by § 6 which
explicitly obliges 𝐵 to check that 𝑁𝐵 was generated by 𝐵 and not used in another transaction.
So even if for instance a malicious client has issued several transfers with the same 𝑁𝐵, it
is the duty of 𝐵 to check that each 𝑁𝐵 can only be used once. It should also be noted that
without the fresh random numbers 𝑁𝐴 and 𝑁𝐵 it would be impossible now to tell whether
the bank or the client broke the law.

We thus modify both § 7 and the procedure of the judge (the change is underlined):

§ 7 A customer can complain to a judge if a bank has performed a transfer without the
customer having legally requested it, or more often than the client has requested it.
The client is punishable if they issue such a complaint while they did legally request
that transfer at least as many times as the bank executed it.

The judge now follows this procedure: given a set of transfers that a client complains about,
the judge subpoenas the bank 𝐵 to provide signed transfer form for each transfer according
to § 6. If 𝐵 fails to produce a signed transfer forms with distinct values of 𝑁𝐵, then 𝐵 is
punishable. Otherwise the client is punishable.



4 Security Goals and Proof

4.1 Lawfulness

First, we prove that this system is lawful, i.e., that no innocent (i.e., law-abiding) agent can
ever be convicted (which actually could happen in the first version as demonstrated by the
attack).

To that end, consider again the procedure of the judge: when a customer 𝐴 complains about
a set of 𝑛 transfers, and the judge thus subpoenas the bank to produce 𝑛 signed transfer
forms with distinct numbers 𝑁𝐵, then we have two cases. First, if 𝐵 does not comply with
this subpoena, then 𝐵 must indeed have broken the law: they were obliged by § 6 only to
perform transfers for which they have a corresponding signed transfer form, which must all
have distinct numbers 𝑁𝐵 according to § 6 as each 𝑁𝐵 can only be used once. Finally, by § 6,
𝐵 is also obliged to store each signed transfer form and produce them upon a subpoena.9
Thus, if 𝐵 does not answer the subpoena correctly, 𝐵 is rightfully convicted.

Second case, if the bank does correctly answer the subpoena by producing 𝑛 matching signed
transfer forms sign(inv(pk(idp)), 𝑇1), . . . , sign(inv(pk(idp)), 𝑇𝑛) with distinct numbers for
the 𝑁𝐵-field in the 𝑇𝑖 . Then we have to show that the customer is now rightfully convicted.
(This is the case where the first flawed version could potentially lead to a wrong conviction.)
Recall that we have assumed that the idp is honest.10 This implies that the idp has not leaked
their private key inv(pk(idp)) and thus the signed transfer requests sign(inv(pk(idp)), 𝑇𝑖)
have been made by idp where, again by honesty of idp, we can conclude that the idp has
followed § 5 when they they signed the transfer forms, i.e., they must have received the
requestpw(A, pw(A), Ti) first. Again since the idp is honest, one of two things must be the
case. First possibility: 𝐴 has produced all these requests, then 𝐴 is punishable by § 7 for
issuing 𝑛 request and claiming that they did not. Second possibility: 𝐴 has leaked pw(𝐴) to
somebody else who then produced some of these requests (maybe unbeknownst to 𝐴); then
𝐴 is punishable according to § 3. (Of course, if idp were dishonest, it could have leaked
pw(𝐴), but we assumed idp to be honest.) Thus either way, 𝐴 is rightfully convicted also in
this case and we have established that we are in a lawful system.

9 One may ask whether it is impractical that a bank can always check that the 𝑁𝐵 in a request is different from
every 𝑁𝐵 they have ever accepted, as this seems to imply that the bank always have to consult their entire
transaction history. However, following the schema in Fig. 1 is a simple solution: they create a fresh random
number 𝑁𝐵 (that is with overwhelming probability different from all previous such random numbers). The
bank remembers 𝑁𝐵 for this session and accept at most one incoming signed transfer with this 𝑁𝐵. If this does
not arrive within a certain time window, the bank simply closes the session and forgets 𝑁𝐵. This is legal, since
the bank is not obliged to eventually perform the transfer.

10 This is not an unproblematic assumption as we discuss below, but if we think of a national identity provider, it
is at least reasonable that a judge would value their statements (and thus signatures) as trustworthy.



4.2 The Security Goals

The security goals we would like to ensure in this system are:

1. A bank never performs a transfer more often than the customer has ordered it. Observe
that this formulation also includes the case that the bank performed a transfer that the
customer did not order at all.

2. A customer never complains about a set of bank transfers that they have ordered at
least as many times.

The Three Branches of Accountability approach defines a perfect crime as an illegal action
of an agent where the agent knows they will never be convicted for this action. For instance,
in our example, the customer may illegally reuse the same nonce 𝑁𝐴 for more than one
transaction. As nothing in the described system triggers on that, the agent will never be
convicted for that. However, the agent also does not have any advantage from this crime—it
is irrelevant.

It is now easy to see that under the assumption that agents will only commit perfect crimes,
the security goals hold. Suppose we could reach a state where the first goal is violated,
i.e., where a bank has performed a transfer more often than the customer ordered it. Then
the client will complain with the judge, which will convict either the client or the bank.11

Either way, since we have shown the system is lawful, the convicted party has indeed broken
the law. The fact that they have been convicted for it shows that it was not a perfect crime,
contradicting the assumption. Suppose we could reach a state where the second goal is
violated, i.e., a customer dishonestly complains about a set of transfers they have indeed
ordered. Again the procedure of the judge will lead to the rightful conviction of either the
customer or the bank, which by the perfect crime assumption is absurd. Thus, no state
violating the security goals is reachable.

5 Conclusions

Essentially, this paper shows how transactions, like a bank transfer, can be made accountable:
at the core the bank needs a transferable proof that the customer indeed ordered the transfer
in question. For such a transferable proof, a pure authentication of the customer to the bank
is not sufficient, because this would give the bank nothing to convince a third party like
a judge. The only option is that we have a signature that could either be produced by the
customer themselves or via a trusted third party as in our case study. This solution has the
disadvantage that in every transaction, the trusted third party has to be involved, and if it
should be hacked for instance, the security guarantees of the entire system are void (as it
crucially needs to be an honest party). On the other hand it has the advantage that it can be
deployed based on existing identity management infrastructures such as the Danish MitID.
11 Observe here that the client might still be punishable here, even though they did not order all the transfers: they

may have given out their password and somebody else did order them.



There are several points one can criticize about the system sketched here. First of all, one
may wonder if customers can be blamed if their password gets leaked: of course, not all
these leaks are because a customer intentionally gave it to somebody else (like their spouse)
but they may have been observed entering it or their computer or phone may have been
hacked. This is in fact an old problem that we have for instance for leaked PINs for credit
cards: to our knowledge, when a thief withdraws money from an ATM using a stolen card
with the correct PIN, the default assumption (unless there is contrary evidence) of the courts
is that the card owner must have been careless with their PIN (e.g., kept it written down
along with the card). We believe that this is a general dilemma as part of digitalization
namely that digital secrets (like PINs, passwords, private keys) have legal meaning, and that
losing them can have substantial legal and financial consequences for an individual. There
are several mitigations such as multi-factor authentication that at least make it harder for an
attack to take over one’s identity. One of the anonymous reviewers of this paper suggested
that a customer who became victim to a cyber attack could inform the police, and use the
police report to get (at least temporarily) reimbursed by the bank. In fact, it is common that
the total transfer amounts per day are limited and that banks are ensured against the limited
fraudulent transfer that can occur within that time window.

Note, however, that this is a more general problem of digitalization. For our example,
suppose the bank loses their database of transfers due to a cyberattack (or simply a software
bug) and suddenly become liable in court for all transfers they have executed and cannot
justify if subpoenaed for it. This indeed shows that the systems like the one described here
cannot be absolute: we have to have human judges who evaluate other evidences like a
forensic investigation of a customer’s phone for instance. The accountability proof thus
provides a strong argument that the system is reasonably well-designed to deter criminals,
but it is not an absolute that cannot be overridden when new evidence appears.

In fact, the absolute trust in the idp is a second serious problem of this system. A standard
approach to replace the single trusted idp by a consortium of identity providers of which only
a majority needs to be honest is not very promising as this requires a consensus amongst the
consortium and is thus not the light-weight solution we have sketched here.

But let us end this list on a third problem for which there is actually a good solution: suppose
a customer has obtained via the idp a valid signed transfer form and send it to the bank. If
the bank is malicious, they might hold it off, not executing the transfer but they have the right
do so at any moment. The customer is thus in limbo: the transaction has not gone through
but could be accepted at any moment. This is a fair exchange problem that in general also
requires a trusted third party to resolve; however, one can make this optimistic in the sense
that the trusted third party would only need to be involved if customer and bank do not
come to a consensus on their own [ASW00].

There are several research articles on accountability, most importantly Küsters et al. [KTV10],
Künnemann et al. [KGB21], as well as Mödersheim and Cuellar [MC22] that we have
used. While the former two are based on computational adversaries, we follow the third



approach and consider a Dolev Yao-style intruder who cannot break the cryptography. We
have chosen the approach of [MC22] because the concept of the legal system offers the
flexibility to support a wide range of systems rather than fixing a particular protocol (like
TLS) that is largely irrelevant to the accountability question.

Many works rather use the term non-repudiation instead of accountability; for a more
detailed overview, see for instance [KTV10, MC22]. While the term non-repudiation, puts
the emphasis on ensuring that actors cannot deny actions they have performed, accountability
goes further: a bank who has (undeniably) performed a transfer may also be required by a
subpoena from a judge to justify their action, showing that they acted legally. Depending
on the protocol, the answer from an honest actor to a subpoena may give the judge further
evidence to investigate [MC22].

As future work, we plan to follow the idea of Bruni et al. [BGS17] to investigate if and
how protocol verification tools like Tamarin [Me13], ProVerif [Bl01], or PSPSP [He21]
could be employed, and possibly adapted, to verify accountability questions in such an open
scenario as the legal system in this paper.

Bibliography
[ASW00] Asokan, N.; Shoup, Victor; Waidner, Michael: Optimistic fair exchange of digital signatures.

IEEE J. Sel. Areas Commun., 18(4):593–610, 2000.

[BGS17] Bruni, Alessandro; Giustolisi, Rosario; Schürmann, Carsten: Automated Analysis of
Accountability. In (Nguyen, Phong Q.; Zhou, Jianying, eds): ISC 2017. volume 10599.
Springer, pp. 417–434, 2017.

[Bl01] Blanchet, Bruno: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In:
Computer Security Foundations Workshop. pp. 82–96, 2001.

[He21] Hess, Andreas V.; Mödersheim, Sebastian; Brucker, Achim D.; Schlichtkrull, Anders:
Performing Security Proofs of Stateful Protocols. In: 34th IEEE Computer Security
Foundations Symposium (CSF). volume 1. IEEE, pp. 143–158, 2021.

[KGB21] Künnemann, Robert; Garg, Deepak; Backes, Michael: Accountability in the Decentralised-
Adversary Setting. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF).
IEEE Computer Society, pp. 95–110, 2021.

[KTV10] Küsters, Ralf; Truderung, Tomasz; Vogt, Andreas: Accountability: definition and rela-
tionship to verifiability. In: Proceedings of the 17th ACM conference on Computer and
Communications Security. pp. 526–535, 2010.

[MC22] Mödersheim, Sebastian; Cuellar, Jorge: Three Branches of Accountability. In: In Festschrift
for Joshua Guttman, LNCS 13066, 2021. . Springer, 2022.

[Me13] Meier, Simon; Schmidt, Benedikt; Cremers, Cas; Basin, David A.: The TAMARIN Prover
for the Symbolic Analysis of Security Protocols. In: Computer Aided Verification. pp.
696–701, 2013.


