
A Decision Procedure for Alpha-Beta Privacy
for a Bounded Number of Transitions

Laouen Fernet1 , Sebastian Mödersheim1 and Luca Viganò2

1Danmarks Tekniske Universitet, Kgs. Lyngby, Denmark
2King’s College London, London, United Kingdom
{lpkf,samo}@dtu.dk, luca.vigano@kcl.ac.uk

Abstract

We present a decision procedure for verifying whether a protocol re-
spects privacy goals, given a bound on the number of transitions. We
consider multi message-analysis problems, where the intruder does not
know exactly the structure of the messages but rather knows several pos-
sible structures and that the real execution corresponds to one of them.
This allows for modeling a large class of security protocols, with stan-
dard cryptographic operators, non-determinism and branching. Our main
contribution is the definition of a decision procedure for a fragment of
alpha-beta privacy. Moreover, we have implemented a prototype tool as
a proof-of-concept and a first step towards automation.

Keywords: Privacy, Formal Methods, Security Protocols, Automated Verifi-
cation.

1 Introduction
The concept of (α, β)-privacy was introduced as an alternative way to define
privacy-type properties in security protocols [1, 2]. The most widespread models
of privacy use an equivalence notion between two processes to describe the goal
that the intruder cannot distinguish between two possible realities. In contrast,
(α, β)-privacy considers states that each represent one possible reality, and what
the intruder knows about the reality in that state. This knowledge is not only
in form of messages as in classic intruder models, but also in form of relations
between messages, agents, etc. Together with a notion of what the intruder is
allowed to know in a given state, we define a privacy violation if the intruder
in any reachable state knows more than allowed. Privacy is then a question
of reachability — a safety property — which is often easier to reason about
and to specify than classical equivalence notions. First, one does not have to
boil the privacy goal down to a distinction between two situations, which is
often unnatural for more complicated properties. Second, one specifies goals
positively by what the intruder is allowed to know rather than what they are

1

https://orcid.org/0000-0001-9028-1480
https://orcid.org/0000-0002-6901-8319
https://orcid.org/0000-0001-9916-271X

not allowed to know (and thus unable to distinguish). This essentially means
that in the worst case one is erring on the safe side, i.e., allowing less than
the protocol actually reveals, and thus be alerted by a counter-example. The
expressive power of equivalence notions and of (α, β)-privacy is actually hard
to relate in general, due to the different nature of the approaches. However,
on concrete examples it seems one can always give reasonable adaptations from
one approach to the other [1, 2].

(α, β)-privacy shifts the problem from a notion of equivalence (that is al-
ways a challenge for automation) to a simple reachability problem where how-
ever the privacy check for each reached state is more involved. So far, there is
only one work [3] that considers a solution to checking a given state in (α, β)-
privacy. However, that work is only applicable to specifications without condi-
tional branching and it is based on an exploration of all concrete messages that
the intruder can send, which are infinitely many unless one bounds the intruder.

Our main contribution in this paper is the definition of a decision proce-
dure for the full notion of transaction processes defined by [2] for construc-
tor/destructor theories. This notion in fact entails that the intruder performs a
symbolic execution of the transaction that in general yields several possibilities
(due to conditional branching if the intruder does not know the truth value
of the condition) and the intruder can then contrast this with all observations
and experiments (constructing different messages and comparing them) to po-
tentially rule out some possibilities. The core of our work is in a procedure to
model this intruder analysis without bounding the number of steps that the in-
truder can make in this process. To that end, we use a popular constraint-based
technique to represent the intruder symbolically, i.e., without exploring infinite
sets of possibilities. In fact, we use several layers of symbolic representation to
make the approach feasible.

Our decision procedure tells us whether from a given state we can reach
a state that violates privacy for a fixed bound on the number of transitions.
Our procedure is limited to such a bound on transitions, corresponding to the
restriction to a bounded number of sessions in many approaches [4]. This is
similar to the bounds needed in tools like APTE [5], AKiSs [6], SPEC [7, 8] and
DeepSec [9]. In fact, this paper draws from the techniques used in these ap-
proaches, such as the symbolic representation of the intruder, a notion of an an-
alyzed intruder knowledge, and methods for deciding the equivalence of frames.
There are, however, several basic differences and generalizations. In particular,
we use a symbolic handling of privacy variables (that in the equivalence-based
approaches are simply one binary choice) and this is linked to logical formulas
about relations between elements of the considered universe. In fact, in the pro-
totype implementation of our decision procedure that we provide as a further
contribution, we employ the SMT solver Z3 [10] to handle these logical eval-
uations. Moreover, we have multiple frames with constraints for the different
possibilities resulting from conditional branching and we analyze if the intruder
can rule out any possibilities in any instance.

In contrast, there are tools like ProVerif [11] and Tamarin [12] that do
handle unbounded sessions but that require the restriction to so-called diff-

2

equivalence [13, 14], which drastically limits the use of conditional branching
in security protocols. It seems thus in general that one has to choose between
expressive power and unbounded sessions, and our approach is decidedly on the
side of expressive power.

We proceed as follows. In §2, we give a high-level overview of our decision
procedure. In §3, we define how we symbolically represent messages sent by
the intruder and how to solve constraints with the lazy intruder rules. In §4,
we introduce the notions of nodes and symbolic states with their semantics.
In §5, we explain how the intruder can perform experiments and make logical
deductions relevant for privacy by comparing messages in their knowledge. In
§6, we summarize how the different parts of the procedure are integrated. In
§7, we discuss the prototype tool we have developed and its application to some
examples. In §8, we conclude by discussing future work. The appendix contains
additional technical details and the proofs of correctness.

2 Overview of the Procedure and Preliminaries
In this section, we give a high-level overview of our decision procedure. [1]
introduces (α, β)-privacy as a reachability problem in a state transition system,
where each state contains two formulas α and β. Intuitively, α represents what
the intruder may know (e.g., the result of an election) and β what the intruder
has seen (e.g., the encrypted votes). Then, a state (α, β) violates privacy iff
any model of α can be excluded by the intruder knowing β, i.e., the intruder in
that state can rule out more than allowed. The entire transition system violates
(α, β)-privacy iff some reachable state does.

2.1 (α, β)-privacy for a state
[1] focuses on how to define (α, β) pairs for a fixed state, and describes a state
transition relation only briefly by an example. Let us also start with a fixed
state. The formulas α and β are in Herbrand logic [15], a variant of First-Order
Logic (FOL), with the difference that the universe is the quotient algebra of
the Herbrand universe (the set of all terms that can be built with the function
symbols) modulo a congruence relation ≈. This congruence specifies algebraic
properties of cryptographic operators. For concreteness, we use the congruence
defined in Fig. 1 in examples and define below a class of properties that our
result supports. The quotient algebra consists of the ≈-equivalence classes of
terms.

Given an alphabet Σ, an interpretation I interprets variable and relation
symbols as usual (the interpretation of the function symbols is determined by
the Herbrand universe) and we have a model relation |=Σ as expected. By
construction, I |=Σ s

.
= t iff I(s) ≈ I(t). We say that ϕ entails ψ, and write

ϕ |=Σ ψ, when all models of ϕ are models of ψ. We write ϕ ≡ ψ when ϕ |=Σ ψ
and ψ |=Σ ϕ; we may also use ≡ to define formulas.

3

dcrypt(s1, s2) ≈ t if s1 ≈ inv(k) and s2 ≈ crypt(k, t, r)

dscrypt(k, s) ≈ t if s ≈ scrypt(k, t, r)

open(k, s) ≈ t if s ≈ sign(inv(k), t)

pubk(s) ≈ k if s ≈ inv(k)

proj1(s) ≈ t1 if s ≈ pair(t1, t2)

proj2(s) ≈ t2 if s ≈ pair(t1, t2)

and . . . ≈ ff otherwise

Figure 1: The congruence used in this paper: crypt and dcrypt are asymmetric
encryption and decryption, scrypt and dscrypt are symmetric encryption and
decryption, sign and open are signing and verification/opening, pair is a trans-
parent function and the proji are the projections, inv gives the private key cor-
responding to a public key, and pubk gives the public key from a private key.
Here k, t, r and the ti are variables standing for arbitrary messages. When
the conditions are not met, the functions give ff, which is a constant indicating
failure of decryption or parsing. If crypt and scrypt are used as binary functions,
we consider their deterministic variants where the random factor r has been
fixed and is omitted for simplicity.

We now fix the alphabet Σ that contains all symbols we use, namely crypto-
graphic functions, a countable set of constants representing agents, nonces and
so on, and some relation symbols. We also have the set of variable symbols V.
Each protocol specification will fix a sub-alphabet Σ0 ⊂ Σ of payload symbols;
we call Σ \ Σ0 the technical symbols. All α formulas use only symbols in Σ0

(besides variables). In the rest of the paper, we will omit the alphabet and
write |= for |=Σ0 unless explicitly written.

The main idea of (α, β)-privacy is that we distinguish between the actual
privacy goal (e.g., an unlinkability goal talking only about agents) and the
means to achieve it (e.g., the cryptographic messages exchanged).

Definition 2.1 (Adapted from [1]). Given two formulas α over Σ0 and β over
Σ with fv(α) ⊆ fv(β), where fv denotes the free variables, we say that (α, β)-
privacy holds iff for every I |=Σ0

α there exists I ′ |=Σ β such that I and I ′
agree on the variables in fv(α) and on the relation symbols in Σ0.

Payload. We call the formula α the payload, defining the privacy goal.
For example, for unlinkability in an RFID-tag protocol, we may have a fixed
set {t1, t2, t3} of tags and in a concrete state, the intruder has observed that
two tags have run a session. Then α in that state may be x1, x2 ∈ {t1, t2, t3},
meaning that the intruder is only allowed to know that both x1 and x2 are
indeed tags, but not, for instance, whether x1

.
= x2. In our approach, the

formulas α that can occur fall into a fragment where we can always compute a
finite representation of all models, in particular the variables like the xi in the

4

example will always be from a fixed finite domain.
Frames. For the formula β, we employ the concept of frames: a frame

has the form F = l1 7→ t1. · · · .ln 7→ tn, where the li are distinguished constants
called labels and the ti are messages (that do not contain labels). This represents
that the intruder has observed (or initially knows) messages t1, . . . , tn and we
give each message a unique label. We call the set {l1, . . . , ln} the domain of F .
A frame can be used as a substitution, mapping labels to messages.

Recipes. To describe intruder deductions, we define a subset Σpub of the
function symbols to be public: they represent operations the intruder can per-
form on known messages. For instance, all symbols used in Fig. 1 are public
except for inv, since getting the private key is not an operation that everyone
can do themselves.1 A recipe (in the context of a frame F) is any term that
consists of only labels (in the domain of F) and public function symbols, so it
represents a computation that the intruder can perform on F . We write F{| r |}
for the message generated by the recipe r with the frame F .

Static equivalence. Two frames F1 and F2 with the same domain are
statically equivalent, written F1 ∼ F2, iff for every pair (r1, r2) of recipes, we
have F1{| r1 |} ≈ F1{| r2 |} ⇔ F2{| r1 |} ≈ F2{| r2 |}. Intuitively, this means that
the intruder cannot distinguish F1 and F2, because any experiment they can
make (i.e., comparing the outcome of two computations r1 and r2) either gives
in both frames the same result or in both frames different results.

Message-analysis problem. While static equivalence is typically used
to formulate that two states are indistinguishable for the intruder, [1] employs
instead two frames in each state: concr representing the concrete knowledge
of the intruder and struct the structural knowledge. The messages in struct
contain the privacy variables from α and concr is one concrete instance of struct ,
representing what is actually the case in that state. A message-analysis problem
is then defined to have the form β ≡ α ∧ concr ∼ struct (see [1] for details on
formalizing frames in Herbrand logic), where struct contains only variables from
α and concr = I(struct) for one interpretation I |= α.

As an example, let α ≡ x1, x2 ∈ {0, 1}, struct = l1 7→ h(k, x1).l2 7→ h(k, x2)
and concr = l1 7→ h(k, 0).l2 7→ h(k, 1). Observe that there are four models
I |= α, and in two of them concr ∼ I(struct) while concr ̸∼ I(struct) in the
other two. The goal of the intruder is to rule out models that are not consistent
with β. Note that β requires concr ∼ struct : the intruder knows that concr
is an instance of struct and thus any experiment must yield the same result
under the actual model I |= α such that concr = I(struct). Thus, at this
point, the intruder can exclude two models (namely those in which x1

.
= x2), so

(α, β)-privacy does not hold.
Automation. A naive way to decide (α, β)-privacy for a message-analysis

problem (in an algebra where static equivalence is decidable) is to compute all
models I1, . . . , In of α and check whether I1(struct) ∼ · · · ∼ In(struct) (note
that in such problems fv(α) = fv(β)). [3] gives a more efficient procedure that

1The use of inv is just one possible model, and one could choose to model private keys
differently, e.g., with public functions for key pair generation and secret seeds. In this paper
we use inv as it makes our examples simpler.

5

avoids the enumeration of all models: it generalizes the classical procedure for
static equivalence of frames to deal with privacy variables, namely checking
whether any experiment or decryption step works for every instance of the
variables.

2.2 (α, β)-privacy for a Transition System
So far we have been talking about only a single (α, β) pair, i.e., a single state of a
larger transition system. [2] defines a language for specifying transition systems
where the reachable states and their (α, β) pairs are defined by executing atomic
transactions. We present now some adaptations.

For our development, we distinguish two sorts of variables: the privacy vari-
ables Vprivacy , which are denoted with lower-case letters like x and are all in-
troduced in the form x ∈ D for a finite domain D of public constants, and the
intruder variables Vintruder , which are denoted with upper-case letters like X
for messages received and cell reads in a transaction.

We also distinguish destructors and constructors function symbols. In Fig. 1
we have that dcrypt, dscrypt, open, pubk, proj1 and proj2 are destructors whereas
the rest are constructors. Moreover, we call pair and inv transparent functions,
because one can get all their subterms without any key (but recall that inv is
not a public function).

Definition 2.2 (Protocol specification). A protocol specification consists of

• a number of memory cells, e.g., cell(·), together with a ground context
C[·] for each memory cell defining the initial value of the memory, so that
initially cell(t) = C[t]; and

• a number of transaction processes Pi, where the Pi are left processes ac-
cording to the syntax below, describing the atomic transactions that par-
ticipants in the protocol can execute.

We define left processes and right processes as follows:

Pl Left process
::= mode x ∈ D.Pl Non-deterministic choice
| rcv(X).Pl Receive
| X := cell(t).Pl Cell read
| try X

.
= d(t, t) Destructor application

in Pl catch Pl

| if ϕ then Pl else Pl Conditional statement
| νn1, . . . , nk.Pr Fresh constants

Pr Right Process
::= snd(t).Pr Send
| cell(t) := t.Pr Cell write
| ⋆ ϕ.Pr Release
| 0 Terminate (nil process)

6

where mode is either ⋆ or ⋄ and d is a destructor. For simplicity, we have
denoted destructors as binary functions, but we may similarly use unary de-
structors (like proji and pubk in the example).

We define the free variables fv(P) of a process P as expected, where the
non-deterministic choices, receives, cell reads and fresh constants are binding.
Moreover, for destructor applications:

fv(try X
.
= d(k, t) in P1 catch P2) =

fv(d(k, t)) ∪ (fv(P1) \ {X}) ∪ fv(P2)

Observe that privacy variables are introduced only by non-deterministic
choices mode x ∈ D. If the mode is ⋆, the transaction augments α by x ∈ D, thus
specifying that the intruder may not know more about x unless we also explicitly
release some information about x. If the mode is ⋄, the transaction augments β
by x ∈ D. In this case it is not automatically a violation of privacy if the intruder
learns more about x, but it may lead to a privacy violation if this allows for
finding out more about the variables in α. This is useful if one wants to keep the
privacy specification independent of some rather technical secret. In our model,
the intruder knows which transaction is executed, but in general does not know
which branch is taken. Using, for example, ⋄ z ∈ {1, 2}.if z .

= 1 then P1 else P2,
one can reduce the visibility of transactions P1 and P2 by putting them in a
single transaction. In some execution the intruder may find out, e.g., z .

= 1,
and it is not a privacy violation in itself.

The constructs rcv, snd, ν, and 0 are standard, as well as reading from and
writing to memory cells. For the formula ϕ in a condition or a release we have
to make a restriction here for our decision procedure:

ϕ Formula
::= t

.
= t Comparison between messages

| ¬ϕ Negation
| ϕ ∧ ϕ Conjunction
| R(t, . . . , t) Relation

where for releases the formulas may contain the meta-notation γ(t) for a message
t. The meta-notation γ(·) refers to the fact that in every state, the reality (i.e.,
the actual values of privacy variables) is defined by a ground interpretation.
Thus, for instance, releasing ⋆ x .

= γ(x) means allowing the intruder to learn
the true value of x.

As syntactic sugar, we may write let X = t.P for the substitution of all
occurrences of X in P by t. In a destructor application or conditional statement,
we may omit the catch or else branch when it only contains the nil process. In
a formula, the disjunction ∨ is standard sugar and x ∈ {c1, . . . , cn} is sugar for
x
.
= c1∨· · ·∨x

.
= cn. We may write P for ν.P or P.0. We define the application

of a substitution σ to a process P by applying σ to all messages in P , except in
the formulas released.2

2For example, if σ = [x 7→ c] and P contains the release ⋆ x
.
= γ(x), the formula must

not be substituted because the payload should be about x and not become c
.
= γ(c), which is

equivalent to true and would miss the point of releases.

7

Requirements on transactions. The protocol specification must fulfill
the following requirements: a bound variable cannot be instantiated a second
time later; the only place destructors are allowed is in a destructor application
with try; in different branches of a destructor application or conditional state-
ment, the same privacy variables are chosen in the same order, from the same
domains and with the same mode, and the ordering of receive steps is also the
same; the transaction processes must be closed, which means that they have no
free variables.

Moreover, it is considered a specification error if at runtime, in a formula
R(t1, . . . , tn) in a condition there are symbols which are in Σ \Σ0 and variables
not in fv(α). Thus, the specification can use symbols from the technical level in
a relation as long as the evaluated terms use only symbols in Σ0 and fv(α) (i.e.,
the payload level) when executing the protocol. The same requirement applies
to all terms in a release step ⋆ ϕ, i.e., releasing technical information in the
payload is not allowed. This can be detected during the symbolic execution and
means that insufficient checks are made over the terms before the conditional
statement or release.

Example 2.1. Suppose that a server sends an encrypted message to a client,
containing either a nonce for a positive answer or simply a negative answer.
This can be formalized as the following transaction:

⋆ x ∈ Agent. ⋆ y ∈ {yes, no}.
if y

.
= yes then

νn, r.snd(crypt(pk(x), pair(yes, n)), r)

else

νr.snd(crypt(pk(x), no, r))

where yes, no and the values in the set Agent are public constants and pk is a
public function from agent names to public keys. ◁

Semantics. We define the semantics of transaction processes along the
lines of normal process calculi, but with adaptations for (α, β)-privacy. Note
that transactions are not executed in parallel, so there are no race conditions
between cell reads and writes and we do not need a locking mechanism. The
intruder is connected to all send and receive steps: a frame collects all messages
sent by honest agents, and for every receive, the intruder can choose a recipe
over that frame.

Our semantics needs to generate (α, β)-pairs to reflect the privacy goals,
including what the intruder can actually observe about the variables from non-
deterministic choices. For instance, in case of a conditional statement, the in-
truder in general does not know whether the condition is true during execution
and thus whether the then or the else branch is taken. However, if a message is
sent only in one branch, or if the messages sent in each branch are distinguish-
able, the intruder learns whether the condition was true. This may or may not
lead to a violation of privacy.

8

To formalize this, [2] gives a semantics that describes a symbolic execution
performed by the intruder. A possibility is a triple (P, ϕ, struct), where P is
the transaction being executed, ϕ is the conditions under which this possibility
was reached (initially true) and struct is the structural knowledge about the
messages. When P = if ψ then P1 else P2, the symbolic execution replaces this
with two new possibilities (P1, ϕ∧ψ, struct) and (P2, ϕ∧¬ψ, struct). In this way,
the symbolic execution can split into several possibilities due to conditionals,
reflecting that the intruder does not know a priori which branch was taken, but
keeps track of the conditions that would lead to each branch.

Suppose that after evaluating several conditional statements, the remaining
process in each possibility is either a send step or 0. The intruder can observe
whether a message was actually sent or not and can thus rule out all possibilities
that do not comply with this. For instance, say there was a concrete message
m and two possibilities (snd(m1), ϕ1, struct1) and (snd(m2), ϕ2, struct2). In this
case, we pick a new label l and augment struct1 with l 7→ m1 and struct2 with
l 7→ m2, and we have a global frame concr that we augment with l 7→ m. Thus,
concr records the concrete messages actually sent and the struct i the respective
structural knowledge that the intruder at this point in general cannot tell apart
yet.

This gives rise to the following generalization of the message-analysis prob-
lem:

Definition 2.3 (Multi message-analysis problem (MMA)). Let P a set of pos-
sibilities {(P1, ϕ1, struct1), . . . , (Pn, ϕn, structn)} be , α and β0 be Herbrand for-
mulas, i ∈ {1, . . . , n}, I |= α ∧ β0 ∧ ϕi and concr = I(struct i). Define

MMA(α, β0,P, concr) = α ∧ β0 ∧
n∨

i=1

ϕi ∧ concr ∼ struct i .

We call the MMA well-formed iff the ϕi are mutually exclusive, i.e., |= ¬(ϕj∧
ϕk) for j ̸= k, and α ∧ β0 |=

∨n
j=1 ϕj.

We will deal only with well-formed MMAs.
Again, a naive way to decide whether a given MMA satisfies (α, β)-privacy

is first to check every model I of α∧ β0 as follows. Each I determines a unique
index i such that I |= ϕi. Then we check whether concr ∼ I(struct i). If not, the
intruder can rule that model out and can augment β0 with ¬I.3 The resulting
MMA satisfies (α, β)-privacy iff (α, β0)-privacy holds.

Our approach. We present a procedure that generally avoids the enumer-
ation of all models to decide (α, β)-privacy and rather uses a symbolic algo-
rithm to identify if the intruder can make any experiments on their knowledge
that would rule out some models of α ∧ β0. This is based on the following in-
sight: by construction of the transition system, whenever in a state S we have
concr = I(struct i) for some interpretation I of the privacy variables and some

3Since we are dealing in our fragment with privacy variables over finite domains, we can
always express models as formulas.

9

struct i, then also for every model I ′ of α, a state S′ is reachable that is identical
with S except that concr = I ′(struct i). We can thus lump all states together
that only differ in concr but have same α and struct1, . . . , structn. Since every
concr is statically equivalent to some struct i, instead of deciding static equiv-
alence our procedure checks that no intruder experiments would rule out any
instantiation of variables that α allows.

The lazy intruder. The semantics has an infinite aspect that we have not
yet discussed. In a set P of possibilities, when one process is receiving, all are
receiving (following our requirements on transactions), and w.l.o.g. we can also
assume they receive the same variable X, i.e., we have:

{(rcv(X).P1, ϕ1, struct1), . . . , (rcv(X).Pn, ϕn, structn)}

Now the semantics says the intruder can choose any recipe r that can be built on
the domain of concr (respectively, the struct i: they all have the same domain).
The concrete message concr{| r |} is what the transaction processes receives (but
that is irrelevant due to our symbolic approach), and the structural knowledge
that the intruder has about this message depends on the possibility, namely in
the ith possibility it is struct i{| r |}, and we thus have the resulting possibilities:

{(P1[X 7→ struct1{| r |}], ϕ1, struct1), . . . ,
(Pn[X 7→ structn{| r |}], ϕn, structn)} .

The problem is that there are in general infinitely many r the intruder can
choose from. A classic technique for deciding such infinite spaces of intruder
possibilities is a constraint-based approach that we call the lazy intruder [16, 4,
17]: it is lazy in that it avoids, as long as possible, to instantiate the variables
of receive steps like X. The concrete intruder choice at this point does not
matter; only when we check a condition that depends on X, we consider possible
instantiations of X as far as needed to determine the outcome of the condition.
Note that this is another symbolic layer of our approach, where a symbolic state
with variableX represents all concrete states whereX is replaced with a message
that the intruder can construct. In fact what the intruder can construct depends
on the messages the intruder knew at the time when the message represented
by X was sent.

To keep track of all this, we define an extension of frames called framed
lazy intruder constraints (FLICs): the entries of a standard frame represent
messages that the intruder received and we write them now with a minus sign:
−l 7→ t. We extend this by also writing entries for messages the intruder sends
with a plus sign: +R 7→ t, where R is a recipe variable (disjoint from privacy and
intruder variables). When solving the constraints, R may be instantiated with a
more concrete recipe, but only using labels that occurred in the FLIC before this
receive step; note that the order of the entries is thus significant now. In general,
the messages t and recipes r can contain variables representing intruder choices
that we have not yet made concrete. We require that the intruder variables first
occur in positive entries as they represent intruder choices made when sending
a particular message.

10

In general, a FLIC represents constraints, namely that the intruder can in-
deed produce messages of the form needed to reach a particular state of the
execution. We show that we can solve such FLICs, i.e., find a finite representa-
tion of all solutions (as said before, there are in general infinitely many possible
concrete choices) using techniques like the lazy intruder, similarly to other works
doing constraint-based solving with frames such as [18, 9].

Since we deal with several possibilities in parallel, we will consequently have
several FLICs in parallel, replacing the struct i in the concrete model. Each
FLIC will have the same sequence of incoming labels and outgoing recipes. The
intruder does not know in general which possibility is the case, and rather just
knows how they constructed the message from their knowledge, i.e., the recipe,
which may result in a different message in each possibility. Note that, if there
are different numbers of messages sent in the possibilities, it is observable to the
intruder and allows for ruling out some of the possibilities.

We thus give an approach that is symbolic in three regards: (1) we deal
with privacy variables that represent the different non-deterministic choices, (2)
we represent all states that differ only by this choice as one symbolic state, (3)
we represent the intruder inputs symbolically with another kind of variables
and constraints about what is available to the intruder at the time when the
represented message was constructed. This gives us a decision procedure for
(α, β)-privacy for a bounded number of transitions by honest agents, but with-
out bounding the intruder. This is restricted to specifications that fall within
the fragment we present here and algebraic models with constructor/destructor
theories [11, 19, 9, 20, 14]. In the appendix we provide more details and discuss
the algebraic theories we support.

3 FLICs: Framed Lazy Intruder Constraints

3.1 Defining Constraints
While a frame only lists the messages received by an intruder, a FLIC combines
this with the messages sent by an intruder, where the order of the steps is
significant: in each send step the intruder can only use messages received before.

Definition 3.1 (FLIC). A framed lazy intruder constraint (FLIC) A is a se-
quence of mappings of the form −l 7→ t or +R 7→ t, where each label l and
each recipe variable R occurs at most once. The terms t are messages built from
function symbols, privacy variables, and intruder variables. The first occurrence
of each intruder variable must be in a message sent.

We write −l 7→ t ∈ A if −l 7→ t occurs in A, and similarly +R 7→ t ∈ A.
The domain dom(A) is the set of labels of A and vars(A) are the privacy and
intruder variables that occur in A; similarly, we write rvars(A) for the recipe
variables.

11

We define the message A{| r |} produced by recipe r in FLIC A as follows:

A{| l |} = t if −l 7→ t ∈ A
A{|R |} = t if +R 7→ t ∈ A

A{| f(r1, . . . , rn) |} = f(A{| r1 |}, . . . ,A{| rn |})

For recipes that use labels or recipe variables not defined in the FLIC, the result
is undefined.

Example 3.1. Suppose that we are executing a transaction where agent a receives
a value X, so we add +R 7→ X to the FLIC (where both R and X are fresh
variables). Here we are lazy in the sense that we do not explore at this point
what R (and thus X) might be, because any value would do. Now suppose the
agent checks whetherX can be decrypted with the private key inv(pk(a)). This is
the case iff the message the intruder chooses for X has the form crypt(pk(a), ·, ·).
So, in this case, we instantiate X in this constraint with crypt(pk(a), Y, Z) for
two fresh variables Y and Z, thus requiring that what R yields is indeed of
this form. (The case where the intruder sends something that does not fit is
considered separately, where X ̸ .= crypt(pk(a), ·, ·).) The constraint solving in
§3.2 below then computes (a finite representation of) all solutions for R. ◁

Definition 3.2 (Semantics of FLICs). Let A be a FLIC such that vars(A) = ∅.
We say that A is constructable iff there exists a ground substitution of recipe
variables ρ0 such that A1{| ρ0(R) |} ≈ t for every recipe variable R where A =
A1.+R 7→ t.A2. (This implies that only labels from dom(A1) can occur in
ρ0(R).) We then say that ρ0 constructs A.

Let A be an arbitrary FLIC and I be an interpretation of all privacy and
intruder variables. We say that I is a model of A, written I |≡ A, iff I(A) is
constructable. We say that A is satisfiable iff it has a model.

Example 3.2. Suppose that Alice has sent a signed message m to the intruder,
and the constraint is to send some signed message to Bob. This is recorded in
the following FLIC A:

−l1 7→ inv(pk(i)).−l2 7→ crypt(pk(i), sign(inv(pk(a)),m)).

+R 7→ crypt(pk(b), sign(inv(pk(X)), Y))

Here I1 = [X 7→ a, Y 7→ m] is a model, since I1(A) is constructable using
R = crypt(pk(b), dcrypt(l1, l2)). For every ground recipe r over dom(A) also
Ir = [X 7→ i, Y 7→ A{| r |}] is a model, using R = crypt(pk(b), sign(l1, r)); note
there are infinitely many such r. ◁

3.2 Solving Constraints
We now present how to solve constraints when the intruder does not have access
to destructors, i.e., as if all destructors were private functions and thus cannot
occur in recipes generated by the intruder. Thus the only place where destruc-
tors can occur are in the transactions using try/catch. As a consequence, we can

12

work in the free algebra for now and with only destructor-free terms. We show
later how the results of our decision procedure are lifted to the model where the
intruder is allowed to apply destructors.

One particular case of FLICs is when the intruder only has to send intruder
variables, so there are no more constraints on the messages sent and the intruder
can choose any recipes they want. Such FLICs are thus always satisfiable.

Definition 3.3 (Simple FLIC). A FLIC A is called simple iff every message
sent is an intruder variable, and each intruder variable is sent only once, i.e.,
every message sent is of the form +Ri 7→ Xi and the Xi are pairwise distinct.

Solving constraints is done by transforming a non-simple FLIC into a simple
FLIC. With the lazy intruder we can represent infinitely many models in a finite
way, using substitutions instead of ground interpretations.

Definition 3.4. Let σ be a substitution that does not contain recipe variables.
We define the application of σ to a FLIC by applying σ to the messages in the
FLIC: σ(−l 7→ t.A) = −l 7→ σ(t).σ(A) and σ(+R 7→ t.A) = +R 7→ σ(t).σ(A).

For the substitutions of recipe variables, however, we cannot directly define
the instantiation of recipe variables for an arbitrary FLIC, because we always
need to make sure we instantiate both the recipe and the intruder variables
according to the constraints. We thus define how to apply a substitution of
recipe variables for simple FLICs.

Definition 3.5 (Choice of recipes). A choice of recipes for a simple FLIC A is
a substitution ρ mapping recipe variables to recipes, where dom(ρ) ⊆ rvars(A).

Let [R 7→ r] be a choice of recipes for A that maps only one recipe variable,
where A = A1.+R 7→ X.A2. Let R1, . . . , Rn be the fresh variables in r, i.e.,
{R1, . . . , Rn} = rvars(r) \ rvars(A), where the recipe variables are taken in a
fixed order (e.g., the order in which they first occur in r). Let X1, . . . , Xn be
fresh intruder variables. The application of [R 7→ r] to the FLIC A is defined
as

[R 7→ r](A1.+R 7→ X.A2) = A′.σ(A2)

where A′ = A1.+R1 7→ X1. · · · .+Rn 7→ Xn and σ = [X 7→ A′{| r |}].
For the general case, let ρ be a choice of recipes for A. Then we define ρ(A)

recursively where one recipe variable is substituted at a time, and we follow the
order in which the recipe variables occur in A: if ρ = [R 7→ r]ρ′, where R
occurs in A before any R′ ∈ dom(ρ′), then ρ(A) = ρ′([R 7→ r](A)). Every
application [R 7→ r](A) corresponds to a substitution σ = [X 7→ A′{| r |}] (as
defined above), and we denote with σA

ρ the idempotent substitution aggregating
all these substitutions σ from applying ρ to A.

Remark. If ρ is a choice of recipes for a simple FLIC A, then ρ(A) is simple,
because the fresh recipe variables added in ρ(A) map to fresh intruder variables.

◁

13

Table 1: Lazy Intruder Rules

Unification (ρ,A1.−l 7→ s.A2.+R 7→ t.A3, σ)⇝ (ρ′, σ′(A1.−l 7→ s.A2.A3), σ′) if A1.−l 7→ s.A2 is simple, t /∈ Vintruder ,
where ρ′ = [R 7→ l]ρ and σ′ = mgu(σ ∧ s

.
= t) and σ′ ̸= ⊥

Composition (ρ,A1.+R 7→ f(t1, . . . , tn).A2, σ)⇝ (ρ′,A1.+R1 7→ t1. · · · .+Rn 7→ tn.A2, σ) if A1 is simple, f ∈ Σpub and σ ̸= ⊥
where the Ri are fresh recipe variables and ρ′ = [R 7→ f(R1, . . . , Rn)]ρ

Guessing (ρ,A1.+R 7→ x.A2, σ)⇝ (ρ′, σ′(A1.A2), σ′) if A1 is simple, c ∈ dom(x) and σ′ ̸= ⊥
where ρ′ = [R 7→ c]ρ and σ′ = mgu(σ ∧ x

.
= c)

Repetition (ρ,A1.+R1 7→ X.A2.+R2 7→ X.A3, σ)⇝ (ρ′,A1.+R1 7→ X.A2.A3, σ) if A1.+R1 7→ X.A2 is simple and σ ̸= ⊥
where ρ′ = [R2 7→ R1]ρ

Unification. We use an adapted version of syntactic unification, where we
orient so that privacy variables are never substituted with intruder variables,
e.g., an equality x

.
= X of a privacy variable x and an intruder variable X

yields the unifier [X 7→ x]. We denote with mgu(s1
.
= t1 ∧ · · · ∧ sn

.
= tn)

the result, called most general unifier (mgu), of unifying the si and ti, which
is either some substitution or ⊥ whenever no unifier exists. Slightly abusing
notation, we consider a substitution [x1 7→ t1, . . . , xn 7→ tn] as the formula
x1

.
= t1 ∧ · · · ∧ xn

.
= tn and ⊥ as false. Moreover, in our fragment the privacy

variables are always associated to some domains, where the formula x ∈ D
defines the set of values (public constants) that x can take. Thus, we filter out
the mgus that are inconsistent w.r.t. the domain specifications (e.g., [x 7→ a] is
filtered out if a /∈ dom(x)).

The lazy intruder rules. In order to solve the constraints, we define a
reduction relation ⇝ on FLICs. The idea is that ⇝ is Noetherian and a FLIC
that cannot be further reduced is either simple or unsatisfiable. Moreover, ⇝
is not confluent, but rather is meant to explore different ways for the intruder
to satisfy constraints, and thus we will consider the set of all simple FLICs that
are reachable from a given one: the simple FLICs together will be equivalent
to the given FLIC. Since ⇝ is not only Noetherian, but also finitely branching,
the set of reachable simple FLICs is always finite by König’s lemma.

Definition 3.6 (Lazy intruder rules). The relation ⇝ is a relation on triples
(ρ,A, σ) of a choice of recipes ρ, a FLIC A and a substitution σ, where ρ and
σ keep track of all choices of recipes and substitutions of privacy and intruder
variables performed in the reduction steps so far. We assume that dom(ρ) ∩
rvars(A) = ∅ and dom(σ) ∩ vars(A) = ∅. The rules are defined in Table 1.

We now describe what happens for each rule in Table 1.
Unification When the intruder has to send a message, they can use any

message previously received and that unifies, by choosing a label for the recipe
variable. Then there is one less message to send, but the unifier might make
other constraints non-simple. This rule is not applicable if the message t to
send is an intruder variable: the intruder is lazy.

Composition When the intruder has to send a composed message f(t1, . . . , tn),
they can generate it themselves if f is public and they can generate the ti. The

14

intruder thus chooses to compose the message t themselves, so the recipe R is
the application of f to other recipes.

Guessing When the intruder has to send a privacy variable x, they can
guess the actual value, say c, of that variable. In fact, this is a guessing attack
as we let the privacy variables range over small domains of known constants.
This rule represents the case that the intruder guesses correctly, and the variable
x is replaced by the guessed value c. Note that using the Guessing rule does
not yet mean that the intruder knows that c is the correct guess: in the rest
of the procedure, whenever there is such a guess we model both the right and
wrong guesses, and the intruder may not be able to tell what is the case.

Repetition When the intruder has to send an intruder variable that they
have already sent earlier, they can reuse the same recipe. While there may be
several ways to generate the same message, we are lazy and just use the same
recipe. The only interesting situation where we need to deal with several recipes
for the same message is for the messages received by the intruder, so that they
can make comparisons. This is not part of the lazy intruder rules but rather of
the experiments explained in §5.

Definition 3.7 (Lazy intruder result). Let ρ be a choice of recipes, A be a
FLIC and σ be a substitution such that dom(ρ) ∩ rvars(A) = ∅ and dom(σ) ∩
vars(A) = ∅. A lazy intruder result of (ρ,A, σ) is a triple (ρ′,A′, σ′) such that
(ρ,A, σ)⇝∗ (ρ′,A′, σ′) and A′ is simple. Let σ now be arbitrary, we define

LI (A, σ) = {ρ′ | (ε, σ(A), σ)⇝∗ (ρ′,A′,_) and
A′ is simple}

where ε is the identity substitution.

In our procedure, we use the lazy intruder by starting with a simple FLIC A
and a substitution σ such that σ(A) is not simple, and then taking some choice
of recipes from LI (A, σ).

Definition 3.8 (Representation of choice of recipes). Let A be a FLIC, I |≡ A,
ρ0 be a ground choice of recipes and ρ be a choice of recipes for A. We say that
ρ represents ρ0 w.r.t. A and I iff there exists ρ′0 such that ρ′0 is an instance of
ρ and for every R ∈ rvars(A):

• If ρ(R) ∈ rvars(A), then we have I(A){| ρ0(R) |} = I(A){| ρ′0(R) |}.

• If ρ(R) ∈ dom(A), then we have ρ0(R) = ρ′0(R).

• If ρ(R) is a composed recipe, then we have ρ0(R) = f(r1, . . . , rn) and
ρ′0(R) = f(r′1, . . . , r

′
n) such that I(A){| ri |} = I(A){| r′i |} for every i ∈

{1, . . . , n}.

This notion of representation gives the lazy intruder some “liberty”, namely
to be lazy in not instantiating recipe variables that do not matter, and to replace
subrecipes with equivalent ones. Part of the completeness proofs later is to show
that, despite all these liberties, the lazy intruder still returns enough recipes to

15

do experiments that would lead to violations of (α, β)-privacy. The lazy intruder
rules are sound, complete and terminating:

Theorem 3.1. Let A be a FLIC, σ be a substitution, I |≡ σ(A) and ρ0 be
a ground choice of recipes. Then ρ0 constructs I(σ(A)) iff there exists ρ ∈
LI (A, σ) such that ρ represents ρ0 w.r.t. σ(A) and I. Moreover, LI (A, σ) is
finite.

4 The Symbolic States
Our approach explores a symbolic transition system, i.e., transitions on symbolic
states, where each symbolic state represents a set, in general infinite, of ground
states. Our notion of ground states is an adaptation of the states defined in [2].
We denote symbolic states by S, S ′ etc. and ground states by S, S′ etc.

In fact, a ground state may actually contain privacy variables, representing
the possible uncertainty of the intruder in this state, but each variable has one
concrete value that represents the truth in that state, which will be expressed
by a formula γ that the intruder does not have access to (and the frame concr
is an instance of one of the struct i under γ). This is the reason why we call
it a ground state, even though it contains variables. A symbolic state includes
actually two symbolic layers: First, it merges all those states that differ only in
the concrete γ and thus the concrete frame concr , i.e., where the intruder has
the same uncertainty. In fact, the symbolic states does not have concr anymore.
Second, we use intruder variables and FLICs to avoid enumerating the infinite
choices that the intruder has when sending messages, thus the frames struct i
are generalized to FLICs Ai in symbolic states.

Finally, we have the concept of a node which is a generalization of symbolic
state. A node, generally written N , contains processes (one for each struct i)
that represent pending steps of a transaction being executed. Only when these
steps have been worked off and we have only 0-processes remaining (and certain
evaluations have been made), the resulting node is a symbolic state of the sym-
bolic transition system. This in particular ensures that transactions can only
be executed atomically.

Definition 4.1 (Node, symbolic state and ground state). A node is a tuple
(α0, β0,P,Checked) such that:

• α0 is a Σ0-formula, the common payload;

• β0 is a Σ0-formula, the intruder reasoning about which structure is possible
and about the values of privacy variables;

• P is a set of possibilities, which are each of the form (P, ϕ,A,X , α, δ),
where P is a process, ϕ is a Σ0-formula, A is a FLIC, X is a disequalities
formula, α is a Σ0-formula called partial payload, and δ is a sequence of
memory updates of the form cell(s) := t for messages s and t;

• Checked is a set of pairs (l, r), where l is a label and r is a recipe.

16

where disequalities formulas are of the follow form:

X := X ∧ X | ∀X̄. ¬X0 Disequalities formula
X0 := X0 ∧ X0 | s

.
= t Equalities formula

We say that a node is a symbolic state iff all the processes in P are the
nil process. A ground state is a symbolic state (where Checked is omitted) that
does not contain any recipe and intruder variables, together with a Σ0-formula
γ called the truth, such that γ is true for exactly one model w.r.t. fv(α0) and
Σ0, and γ ∧ β0 is consistent.

As syntactic sugar, we may write N [e← e′] to denote the node identical to
N except that e replaced with e′. For brevity, we may omit the nil process in
the possibilities of a symbolic state and write (ϕ,A,X , α, δ) for (0, ϕ,A,X , α, δ).

We have augmented the FLICs Ai here with disequalities Xi, i.e., negated
equality constraints, which allows us to restrict the choices of the intruder in
a symbolic state. This is needed when we want to make a split between the
case that the intruder makes a particular choice and the case that they choose
anything else. This is formalized in following definition of applying a recipe
substitution which is only possible when all the respective Xi are consistent
with it:

Definition 4.2 (Choice of recipes for a node). Let N = (_,_,P,Checked) be
a node and ρ be a recipe substitution. We say that ρ is a choice of recipes for
N iff ρ is a choice of recipes for all FLICs in P and for every FLIC A and
associated disequalities X in P, the formula σA

ρ (X) is consistent, i.e., ρ does
not contradict the disequalities attached to any FLIC. Moreover, we define

ρ(P) = {(σA
ρ (P), ϕ, ρ(A), σA

ρ (X), α, σA
ρ (δ)) |

(P, ϕ,A,X , α, δ) ∈ P}
ρ(Checked) = {(l, ρ(r)) | (l, r) ∈ Checked}

ρ(N) = N [P ← ρ(P),Checked ← ρ(Checked)]

When writing ρ(N) in the following, we implicitly assume that all disequali-
ties in N are satisfiable under ρ, and that ρ(N) is discarded otherwise. To decide
whether disequality X is satisfiable it suffices to replace the free variables with
distinct fresh constants and check that the corresponding unification problems
have no solution.

From a symbolic state we can define all the choices of recipes (instantia-
tions of the recipe and intruder variables) for the messages sent by the intruder
and all the concrete executions (instantiations of privacy variables) that the
intruder considers possible. A symbolic state represents a set of ground states,
where each ground state corresponds to one multi message-analysis problem.
For every ground state, the common payload α0 is augmented with the partial
payload αi released by the corresponding possibility. Moreover, every model γ
of the privacy variables needs to be augmented by the interpretation of relation

17

symbols. In our approach, we assume that the protocol specification contains a
fixed interpretation of the relation symbols, formalized as a Σ0-formula γ0.

To define the semantics we also need to resolve the meta-notation that we
allow in the αi. Given αi and the truth γ, let [αi]

γ be the instantiation of the
meta-notation in αi, i.e., replacing every occurrence of a term γ(x) in αi (for a
variable x) with the actual value of x in the given γ. For instance, if γ(x) = c,
then [x

.
= γ(x)]γ = x

.
= c.

Definition 4.3 (Semantics of symbolic states). The concrete instantiations of
a symbolic state S = (α0, β0,P,_) are given by(

|S|
)
= {(α0 ∧ [αi]

γ , β0, ρ, γ, γ(ρ(Ai))) | (ϕi,Ai,_, αi,_) ∈ P,
ρ is a ground choice of recipes for S,
γ is a model of α0 ∧ β0 ∧ γ0 ∧ ϕi}

The ground states of S are given by

[[S]] = {(α,MMA(α, β0, ρ(P), concr), ρ(P), γ) |
(α, β0, ρ, γ, concr) ∈

(
|S|
)
}

We say that a symbolic state S satisfies privacy iff for every ground state (α, β,_,_) ∈
[[S]], (α, β)-privacy holds.

Remark. Given a symbolic state S = (_,_,P,_) and a ground choice of recipes
ρ for S, when defining the multi message-analysis problems in the ground states
in [[S]], we only use the first components Pi, ϕi, struct i of the possibilities in
ρ(P), i.e., the components Xi, αi, δi are ignored because they are irrelevant for
the definition of MMA (note that the αi have already been given as part of the
payload α).

Given a symbolic state S = (α0, β0,P,_) and a possibility with formula ϕi,
if there are no models of α0∧β0∧γ0∧ϕi, then the possibility can be removed from
the set P, since it cannot correspond to any ground state. In our procedure, we
discard such possibilities whenever a transition is taken. ◁

When computing the mgu between messages or solving constraints with the
lazy intruder rules, we may deal with substitutions that contain both privacy and
intruder variables. However, it is important to remember that the instantiation
of privacy variables does not depend on the intruder, it is actually the goal of
the intruder to learn about the privacy variables. On the other hand, intruder
variables are instantiated according to the recipes chosen by the intruder. Thus,
we distinguish substitutions that only substitute privacy variables.

Definition 4.4. Given a substitution σ, we define the predicate isPriv as fol-
lows: isPriv(σ) iff dom(σ) ⊆ Vprivacy . Moreover, we define isPriv(⊥) to be
false.4

We denote with σ the substitution of privacy variables but not intruder vari-
ables, i.e., σ(x) = σ(x) if x ∈ Vprivacy and σ(x) = x otherwise.

4In our procedure, we will apply isPriv to mgus, which can be either substitutions or ⊥.

18

The intruder can make experiments on their knowledge by comparing the
outcome of two recipes in every FLIC. It can happen that a pair of recipes
gives the same message in one FLIC and different messages in another FLIC,
allowing conclusions about the respective ϕi. In §5, we show how to extract all
these conclusions and obtain a set of symbolic states in which every experiment
either gives the same result in all FLICs or different results in all FLICs. This
is formalized in the following equivalence relation between recipes:

Definition 4.5. Let N = (α0, β0,P,_) be a node, where P is a set of pos-
sibilities {(_, ϕ1,A1,_,_,_), . . . , (_, ϕn,An,_,_,_)}. Let r1 and r2 be two
recipes, and σi = mgu(Ai{| r1 |}

.
= Ai{| r2 |}) for i ∈ {1, . . . , n}.

r1 ⊏⊐ r2 iff for every i ∈ {1, . . . , n}, Ai{| r1 |} = Ai{| r2 |}
r1 ▷◁ r2 iff for every i ∈ {1, . . . , n}, LI (Ai, σi) = ∅

or (isPriv(σi) and α0 ∧ β0 ∧ ϕi |= ¬σi)
r1 ≃ r2 iff r1 ⊏⊐ r2 or r1 ▷◁ r2

Given two recipes r1 and r2, the meaning is that:

• If r1 ⊏⊐ r2, then the two recipes produce the same message in every FLIC.

• If r1 ▷◁ r2, then the two recipes produce different messages in every FLIC,
under any possible instantiation of the variables: either the unifier depends
on intruder variables but the intruder cannot solve the constraints in any
way, or the unifier depends only on privacy variables and its instances are
already excluded by the intruder reasoning.

Example 4.1. Suppose that a node contains two possibilities where

ϕ1 ≡ y
.
= yes A1 = −l 7→ crypt(pk(x), pair(yes, n))

ϕ2 ≡ y
.
= no ∧ x ̸ .= a A2 = −l 7→ crypt(pk(x), no)

Then we have l ▷◁ crypt(pk(a), no), because in A1 there is no unifier and in A2

the unifier [x 7→ a] is excluded by ϕ2. ◁

We can now define well-formed nodes, where in particular what has been
checked cannot distinguish the possibilities.

Definition 4.6. Let N = (α0, β0,P,Checked) be a node, where P is a set of
possibilities {(_, ϕ1,A1,_, α1,_), . . . , (_, ϕn,An,_, αn,_)}. We say that N is
well-formed iff

• the ϕi are such that |= ¬(ϕi ∧ ϕj) for i ̸= j, fv(ϕi) ⊆ fv(α0) ∪ fv(β0) and
α0 ∧ β0 |=

∨n
i=1 ϕi;

• the Ai are simple FLICs with the same labels and same recipe variables,
occurring in the same order;

• the αi are such that fv(αi) ⊆ fv(α0) and α0 ∧ β0 ∧ γ0 ∧ ϕi |= αi; and

19

• for every (l, r) ∈ Checked , we have l ≃ r.
Recipe variables can only occur in the FLICs Ai. Since dom(A1) = · · · =
dom(An), we may write dom(N) for the domain of the node.

The initially empty set Checked keeps track of which experiments the in-
truder has performed (cf. §5) and well-formedness requires that these experi-
ments indeed no longer distinguish the possibilities. We now define a set of
experiments Pairs(S) that will be relevant: for every label l in the state and
every FLIC A, we try any other way to construct A{| l |} (except l). To that
end, we use the lazy intruder to solve the constraint A.+R 7→ A{| l |} for a fresh
recipe variable R. For each solution ρ the experiment is the pair (l, ρ(R)):

Definition 4.7. Let S = (_,_,P,Checked) be a symbolic state. The set of
pairs of recipes to compare in S is

Pairs(S) = {(l, ρ(R)) | l ∈ dom(S), (_,A,_,_,_) ∈ P,
ρ ∈ LI (A.+R 7→ A{| l |}, ε), ρ(R) ̸= l}
\ Checked

Definition 4.8 (Normal symbolic state). We say that a symbolic state S is
normal iff Pairs(S) = ∅.

In a normal symbolic state, there are no more pairs of recipes that could
distinguish the possibilities (they have all been checked). Thus, given a ground
choice of recipes, all the concrete instantiations of frames are statically equiva-
lent.

Lemma 4.1. Let S = (α0, β0,P,_) be a normal symbolic state, where P =
{(ϕ1,A1,_,_,_), . . . , (ϕn,An,_,_,_)}. Let (_,_, ρ0,_, concr) ∈

(
|S|
)
. Let

θ |= α0∧β0∧ϕi for some i ∈ {1, . . . , n} and concr ′ = θ(ρ0(Ai)). Then concr ∼
concr ′.

The idea is now that in a normal symbolic state, the FLICs do not contain
any more insights for the intruder, and all remaining violations of (α, β)-privacy
can only result from any other information β0 that the intruder has gathered.
We thus define that a state is consistent, iff β0 cannot lead to violations either:

Definition 4.9 (Consistent symbolic state). We say that a symbolic state S is
consistent iff (α, β0)-privacy holds for every (α, β0,_,_,_) ∈

(
|S|
)
.

Remark. By construction, β0 can only contain symbols in Σ0. Even though
(
|S|
)

is infinite, we need to consider only finitely many (α, β0) pairs. This is because
the corresponding α and β0 in S do not contain intruder variables and we only
need to resolve the meta-notation if present. For truth γ, we also have only
to consider finitely many instances of the privacy variables (as they range over
finite domains). For each α and β0, the Σ0-models are computable as we show
in Appendix A.4. While that algorithm is based on an enumeration of models
as a simple means to prove we are in a decidable fragment, our prototype tool
uses the SMT solver Z3 to check consistency more efficiently. ◁

20

Example 4.2. Let us consider again the situation where a server sends an en-
crypted message containing either a pair for a positive answer or just a negative
answer. Let S = (α0, β0,P, ∅) be the symbolic state such that:

α0 ≡ x ∈ Agent ∧ y ∈ {yes, no}
β0 ≡ y

.
= yes ∨ y .

= no

P = {(y .
= yes,A1, true, true, 0), (y

.
= no,A2, true, true, 0)}

A1 = −l 7→ crypt(pk(x), pair(yes, n))

A2 = −l 7→ crypt(pk(x), no)

and 0 denotes the empty memory. We have that S is consistent iff for every
I |= x ∈ Agent∧ y ∈ {yes, no}, also I |= y

.
= yes∨ y .

= no. This clearly holds, so
S is consistent.

Note that if the intruder makes the experiment, e.g., of comparing l and
crypt(pk(a), no) and consider the states where the recipes produce different mes-
sages, we would have y .

= no∧x ̸ .= a for the second possibility and the symbolic
state would then not be consistent (same payload but the new β0 rules out the
model [x 7→ a, y 7→ no]). ◁

In a symbolic state that is both normal and consistent, we can combine the
two properties to define, for each ground state in the semantics and model of
the payload, a model of the full β and not just β0, using the static equivalence
between concrete frames.

Theorem 4.2. Let S be a normal symbolic state. Then S satisfies privacy iff
S is consistent.

Thus, to verify whether a symbolic state satisfies privacy, our strategy is
to first transform it into several normal symbolic states (this is done with our
intruder experiments) and then verify consistency.

5 The Intruder Experiments
An intruder experiment is to compare pairs of recipes and the messages they
produce in every frame: in a ground state, the intruder can check whether two
messages are equal in the frame concr . In a symbolic state, each possibility
considered by the intruder contains a different simple FLIC. When doing the
comparison on the FLICs, the intruder may find out equalities that must hold
(constraints on privacy and intruder variables) for messages to be equal. The
intruder considers in separate symbolic states the possibilities where the two
concrete messages are equal, and the possibilities where they are not. The re-
sult of such experiments can provide information about the values of privacy
variables. Instead of comparing two arbitrary recipes, for every message t re-
ceived, the intruder can try to compose t in a different way. We call these
experiments compose-checks.

21

We define a reduction relation ↣ on symbolic states. Similarly to the lazy
intruder rules, the idea is that↣ is Noetherian, but not confluent, and a sym-
bolic state that cannot be reduced further is normal.

Definition 5.1 (Compose-checks). The relation ↣ is a binary relation on
symbolic states. Let S = (_, β0,P,Checked) be a symbolic state, where P =
{(ϕ1,A1,X1, α1, δ1), . . . , (ϕn,An,Xn, αn, δn)}.

Privacy split When the intruder compares the messages produced by a label
l and a recipe r, the messages may be equal under some unifiers, which depend
only on privacy variables or which require some choice of recipes that has already
been excluded. The formula β0 is updated by considering in one symbolic state
that the messages are equal (i.e., l ⊏⊐ r) and in the other symbolic state that the
messages are not equal (i.e., l ▷◁ r).

S ↣ S[β0 ← β0 ∧
n∧

i=1

(
ϕi ⇒

{
σi if isPriv(σi)
false otherwise

)
P ← {(ϕi ∧ σi, σi(Ai), σi(Xi), αi, σi(δi)) |

i ∈ {1, . . . , n}, isPriv(σi)}
Checked ← Checked ∪ {(l, r)}]

S ↣ S[β0 ← β0 ∧
n∧

i=1

(
ϕi ⇒

{
¬σi if isPriv(σi)
true otherwise

)
P ← {(ϕi ∧ ¬σi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n},

isPriv(σi)}
∪ {(ϕi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n},

not isPriv(σi)}
Checked ← Checked ∪ {(l, r)}]

if (l, r) ∈ Pairs(S) and for every i ∈ {1, . . . , n}, isPriv(σi) or LI (Ai, σi) = ∅,
where σi = mgu(Ai{| l |}

.
= Ai{| r |}).

Recipe split When the intruder compares the messages produced by a label
l and a recipe r, the messages may be equal under some unifiers, which at least
in one FLIC depend on intruder variables. Some unifier makes one FLIC non-
simple. For each lazy intruder result, there is one symbolic state in which the
intruder takes a choice of recipes ρ and the whole symbolic state is updated
accordingly. Additionally, there is one symbolic state in which the intruder
chooses something else for the recipes so one unifier is excluded.

S ↣ ρ1(S), . . . ,S ↣ ρk(S),S ↣ S[Xi ← Xi ∧ ¬σi]

if (l, r) ∈ Pairs(S) and there exists i ∈ {1, . . . , n} such that not isPriv(σi) and
LI (Ai, σi) = {ρ1, . . . , ρk}, where σi = mgu(Ai{| l |}

.
= Ai{| r |}).

22

Example 5.1. Let S = (α0, β0,P, ∅) be the symbolic state from Example 4.2.

α0 ≡ x ∈ Agent ∧ y ∈ {yes, no}
β0 ≡ y

.
= yes ∨ y .

= no

P = {(y .
= yes,A1, true, true, 0), (y

.
= no,A2, true, true, 0)}

A1 = −l 7→ crypt(pk(x), pair(yes, n))

A2 = −l 7→ crypt(pk(x), no)

Here we do not have any intruder variables, so the FLICs are actually already
structural frames and we will not have to consider choices of recipes. We have
that S is not normal, because for instance (l, crypt(pk(a), no)) ∈ Pairs(S).

We can perform a compose-check, in this case by applying the privacy split
rule. In A1 we have to unify crypt(pk(x), pair(yes, n)) and crypt(pk(a), no), which
is not possible. In A2 we have to unify crypt(pk(x), no) and crypt(pk(a), no),
which gives the mgu σ = [x 7→ a].

Then we get two symbolic states S1 and S2, which have the same α0 as S
but we update β0 and P. Moreover, in both S1 and S2 we have Checked =
{(l, crypt(pk(a), no))}.

S1 β0 ≡ (y
.
= yes ∨ y .

= no) ∧ (y
.
= yes⇒ false)

∧ (y
.
= no⇒ x

.
= a)

P = {(y .
= no ∧ x .

= a, σ(A2), true, true, 0)}
S2 β0 ≡ (y

.
= yes ∨ y .

= no) ∧ (y
.
= yes⇒ true)

∧ (y
.
= no⇒ x ̸ .= a)

P = {(y .
= yes,A1, true, true, 0),

(y
.
= no ∧ x ̸ .= a,A2, true, true, 0)} ◁

Using the compose-checks, we can transform a symbolic state into a set of
normal symbolic states, since by definition a symbolic state is normal when
there are no more pairs to compare. Moreover, the compose-checks preserve the
semantics of symbolic states by partitioning the ground states represented.

Theorem 5.1 (Compose-check correctness). Let S be a symbolic state, (l, r) ∈
Pairs(S) and {S1, . . . ,Sn} be the symbolic states after one rule application given
the pair (l, r). Then [[S]] =

⊎
i∈{1,...,n}[[Si]], where

⊎
denotes the disjoint union.

Moreover, there is a finite number of S ′ such that S ↣∗ S ′ and S ′ is normal.

6 Putting it All Together
We have so far just looked at a given symbolic state, how the intruder can solve
constraints and make experiments on the FLICs — and that without destructors
and algebraic properties. However, all important building blocks of the approach
are now in place and we just have to use them.

23

[2] defines a transition system for ground states: in any reachable state, any
transaction can be taken and this produces a countable set of successor states.
This works by inserting the transaction process in every possibility of the state,
and working off steps of the processes until all are nil. We adapt this process to
the symbolic level where each transaction produces only finitely many successor
states. Most of the adaption is in fact straightforward now and we here give
just the highlights. The details are found in Appendix A.2.

When the process receives a message, the ground system branches over the
infinitely many ground recipes the intruder can employ to provide a message —
we instead put a (freshly renamed) intruder variable into each FLIC. We thus
do not examine what the intruder could send until it actually matters.

For a condition if s
.
= t, the outcome may depend on intruder variables.

We solve the respective FLIC under the mgu of s and t, yielding a finite set
of recipe substitutions ρ. We split now the current symbolic state into several
ones: one for each ρ and one excluding the mgu. With this, we do just partition
the set of represented states into separate symbolic states. Now we look at the
condition again: it may now still depend on privacy variables, and if so, we split
the respective possibility into one where the condition is true and one where it
is false.

For try, when honest agents apply destructors, we can turn the condition
into a destructor-free unification problem, e.g., try X .

= dscrypt(k, t) becomes
t
.
= scrypt(k,X,R), because, if the unification problem is not satisfied, the try

fails. This can now be handled similar to if-then-else, and thus honest agents
never introduce destructors into the messages.

When all processes have reached 0, we normalize the obtained states, i.e.,
perform all intruder experiments, and check consistency. If it fails, privacy is
violated.

This solves the question already for the case that the destructors are un-
available for the intruder. To handle destructors conveniently, we can use the
existing machinery instead of painfully extending it to destructors: we define
a set of special transactions called destructor oracles, one for each destructor.
They receive a term and decryption key candidate, and send back the result
of applying the destructor unless it fails. Note that these rules do not count
towards the bound on the number of transaction, but rather we apply them
to a reached symbolic state until destructors yield no further results and the
state is analyzed. In an analyzed state, for every recipe there exists an equiv-
alent destructor-free recipe and we thus obtain the correctness of our decision
procedure:

Theorem 6.1 (Correctness). Given a protocol specification for (α, β)-privacy,
a bound on the number of transitions and an algebraic theory allowed by Defi-
nition A.2, our decision procedure is sound, complete and terminating.

24

7 Tool support
We have developed a prototype tool implementing our decision procedure (avail-
able as supplementary material). The tool is a proof-of-concept showing that
automation for (α, β)-privacy is achievable and practical. The user must pro-
vide as input the protocol specification, consisting of the transactions that can
be executed, and a bound on the number of transactions to execute. For the
cryptographic operators, we make available by default primitives for asymmetric
encryption/decryption, symmetric encryption/decryption, signatures and pair-
ing (cf. Fig. 1). The user can define custom operators with the restriction to
constructor/destructor theories (cf. Definition A.2).

In case there is a privacy violation, the tool provides a counter-model proving
that the privacy goals in some reachable state do not hold, i.e., a witness that
the intruder has learned more in that state than what is allowed by the payload.

As case studies, we have focused on unlinkability goals: for the running
example, we get a violation due to a corrupted agent. When permitting that in
the corrupted case the intruder can learn the identity, the tool discovers another
problem, namely that the intruder now also learns in the uncorrupted case that
the involved agent is not corrupted. When releasing also that information, no
more violations are found. This illustrates how the tool can help to discover
all private information that is leaked, and thus either fix the protocol or permit
that leak, and then finally verify that no additional information is leaked. We
plan to strengthen the tool support further to make this exploration easier.

We also applied our approach to the Basic Hash protocol [21] and the OSK
protocol [22], where OSK is particularly challenging as a stateful protocol. We
have verified that the Basic Hash protocol satisfies unlinkability, but fails to
provide forward privacy [23]. For the OSK protocol, we have modeled two vari-
ants where, respectively, no de-synchronization and one step de-synchronization
is tolerated. For both versions the tool finds the known linkability flaws [24].

8 Future work
One restriction of our procedure is the algebraic equations and theories we sup-
port. In the future, we would like to extend the procedure to handle more
general theories. In particular, we plan to include unification modulo theories
like AC to support Diffie-Hellman exponentiation. Moreover, for voting pro-
tocols it would be nice to allow arithmetic expressions in the formulas for the
payload (e.g., the tally may be a sum of votes) and the information gathered
by the intruder. We believe the integration with SMT solvers is a promising
direction, as we can benefit from builtin support of arithmetic.

Another objective for future work is to obtain a full-fledged tool that is user-
friendly and can be interactive. For instance, we can add features to explore
specific traces of the transition system.

25

References
[1] S. Mödersheim and L. Viganò, “Alpha-beta privacy,” ACM Trans. Priv.

Secur., vol. 22, no. 1, pp. 1–35, 2019.

[2] S. Gondron, S. Mödersheim, and L. Viganò, “Privacy as reachability,” in
CSF 2022. IEEE, 2022, pp. 130–146.

[3] L. Fernet and S. Mödersheim, “Deciding a fragment of (alpha, beta)-
privacy,” in STM 2021, ser. LNCS, vol. 13075. Springer, 2021, pp. 122–142.

[4] M. Rusinowitch and M. Turuani, “Protocol insecurity with a finite number
of sessions and composed keys is NP-complete,” Theor. Comput. Sci., vol.
299, no. 1, pp. 451–475, 2003.

[5] V. Cheval, “APTE: An algorithm for proving trace equivalence,” in TACAS
2014, ser. LNCS, vol. 8413. Springer, 2014, pp. 587–592.

[6] R. Chadha, V. Cheval, Ş. Ciobâcă, and S. Kremer, “Automated verification
of equivalence properties of cryptographic protocols,” ACM Trans. Comput.
Logic, vol. 17, no. 4, pp. 1–32, 2016.

[7] A. Tiu and J. Dawson, “Automating open bisimulation checking for the spi
calculus,” in CSF 2010. IEEE, 2010, pp. 307–321.

[8] A. Tiu, N. Nguyen, and R. Horne, “SPEC: An equivalence checker for
security protocols,” in APLAS 2016, ser. LNCS, vol. 10017. Springer,
2016, pp. 87–95.

[9] V. Cheval, S. Kremer, and I. Rakotonirina, “DEEPSEC: Deciding equiv-
alence properties in security protocols theory and practice,” in SP 2018.
IEEE, 2018, pp. 529–546.

[10] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS
2008, ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[11] B. Blanchet, “An efficient cryptographic protocol verifier based on Prolog
rules,” in CSFW 2001. IEEE, 2001, pp. 82–96.

[12] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN prover
for the symbolic analysis of security protocols,” in CAV 2013, ser. LNCS,
vol. 8044. Springer, 2013, pp. 696–701.

[13] S. Delaune and L. Hirschi, “A survey of symbolic methods for establishing
equivalence-based properties in cryptographic protocols,” J. Log. Algebraic
Methods Program., vol. 87, pp. 127–144, 2017.

[14] V. Cheval, S. Kremer, and I. Rakotonirina, “The hitchhiker’s guide to de-
cidability and complexity of equivalence properties in security protocols,”
in Logic, Language, and Security, ser. LNCS. Springer, 2020, vol. 12300,
pp. 127–145.

26

[15] T. Hinrichs and M. Genesereth, “Herbrand logic,” Stanford University,
USA, Tech. Rep. LG-2006-02, 2006. [Online]. Available: http://logic.
stanford.edu/reports/LG-2006-02.pdf

[16] J. Millen and V. Shmatikov, “Constraint solving for bounded-process cryp-
tographic protocol analysis,” in CCS 2001. ACM, 2001, pp. 166–175.

[17] D. Basin, S. Mödersheim, and L. Viganò, “OFMC: A symbolic model
checker for security protocols,” Int. J. Inf. Secur., vol. 4, no. 3, pp. 181–208,
2005.

[18] V. Cheval, H. Comon-Lundh, and S. Delaune, “A procedure for deciding
symbolic equivalence between sets of constraint systems,” Inf Comput, vol.
255, pp. 94–125, 2017.

[19] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of selected
equivalences for security protocols,” J Log Algebr Program, vol. 75, no. 1,
pp. 3–51, 2008.

[20] D. Aparicio-Sánchez, S. Escobar, R. Gutiérrez, and J. Sapiña, “An opti-
mizing protocol transformation for constructor finite variant theories in
Maude-NPA,” in ESORICS 2020, ser. LNCS, vol. 12309. Springer, 2020,
pp. 230–250.

[21] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels, “Security and
privacy aspects of low-cost radio frequency identification systems,” in Se-
curity in Pervasive Computing, ser. LNCS, vol. 2802. Springer, 2004, pp.
201–212.

[22] M. Ohkubo, K. Suzuki, and S. Kinoshita, “Cryptographic approach to
“privacy-friendly” tags,” in RFID Privacy Workshop 2003, 2003.

[23] M. Brusó, K. Chatzikokolakis, and J. den Hartog, “Formal verification of
privacy for RFID systems,” in CSF 2010. IEEE, 2010, pp. 75–88.

[24] D. Baelde, S. Delaune, and S. Moreau, “A method for proving unlinkability
of stateful protocols,” in CSF 2020. IEEE, 2020, pp. 169–183.

27

http://logic.stanford.edu/reports/LG-2006-02.pdf
http://logic.stanford.edu/reports/LG-2006-02.pdf

A Appendix

A.1 Proofs
In this appendix, we give the proofs of the theorems and lemmas that we stated
in the body of the paper. To this end, we also prove a number of auxiliary
results.

Lemma A.1. Let ρ be a choice of recipes, A be a FLIC and σ be a substitution
such that dom(ρ) ∩ rvars(A) = ∅ and dom(σ) ∩ vars(A) = ∅. Let (ρ′,A′, σ′)
such that (ρ,A, σ)⇝ (ρ′,A′, σ′). Then for every recipe r, we have σ′(A{| r |}) =
σ′(A′{| ρ′(r) |}).

Proof. For a recipe variable that is changed by the rule application:

• Unification: A = A1.−l 7→ s.A2.+R 7→ t.A3, A′ = σ′(A1.−l 7→ s.A2.A3),
ρ′(R) = l and σ′ |= s

.
= t so σ′(A′{| ρ′(R) |}) = σ′(s) = σ′(t) = σ′(A{|R |}).

• Composition: A = A1.+R 7→ f(t1, . . . , tn).A2, A′ = A1.+R1 7→ t1. · · · .+Rn 7→
tn.A2 and ρ′(R) = f(R1, . . . , Rn) so A′{| ρ′(R) |} = f(t1, . . . , tm) = t =
A{|R |}.

• Guessing: A = A1.+R 7→ x.A2, A′ = σ′(A1.A2), ρ′(R) = c and σ′ |=
x
.
= c so σ′(A′{| ρ′(R) |}) = σ′(c) = σ′(x) = σ′(A{|R |}).

• Repetition: A = A1.+R1 7→ X.A2.+R2 7→ X.A3, A′ = A1.+R1 7→
X.A2.A3 and ρ′(R2) = R1 so A′{| ρ′(R2) |} = X = A{|R2 |}.

For a recipe variable R that is not changed by the rule application, we also have
σ′(A{|R |}) = σ′(A′{| ρ′(R) |}) and similarly for labels. For a composed recipe,
this holds by induction on the structure of the recipe.

The next four lemmas prove the soundness, completeness, correctness and
termination of the lazy intruder that we consider in this paper.

Lemma A.2 (Lazy intruder soundness). Let ρ be a choice of recipes, A be a
FLIC, σ be a substitution, I |≡ A and ρ0 be a ground choice of recipes such
that dom(ρ) ∩ rvars(A) = ∅ and dom(σ) ∩ vars(A) = ∅. Let (ρ′,A′, σ′) such
that (ρ,A, σ) ⇝ (ρ′,A′, σ′), ρ′ represents ρ0 with ρ′0 w.r.t. A and I and ρ′0
constructs I(A′). Then ρ0 constructs I(A).

Proof. Let R be a recipe variable such that I(A) = A1.+R 7→ t.A2. First,
we consider the case that R /∈ dom(ρ′). Since ρ′0 constructs I(A′), I(A′) =
A′

1.+R 7→ t.A′
2 and I(A′

1){| ρ′0(R) |} = t. Then I(A1){| ρ0(R) |} = t.
Next, we consider the case that R ∈ dom(ρ′). We proceed by distinguishing

which lazy intruder rule has been applied.

• Unification: Let l = ρ′(R). Since ρ′ represents ρ0 with ρ′0, ρ0(R) =
ρ′0(R) = l. Since ρ′0 constructs I(A′), I(A′){| ρ′0(R) |} = t. Then I(A1){| ρ0(R) |} =
t.

28

• Composition: Let f(R1, . . . , Rn) = ρ′(R). Then I(A′) = A′
1.+R1 7→

t1. · · · .+Rn 7→ tn.A′
2 and t = f(t1, . . . , tn). Since ρ′ represents ρ0 with ρ′0,

ρ0(R) = f(r1, . . . , rn) and ρ′0(R) = f(r′1, . . . , r
′
n) such that I(A){| ri |} =

I(A){| r′i |} and ρ′0(Ri) = r′i for i ∈ {1, . . . , n}. Since ρ′0 constructs I(A′),
I(A′

1){| ρ′0(Ri) |} = ti for i ∈ {1, . . . , n}. Then I(A1){| ρ0(R) |} = f(t1, . . . , tn) =
t.

• Guessing: Then t = ρ′(R) is a constant. Since ρ′ represents ρ0 with ρ′0,
ρ0(R) = ρ′0(R) = t. Then I(A){| ρ0(R) |} = t.

• Repetition: Let R′ = ρ′(R). Then I(A′) = A′
1.+R

′ 7→ t.A′
2. Since

ρ′ represents ρ0 with ρ′0, I(A){| ρ0(R) |} = I(A){| ρ′0(R) |} and ρ′0(R
′) =

ρ′0(R). Since ρ′0 constructs I(A′), I(A′
1){| ρ′0(R′) |} = t. Then I(A1){| ρ0(R) |} =

t.

Lemma A.3 (Lazy intruder completeness). Let ρ be a choice of recipes, A
be a non-simple FLIC, σ be a substitution, I |≡ A and ρ0 be a ground choice
of recipes such that dom(ρ) ∩ rvars(A) = ∅, dom(σ) ∩ vars(A) = ∅ and ρ0
constructs I(A). Then there exists (ρ′,A′, σ′) such that (ρ,A, σ)⇝ (ρ′,A′, σ′),
ρ′ represents ρ0 with ρ′0 w.r.t. A and I and ρ′0 constructs I(A′).

Proof. Let +R 7→ t ∈ A denote the first non-simple constraint. First, we
consider the case that t /∈ Vintruder and ρ0(R) is a label l. Then, A = A1.−l 7→
s.A2.+R 7→ t.A3 such that I(s) = I(t). Therefore, Unification is applicable,
producing (ρ′,A′, σ′) such that ρ′ = [R 7→ l]ρ, A′ = σ′(A1.A2) and σ′ = mgu(σ∧
s
.
= t). Let ρ′0 = ρ0. Then ρ′ represents ρ0 with ρ′0 w.r.t. A and I, because

the only recipe variable in rvars(A) ∩ dom(ρ′) is R, and ρ′(R) = ρ0(R) = l.
Moreover, since ρ0 constructs I(A), we have ρ′0 constructs I(A′).

Next, we consider the case that t = f(t1, . . . , tn) and ρ0(R) = f(r1, . . . , rn).
Then, A = A1.+R 7→ t.A2. Therefore Composition is applicable, producing
(ρ′,A′, σ′) such that ρ′ = [R 7→ f(R1, . . . , Rn)]ρ, A′ = A1.+R1 7→ t1. · · · .+Rn 7→
tn.A2 and σ′ = σ, where the Ri are fresh recipe variables. Let ρ′0(Ri) = ri for
i ∈ {1, . . . , n} and ρ′0(R

′) = ρ0(R
′) otherwise. Then, ρ′ represents ρ0 with ρ′0

w.r.t. A and I, because the only recipe variable in rvars(A) ∩ dom(ρ′) is R,
and ρ0(R) = ρ′0(R). Moreover, since ρ0 constructs I(A), we have ρ′0 constructs
I(A′).

Next, we consider the case that t ∈ Vprivacy and ρ0(R) /∈ dom(A) (the
case that ρ0(R) is a label is already handled above). Then, A = A1.+R 7→
t.A2, I(t) = c for some c ∈ dom(t) and ρ0(R) = c . Therefore, Guessing
is applicable, producing (ρ′,A′, σ′) such that ρ′ = [R 7→ c]ρ, A′ = σ′(A1.A2)
and σ′ = mgu(σ ∧ t .

= c). Let ρ′0 = ρ0. Then, ρ′ represents ρ0 with ρ′0 w.r.t.
A and I, because the only recipe variable in rvars(A) ∩ dom(ρ′) is R and
ρ′(R) = ρ0(R) = c. Moreover, since ρ0 constructs I(A), we have ρ′0 constructs
I(A′).

Finally we consider the case that t ∈ Vintruder . Then, A = A1.+R
′ 7→

t.A2.+R 7→ t.A3. Therefore, Repetition is applicable, producing (ρ′,A′, σ′)
such that ρ′ = [R 7→ R′]ρ, A′ = A1.+R

′ 7→ t.A2.A3 and σ′ = σ. Let ρ′0(R) =

29

ρ0(R
′) and ρ′0(R

′′) = ρ0(R
′′) otherwise. Then, ρ′ represents ρ0 with ρ′0 w.r.t.

A and I, because the only recipe variable in rvars(A) ∩ dom(ρ′) is R, and
I(A){| ρ0(R) |} = I(A){| ρ′0(R) |}. Moreover, since ρ0 constructs I(A), we have
ρ′0 constructs I(A′).

Lemma A.4 (Lazy intruder correctness). Let ρ be a choice of recipes, A be a
FLIC, σ be a substitution, I |≡ A and ρ0 be a ground choice of recipes such that
dom(ρ) ∩ rvars(A) = ∅, dom(σ) ∩ vars(A) = ∅. Then, ρ0 constructs I(A) iff
there exists (ρ′,A′, σ′) such that (ρ,A, σ) ⇝∗ (ρ′,A′, σ′), ρ′ represents ρ0 with
ρ′0 w.r.t. A and I and ρ′0 constructs I(A′).

Proof. By induction, using Lemmas A.2 and A.3.

The size of a message is defined as 1 for a variable and size(f(t1, . . . , tn)) =
1+
∑n

i=1 size(ti) for a composed message. The function ivars gives the intruder
variables of a FLIC, i.e., ivars(A) = vars(A)∩Vintruder ; we extend this function
to substitutions.

Lemma A.5 (Lazy intruder termination). Let ρ be a choice of recipes, A be a
FLIC and σ be a substitution such that dom(ρ) ∩ rvars(A) = ∅ and dom(σ) ∩
vars(A) = ∅. Then, there is a finite number of (ρ′,A′, σ′) such that (ρ,A, σ)⇝∗

(ρ′,A′, σ′).

Proof. We define the weight of a FLIC A to be the pair (v, s), where

• v is the number of intruder variables in the FLIC: v = #ivars(A); and

• s is the sum of the size of the messages sent: s =
∑

+R 7→t∈A size(t).

The weights with the lexicographic order form a well-founded ordering. Every
rule decreases the weight.

• Unification: We may instantiate intruder variables so v would decrease,
and if the mgu is the identity substitution then v stays the same but one
message sent is removed so s decreases.

• Composition: v stays the same, but the message is decomposed by re-
moving the outermost function application so s decreases (by 1).

• Guessing and Repetition: v stays the same, but one message sent is
removed so s decreases (by 1).

There cannot be an infinite sequence of decreasing weights so the lazy intruder
terminates.

Theorem 3.1. Let A be a FLIC, σ be a substitution, I |≡ σ(A) and ρ0 be
a ground choice of recipes. Then ρ0 constructs I(σ(A)) iff there exists ρ ∈
LI (A, σ) such that ρ represents ρ0 w.r.t. σ(A) and I. Moreover, LI (A, σ) is
finite.

Proof. This follows directly from Lemmas A.4 and A.5.

30

We now prove our results for normal symbolic states.

Lemma 4.1. Let S = (α0, β0,P,_) be a normal symbolic state, where P =
{(ϕ1,A1,_,_,_), . . . , (ϕn,An,_,_,_)}. Let (_,_, ρ0,_, concr) ∈

(
|S|
)
. Let

θ |= α0∧β0∧ϕi for some i ∈ {1, . . . , n} and concr ′ = θ(ρ0(Ai)). Then concr ∼
concr ′.

Proof. Assume that the frames are not statically equivalent. This means there
exists a witness, i.e., a pair of ground recipes (r1, r2) such that

concr{| r1 |} = concr{| r2 |}
concr ′{| r1 |} ≠ concr ′{| r2 |}

We show that for each witness (r1, r2), either it contradicts that S is normal or
there is a smaller witness according to the following well-founded ordering:

(r1, r2) < (r′1, r
′
2) iff w(r1) < w(r′1) and w(r2) ≤ w(r′2)

or w(r1) ≤ w(r′1) and w(r2) < w(r′2)

or w(r1) < w(r′2) and w(r2) ≤ w(r′1)
or w(r1) ≤ w(r′2) and w(r2) < w(r′1)

where the weight w(r) of recipe r is defined as the lexicographically ordered pair
(s, h) where s is the size of concr{| r |} and h is the number of the highest label
in r, i.e. that occurs on the hth position in concr ; and h = 0 if there are no
labels in r.

We first handle the case that both r1 and r2 are composed. Then r1 =
f(r11, . . . , r

n
1) and r2 = f(r12, . . . , r

n
2) for the same f (otherwise they cannot

produce the same value in concr). Then at least one of the pairs (ri1, r
i
2) is

already a witness that is smaller in the ordering.
Thus, in all remaining cases we have a pair (l, r) where l is a label and

r is a ground recipe. By definition of
(
|S|
)
, there exist j ∈ {1, . . . , n}, one

FLIC Aj and one model γ |= α0 ∧ β0 ∧ γ0 ∧ ϕj such that concr = γ(ρ0(Aj)).
Let R be a fresh recipe variable and A = Aj .+R 7→ Aj{| l |}. Let I be the
interpretation such that I and γ agree on the privacy variables and for every
R′ such that Aj = A0.+R

′ 7→ X.A′
0, I(X) = concr{| ρ0(R′) |}. Let us extend ρ0

with ρ0(R) = r, where r is the ground recipe such that (l, r) is a witness. Then
we have that ρ0 constructs I(A). By Theorem 3.1, there exists ρ ∈ LI (A, ε)
such that ρ represents ρ0 w.r.t. A and I. Let ρ′0 be the respective instance
of ρ. Since S is normal, we know that l ≃ ρ(R), i.e., we have checked that
(l, ρ0(ρ(R))) is not a witness.

Let us consider the case that ρ(R) = R′ ∈ rvars(Aj), which can only happen
if the repetition rule has been used, which in turn can only happen if Aj =
A0.+R

′ 7→ X.A′
0. − l 7→ X.A′′

0 , so l maps to a message that the intruder has
sent earlier and that they received back from some agent. As mentioned above,
since S is normal, the pair (l, ρ0(R

′)) is not a witness (the intruder can check
that in all FLICs they received back at l whatever they sent at R′). Thus, the

31

pair (ρ0(R
′), r) must be a witness, and this is smaller than (l, r), because the

size of the produced message is the same, but ρ0(R′) can only use labels from
A′

0 and has thus a lower weight than l.
Next we consider the case that ρ(R) = l′ ∈ dom(S). Since ρ represents

ρ0 and ρ′0 is an instance of ρ, we have ρ0(R) = ρ′0(R) = l′. This is however
impossible, because as mentioned above, S is normal so (l, l′) is checked and
cannot be a witness.

Finally we consider the case that ρ(R) is a composed recipe. Then ρ0(R) =
f(r1, . . . , rn) and ρ′0(R) = f(r′1, . . . , r

′
n) such that I(A){| ri |} = I(A){| r′i |} for

i ∈ {1, . . . , n}. Again, since S is normal, (l, ρ0(ρ(R))) has been checked and
cannot be a witness. Thus, for (l, r) to be a witness, at least one of the pairs
(ri, r

′
i) has to be a witness. This is smaller than (l, r) since the recipes ri, r′i

produce proper subterms of the message concr{| l |}.
Thus for every witness we can find a smaller witness, which is impossible

along a well-founded ordering, and thus we can be sure that there are no wit-
nesses.

Theorem 4.2. Let S be a normal symbolic state. Then S satisfies privacy iff
S is consistent.

Proof. Let P = {(ϕ1,A1,_, α1,_), . . . , (ϕn,An,_, αn,_)} be the possibilities
in S. First we assume that S satisfies privacy and show that S is consistent. Let
(α, β0, ρ, γ, concr) ∈

(
|S|
)
. Then S = (α, β, ρ(P), γ) ∈ [[S]] is the corresponding

ground state, where β ≡ MMA(α, β0, ρ(P), concr). Let I |=Σ0
α. Since S

satisfies privacy, (α, β)-privacy holds so there exists I ′ |=Σ β such that I and I ′
agree on fv(α) and on the relations in Σ0. Since β |= β0, I ′ |=Σ0 β0. Therefore
(α, β0)-privacy holds. Thus S is consistent.

Next we assume that S is consistent and show that S satisfies privacy. Let
(α, β0ρ, γ, concr) ∈

(
|S|
)
. Then S = (α, β, ρ(P), γ) ∈ [[S]] is the corresponding

ground state, where β ≡ MMA(α, β0, ρ(P), concr). Let struct i = ρ(Ai) for
i ∈ {1, . . . , n}. Let I |=Σ0 α. Since S is consistent, (α, β0)-privacy holds, i.e.,
there exists I ′ |=Σ0 β0 such that I and I ′ agree on fv(α0) and the relations in
Σ0. Since α ∧ β0 |=

∨n
i=1 ϕi, there exists i ∈ {1, . . . , n} such that I ′ |= ϕi. By

Lemma 4.1, concr ∼ I ′(struct i) so I ′ |=Σ concr ∼ struct i. Therefore I ′ |=Σ β,
so (α, β)-privacy privacy holds, i.e., S satisfies privacy. This is true for every
S ∈ [[S]], thus S satisfies privacy.

The following lemma is used to prove the termination of the compose-checks
in the next theorem, and we then show that these intruder experiments are
correct.

Lemma A.6. Let A be a simple FLIC, r1, r2 be recipes and σ = mgu(A{| r1 |}
.
=

A{| r2 |}).

• If isPriv(σ), then for every choice of recipes ρ, we have isPriv(σ′), where
σ′ = mgu(ρ(A){| ρ(r1) |}

.
= ρ(A){| ρ(r2) |}).

32

• If not isPriv(σ), then for every ρ ∈ LI (A, σ), we have isPriv(σ′), where
σ′ = mgu(ρ(A){| ρ(r1) |}

.
= ρ(A){| ρ(r2) |}).

Proof. First we consider the case that isPriv(σ). Let ρ be a choice of recipes
and σ′ = mgu(ρ(A){| ρ(r1) |}

.
= ρ(A){| ρ(r2) |}). If A{| r1 |} contains an intruder

variable as a subterm, then A{| r2 |} contains the same intruder variable in the
same position; otherwise, the intruder variable would be substituted and we
would not have isPriv(σ). The argument is similar if A{| r2 |} contains intruder
variables. Since the intruder variables are not relevant for unifying the two
messages, the intruder variables can be instantiated in any way. Then we have
σ(ρ(A){| ρ(r1) |}) = σ(ρ(A){| ρ(r2) |}), which means that σ is an instance of σ′

and thus isPriv(σ′).
Next we consider the case that not isPriv(σ). Let ρ ∈ LI (A, σ), σ′ =

mgu(ρ(A){| ρ(r1) |}
.
= ρ(A){| ρ(r2) |}) and A′, σ′′ be such that (ε, σ(A), σ) ⇝∗

(ρ,A′, σ′′) andA′ is simple. We haveA′ = σ′′(ρ(A)). Since ρ(A) andA′ are sim-
ple, the application of ρ already substitutes the intruder variables in dom(σ′′),
so we have A′ = σ′′(ρ(A)). Then we have σ′′(A′{| ρ(r1) |}) = σ′′(ρ(A){| ρ(r1) |})
and σ′′(A′{| ρ(r2) |}) = σ′′(ρ(A){| ρ(r2) |}). Moreover, we have σ′′(A′{| ρ(r1) |}) =
σ′′(A{| r1 |}) and σ′′(A′{| ρ(r2) |}) = σ′′(A{| r2 |}). Since σ′′ |= σ, we have σ′′(A{| r1 |}) =
σ′′(A{| r2 |}), which is the same as σ′′(ρ(A){| ρ(r1) |}) = σ′′(ρ(A){| ρ(r2) |}). Then
σ′′ is an instance of σ′ and thus isPriv(σ′).

Theorem A.7 (Compose-check termination). Let S be a symbolic state. Then
there is a finite number of symbolic states S ′ such that S ↣∗ S ′.

Proof. Let A1, . . . ,An be the FLICs in S. We define the weight of S to be the
pair (p, s), where

• p is the number of pairs recipes to check: p = #Pairs(S); and

• s is the sum, over the pairs of recipes, of the number of FLICs in which
the unifier depends on intruder variables and there exists a solution to the
constraints: s =

∑
(l,r)∈Pairs(S) #{Ai | not isPriv(σi) and LI (Ai, σi) ̸=

∅}, where σi = mgu(Ai{| l |}
.
= Ai{| r |}) for i ∈ {1, . . . , n} (and (l, r) ∈

Pairs(S)).

The weights with the lexicographic order form a well-founded ordering. Every
rule decreases the weight. Let S ′ be a symbolic state such that S ↣ S ′. First
we consider that S ′ is produced by the rule Privacy split. One pair (l, r) is
now checked and the FLICs are not changed (except possibly by instantiation
of privacy variables), so p decreases.

Next we consider the case that S ′ is produced by the rule Recipe split.
There exist (l, r) ∈ Pairs(S) and i ∈ {1, . . . , n} such that not isPriv(σi) and
LI (Ai, σi) ̸= ∅, where σi = mgu(Ai{| l |}

.
= Ai{| r |}). The first subcase is that S ′

is produced by applying some choice of recipes ρ ∈ LI (Ai, σi). For every pair
(l′, r′) ∈ Pairs(S), there is at most one corresponding pair (l′, ρ(r′)) ∈ Pairs(S ′)
so p may decrease (e.g., if some choice of recipes used to compute the pairs in
S ′ is not an instance of ρ) but p cannot increase. If p stays the same, let

33

j ∈ {1, . . . , n}. By Lemma A.6, if the unifier only depends on privacy variables,
this is still the case in S ′, and for the FLIC ρ(Ai), the unifier does not depend
on intruder variables anymore, thus s decreases.

The second subcase is that S ′ is produced by excluding σi. Then the FLICs
are not changed so p stays the same, but s decreases because now LI (Ai, σi) = ∅,
since σi is excluded.

There cannot be an infinite sequence of decreasing weights so the compose-
checks terminate.

Theorem 5.1 (Compose-check correctness). Let S be a symbolic state, (l, r) ∈
Pairs(S) and {S1, . . . ,Sn} be the symbolic states after one rule application given
the pair (l, r). Then [[S]] =

⊎
i∈{1,...,n}[[Si]], where

⊎
denotes the disjoint union.

Moreover, there is a finite number of S ′ such that S ↣∗ S ′ and S ′ is normal.

Proof. Let P denote the possibilities in S, where P = {(ϕ1,A1,X1, α1, δ1), . . . , (ϕn,An,Xn, αn, δn)}.
First we consider the case that Privacy split is applicable. For every i ∈
{1, . . . , n}, isPriv(σi) or LI (Ai, σi) = ∅, where σi = mgu(Ai{| l |}

.
= Ai{| r |}). We

are partitioning the set of ground states based on the interpretations of privacy
variables. Let S1 and S2 be the symbolic states produced by the first and second
subcase of the rule, respectively. We start by showing that [[S]] ⊆ [[S1]] ⊎ [[S2]].
Let (α, β0, ρ, γ, concr) ∈

(
|S|
)

for some i ∈ {1, . . . , n} and structj = ρ(Aj) for
j ∈ {1, . . . , n}. Then (α, β, ρ(P), γ) ∈ [[S]] is the corresponding ground state,
where β ≡ MMA(α, β0, ρ(P), concr).

• If isPriv(σi) and γ |= σi: Then (α, β′
0, ρ, γ, concr) ∈

(
|S1|
)

and (α, β′, ρ(P ′), γ) ∈
[[S1]] is the corresponding ground state, where β′ ≡ MMA(α, β′

0, ρ(P ′), concr)
and

β′
0 ≡ β0 ∧

n∧
j=1

(
ϕj ⇒

{
σj if isPriv(σj)
false otherwise

)
P ′ = {(ϕj ∧ σj , σj(Aj), σj(Xj), αj , σj(δj)) |

j ∈ {1, . . . , n}, isPriv(σj)}

We want to show that β ≡ β′. Let I |=Σ β. There exists j ∈ {1, . . . , n}
such that I |=Σ ϕj ∧ concr ∼ structj . Since γ |= σi and concr = γ(ρ(Ai)),
concr{| l |} = concr{| r |}. Then I(structj){| l |} = I(structj){| r |}, so I |= σj .
Then I |=Σ ϕj ∧ σj ∧ concr ∼ σj(structj)), so I |=Σ β′. Conversely, for
every I |=Σ β

′, we have I |=Σ β. Thus β ≡ β′.

• Otherwise: Then (α, β′
0, ρ, γ, concr) ∈

(
|S2|
)

and (α, β′, ρ(P ′), γ) ∈ [[S2]] is

34

the corresponding ground state, where β′ ≡ MMA(α, β′
0, ρ(P ′), concr) and

β′
0 ≡ β0 ∧

n∧
j=1

(
ϕj ⇒

{
¬σj if isPriv(σj)
true otherwise

)
P ′ = {(ϕj ∧ ¬σj ,Aj ,Xj , αj , δj) | j ∈ {1, . . . , n},

isPriv(σj)}
∪ {(ϕj ,Aj ,Xj , αj , δj) | j ∈ {1, . . . , n},

not isPriv(σj)}

We want to show that β ≡ β′. Let I |=Σ β. There exists j ∈ {1, . . . , n}
such that I |=Σ ϕj ∧ concr ∼ structj . Since γ |= ¬σi or LI (Ai, σi) = ∅,
concr{| l |} ≠ concr{| r |}. Then I(structj){| l |} ̸= I(structj){| r |}, so if
isPriv(σj) then I |=Σ ϕj ∧ ¬σj ∧ concr ∼ structj . Then I |=Σ β′. Con-
versely, for every I |=Σ β

′, we have I |=Σ β. Thus β ≡ β′.

The cases are mutually exclusive, so [[S]] ⊆ [[S1]] ⊎ [[S2]]. Similarly, we have
[[S1]] ⊎ [[S2]] ⊆ [[S]].

Next we consider the case that Recipe split is applicable. There exists
i ∈ {1, . . . , n} such that not isPriv(σi) and LI (σi, σi) = {ρ1, . . . , ρk}, where
σi = mgu(Ai{| l |}

.
= Ai{| r |}). We are partitioning the set of ground states based

on the ground choices of recipes. Let Sj = ρj(S) for j ∈ {1, . . . , k}, and S0 be
the symbolic state in which σi is excluded for Ai. Let S ∈ [[S]] and ρ be the
corresponding ground choice of recipes. Then S ∈ [[Sj]] if ρ is an instance of
ρj (note that the ρj are mutually exclusive); otherwise S ∈ [[S0]]. Conversely,⊎

j∈{0,...,k}[[Sj]] ⊆ [[S]].
The termination follows from Theorem A.7.

A.2 Correctness of the Representation with Symbolic States
The authors of [2] define rules for the symbolic execution of transactions and
explain how to define (α, β)-privacy as reachability, in a transition system with
ground states. We follow a similar approach but we have two additional layers
of symbolic representation, namely the lumping of several ground states into
symbolic states and the intruder variables for the lazy intruder. We say that
the rules from [2] are working on “the ground level”, while the adapted rules
from this paper are working on “the symbolic level”.

On the ground level, there is always one possibility that is marked (under-
lined in the rules). The marked possibility corresponds to the concrete execution
observed by the intruder. On the symbolic level, there is no marked possibility
because we actually represent all different instantiations for the marked possi-
bility. Our rules work so that each possibility “could” be the marked one, and
which one is marked is defined in the semantics of the symbolic states.

We now sketch the proof that our rules on the symbolic level are correct w.r.t.
the ground level, i.e., the symbolic states generated by our rules represent the
ground states generated by the rules on the ground level. In the following, we

35

recall the rules on the ground level, present our version of the rules and argue
why our representation is correct. We have made some adaptations for the
possibilities, in particular:

• On the ground level, there is a sequence δ, global to the ground state, of
conditional updates of the form cell(s) := t if ϕ. On the symbolic level,
we have sequences δi without conditions, attached to each possibility.

• On the symbolic level, there is a partial payload αi attached to each possi-
bility, because which possibility is marked is only defined in the semantics
of symbolic states so the full payload cannot be fixed before.

We now define how to perform the symbolic execution of a number of trans-
actions. Whenever an atomic transaction P is executed, we need to consider
what can happen for the different possibilities in the node. This is done with
normalization and evaluation rules that work out the steps of the processes.
Once all the processes are nil, we have reached a symbolic state. The rules
thus generate a transition system representing all the reachable states of the
protocol, after a number of transactions.

Definition A.1 (Initial node of a transaction). Let S = (_,_,P,_) be a
symbolic state, P be a transaction process and σ be a substitution such that σ
substitutes the variables in n1, . . . , nk (from a νn1, . . . , nk.Pr specification) with
fresh and distinct constants from Σ \Σ0 that do not occur elsewhere in S or P ,
and such that σ substitutes all other variables with fresh variables that do not
occur elsewhere. The initial node of P w.r.t. S and σ is

S[P ← {(σ(P), ϕ,A,X , α, δ) | (ϕ,A,X , α, δ) ∈ P}]

We write init(P,S) and omit σ to denote an initial node, because the point
is that all variables are substituted with fresh and distinct constants or fresh
variables, so the actual values are not relevant.

There are two kinds of rules: the normalization rules and the evaluation
rules. We define the rules by focusing on the set of possibilities P, which
contains the transaction to execute. The rules update the current node N =
(α0, β0,P,_) by updating P, and the rest of the node is not changed unless
explicitly stated. We use the symbol ⊎ to denote the disjoint union of sets.

A.2.1 Normalization Rules

The normalization rules are concerned with cell reads, cell writes, destructor
applications, conditional statements and releases. For simplicity, we ignore the
redundancy rules defined in [2] at this point: the redundant possibilities do
not change the semantics of symbolic states, and we already said that they are
eliminated in the procedure.

36

Cell read On the ground level, the memory δ contains the sequence cell(s1) :=
t1 if ϕ1. · · · .cell(sk) := tk if ϕk for the given cell, and the initial value is given
with ground context C[·].

{(x := cell(s).P, ϕ, struct)} ⊎ P
−→ {(if s .

= s1 ∧ ϕ1 then let x = t1.P else

. . .

if s
.
= sk ∧ ϕk then let x = tk.P else

let x = C[s].P, ϕ, struct)} ∪ P

On the symbolic level, the memory δ contains the sequence of updates
cell(s1) := t1. · · · .cell(sk) := tk for the given cell and the initial value is given
with ground context C[·].

{(X := cell(s).P, ϕ,A,X , α, δ)} ⊎ P
=⇒ {(if s .

= s1 then let X = t1.P else

. . .

if s
.
= sk then let X = tk.P else

let X = C[s].P, ϕ,A,X , α, δ)} ∪ P

We do not have the conditions in the memory updates anymore. The variable
X is assigned a value from a memory cell, and the cell read step is transformed
into conditional statements so that the correct memory cell is used in the as-
signment to X. Using the δi instead of δ does not change the semantics, because
the ϕi of the possibilities are mutually exclusive, so a memory update done in
one possibility is not relevant to other possibilities.

Cell write On the ground level, the memory δ becomes cell(s) := t if ϕ.δ,
where the condition of the memory update indicates which possibility is writing
in memory. Note that it is important to prepend so that when we do a cell read,
the most recent state is used first in a conditional, effectively overwriting the
previous memory state.

{(cell(s) := t.P, ϕ, struct)} ⊎ P −→ {(P, ϕ, struct)} ∪ P

On the symbolic level, the rule is the same but we update the memory δ
attached to the possibility.

{(cell(s) := t.P, ϕ,A,X , α, δ)} ⊎ P
=⇒ {(P, ϕ,A,X , α, cell(s) := t.δ)} ∪ P

Again, we do not have the conditions ϕi in the memory updates but this does
not change the semantics.

37

Destructor application On the ground level, try/catch is syntactic sugar
wrapping the application of a verifier around the binding of the result from
the destructor application. On the symbolic level, we have the destructor ap-
plications with try/catch and we handle destructor applications in a specific
way because of our assumptions that this is the only place in a specification
where destructors are allowed. We explain the correctness of that model in
Appendix A.3.

A process is trying to apply a destructor, e.g., decrypting a message. For
every destructor d, there must be a unique constructor c and a unique algebraic
equation d(k, c(k′, X1, . . . , Xn)) ≈ Xi (for some i ∈ {1, . . . , n}), and assuming
the variables in k, k′ and theXj have been renamed with fresh intruder variables.
To resolve the destructor application X

.
= d(t1, t2), we compute the unifier

σ = mgu(t2
.
= c(k′, X1, . . . , Xn) ∧ t1

.
= k ∧ X .

= Xi). The meaning is that
t2 must be of the form c(k′, X1, . . . , Xn) and t1 must be the corresponding
decryption key term, otherwise the destructor application would yield ff, and
X is bound to the result of the destructor application. If d is actually a unary
destructor for a transparent function, then there are no terms t1 and k but all
is done in the same way.

We would like to split the possibility into two possibilities: one in which σ
holds and one in which it does not. However, we cannot in general split with
ϕ∧σ and ϕ∧¬σ because σ may contain intruder variables and we need to reason
about solving the constraints. There are three cases.

• σ = ⊥: If there is no unifier, then the process simply goes to the catch
branch.

{(try X .
= d(t1, t2) in P1 catch P2, ϕ,A,X , α, δ)} ⊎ P

=⇒ {(P2, ϕ,A,X , α, δ)} ∪ P

• σ ̸= ⊥ and σ(A) is simple: Then σ does not really introduce constraints, it
can only substitute privacy variables and rename intruder variables with
fresh names (otherwise there would be non-simple constraints). Thus we
split into two possibilities, where we use σ so that the formulas like ϕ only
contain privacy variables and the renamed intruder variables do not occur
(but they are substituted in the process).

{(try X .
= d(t1, t2) in P1 catch P2, ϕ,A,X , α, δ)} ⊎ P

=⇒ {(σ(P1), ϕ ∧ σ, σ(A),X , α, σ(δ)),
(P2, ϕ ∧ ¬σ,A,X , α, δ)} ∪ P

• σ ̸= ⊥ and σ(A) is not simple: Then we use the lazy intruder rules to solve
the constraints. There is one transition for every ρ ∈ LI (A, σ) returned
by the lazy intruder rules, where the try/catch remains but ρ is applied to
the whole node. When this possibility is normalized again, the destructor
application will lead to a unifier making the FLIC simple, because the
intruder variables are substituted when applying ρ. There may still be

38

intruder variables in the unifier but then they are only renamed and not
really introducing constraints. The possibility will be split on privacy
variables according to the previous case.
Moreover, the intruder can always take a choice of recipes which is not a
solution, so we also have an additional transition where σ is excluded.

{(try X .
= d(t1, t2) in P1 catch P2, ϕ,A,X , α, δ)} ⊎ P

=⇒ {(P2, ϕ,A,X ∧ ∀Ȳ . ¬σ, α, δ)} ∪ P

where Ȳ = ivars(σ)\ ivars(A), i.e., the intruder variables that are not oc-
curring in the FLIC are universally quantified when excluding the unifier.

Example A.1. Suppose that there is a possibility with the process try Y
.
=

dcrypt(inv(pk(a)), X) in P1 catch P2 and the FLIC A = −l 7→ pk(a).+R 7→ X.
Then we use the equation dcrypt(inv(X1), crypt(X1, X2, X3)) ≈ X2 and we get
σ = [X 7→ crypt(pk(a), Y,X3), X1 7→ pk(a), X2 7→ Y]. We have for instance ρ =
[R 7→ crypt(l, R2, R3)] ∈ LI (A, σ), so the intruder considers one node where they
have chosen ρ and the process starts with try Y

.
= dcrypt(inv(pk(a), crypt(pk(a), X ′

2, X
′
3)),

which will lead to a unifier keeping the FLIC simple at the next normalization.
Moreover, there is a node where we remember the disequality ∀X1, X2, X3, Y. X ̸

.
=

crypt(pk(a), Y,X3) ∨ X1 ̸
.
= pk(a) ∨ X2 ̸

.
= Y , which is actually equivalent to

∀X3, Y. X ̸
.
= crypt(pk(a), Y,X3). ◁

Conditional statement On the ground level, one possibility is split into two.
By construction, if the marked possibility is split then there is only one branch
that is consistent with the current truth γ and it is marked accordingly.

{(if ψ then P1 else P2), ϕ, struct} ⊎ P
−→ {(P1, ϕ ∧ ψ, struct), (P2, ϕ ∧ ¬ψ, struct)} ∪ P

On the symbolic level, there are two base cases: when the condition is a
relation R(t1, . . . , tn) and when the condition is an equality s

.
= t. For an

arbitrary formula in our grammar (defined in §2), we can eliminate the negation
by swapping the branches and eliminate the conjunction by nesting conditional
statements.

• If the condition is a relation: The possibility is split into two possibilities,
just like on the ground level.

{(if R(t1, . . . , tn) then P1 else P2, ϕ,A,X , α, δ)} ⊎ P
=⇒ {(P1, ϕ ∧R(t1, . . . , tn),A,X , α, δ),

(P2, ϕ ∧ ¬R(t1, . . . , tn),A,X , α, δ)} ∪ P

Recall that all the ti must be terms using only symbols from Σ0 and fv(α0)
a that point, otherwise we consider it a specification error.

• If the condition is an equality: We first compute the unifier σ = mgu(s
.
= t)

and then the transitions are just like for destructor application.

39

Example A.2. Suppose that there is the possibility (if X
.
= Y then P1 else P2, ϕ,A,X , α, δ)

in the current node, where A = +R1 7→ X.+R2 7→ Y . Then σ = [X 7→ Y]
and the only intruder result is (ρ,+R1 7→ Y, σ′) where ρ = [R2 7→ R1] and
σ′ = [X 7→ Y]. The intruder considers one node where they have chosen ρ
(all the FLICs and the rest of the node is updated accordingly), and one node
where σ is excluded for the FLIC A, so we remember that X ̸ .= Y in this
possibility. ◁

We “unfold” the condition until we reach atomic formulas, by nesting conditional
statements or swapping the branches. This does not change the semantics.
When the condition does not depend on intruder variables, we then split into two
possibilities. In the possibility where the condition holds, we may instantiate
privacy variables, but that is just a consequence of the intruder’s knowledge
so it does not change the semantics. However, when the condition introduces
constraints to solve on intruder variables, we have a transition for every solution
to the constraints returned by the lazy intruder. After applying a choice of
recipes that solves the constraints, the condition does not depend on intruder
variables anymore so we can then split in two possibilities, as on the ground
level. Additionally, we also have one transition corresponding to any choice of
recipes which is not a solution. By correctness of the lazy intruder, we thus
represent all ground choices of recipes. Therefore, we are simply partitioning
the ground choices of recipes.

Note that there are several transitions on the symbolic level, while on the
ground level there is just one transition. However, this is because we have
removed the infinite number of transitions in the receive steps with the lazy
intruder. The intruder variables are not instantiated, unless we need to consider
different values in order to resolve the conditions.

Release One the ground level, the formula released by the marked possibility
is added to the payload or the truth (depending on the mode), and formulas
released by other possibilities are ignored.

{(mode ψ.P, ϕ, struct)} ⊎ P −→ {(P, ϕ, struct)} ∪ P

and α← α ∧ ψ if mode = ⋆ or γ ← γ ∧ ψ if mode = ⋄.
On the symbolic level, we have that each possibility could be the marked

one. Therefore, we do not update the common payload but rather the partial
payload attached to the given possibility.

{(⋆ ψ.P, ϕ,A,X , α, δ) ⊎ P =⇒ {(P, ϕ,A,X , α ∧ ψ, δ)} ∪ P

The formula released should be consistent with all models of α0 ∧ β0 ∧ γ0 ∧ ϕ,
i.e., the truths that this possibility symbolically represents. If that is not the
case, it counts as a privacy violation.

In the semantics of the symbolic states, we consider all payloads α0 ∧ [αi]
γ

that the intruder can observe so our rules cover the releases with mode = ⋆.
We do not support releases in γ (with mode = ⋄) in this paper. We have

40

not seen examples of protocols requiring this construct so it is left out at the
moment. However, we could include them if needed, for instance we could add
a component for “partial truth” γi similarly to the partial payloads, that would
be used in the semantics when defining the models.

A.2.2 Evaluation Rules

The evaluation rules are concerned with non-deterministic choices of variables,
receiving and sending messages and terminating processes. The evaluation rules
can only be applied if no normalization rule is applicable.

Non-deterministic choice All possibilities have this choice step at the same
time. On the ground level, the variable x is chosen non-deterministically from
the values in the domain D. There is a transition for every value that the
variable can take, where the truth formula γ is updated accordingly.

{(mode x ∈ D.P1, ϕ1, struct1), . . . ,

(mode x ∈ D.Pn, ϕn, structn)}
−→ {(P1, ϕ1, struct1), . . . , (Pn, ϕn, structn)}

for every c ∈ D, and β ← β ∧ x ∈ D, γ ← γ ∧ x .
= c and if mode = ⋆ also

α← α ∧ x ∈ D
On the symbolic level, we have a single transition and we only update α0 or

β0 (which are used later to define the full α and β) with the formula x ∈ D.

{(mode x ∈ D.P1, ϕ1,A1,X1, α1, δ1), . . . ,

(mode x ∈ D.Pn, ϕn,An,Xn, αn, δn)}
=⇒ {(P1, ϕ1,A1,X1, α1, δ1), . . . , (Pn, ϕn,An,Xn, αn, δn)}

where the rest of the node is updated as follows:

α0 ← α0 ∧ x ∈ D if mode = ⋆

β0 ← β0 ∧ x ∈ D if mode = ⋄

The semantics of the symbolic states include all models of α0∧β0∧γ0∧ϕi, so
we represent all models γ |= x

.
= c for every c ∈ D (and such that γ is consistent

with the rest of the formulas).

Receive All possibilities have this receive step at the same time. On the
ground level, there is a transition for every recipe r that the intruder can gen-
erate, and the variable standing for the message received is directly substituted
with what the recipe produces in each structural frame.

{(rcv(x).P1, ϕ1, struct1), . . . , (rcv(x).Pn, ϕn, structn)}
−→ {(P1[x 7→ struct1{| r |}], ϕ1, struct1), . . . ,

(Pn[x 7→ structn{| r |}], ϕn, structn)}

41

On the symbolic level, we have the lazy intruder representation. Thus, we
have a single transition, where the recipe and the corresponding message are
left as recipe and intruder variables, respectively.

{(rcv(X).P1, ϕ1,A1,X1, α1, δ1), . . . ,

(rcv(X).Pn, ϕn,An,Xn, αn, δn)}
=⇒ {(P1, ϕ1,A1.+R 7→ X,X1, α1, δ1), . . . ,

(Pn, ϕn,An.+R 7→ X,Xn, αn, δn)}

where R is a fresh recipe variable.
The semantics of the symbolic states include all ground choices of recipes,

so all instantiations for the recipe variable (which determine the instantiations
of the intruder variable in each structural frame).

Send On the ground level, the intruder observes that a message is sent, so they
can rule out all possibilities that have terminated: the formula β is updated to
include the concrete message observed and to rule out possibilities not sending.

{(snd(t1).P1, ϕ1, struct1), . . . , (snd(tk).Pk, ϕk, structk)} ⊎ P
−→ {(P1, ϕ1, struct1.l 7→ t1), . . . , (Pk, ϕk, structk.l 7→ tk)}

where every process in P is the nil process and

β ←β ∧
k∨

i=1

ϕi ∧ concr [l]
.
= γ(t1)

∧ ∃i ∈ {1, . . . , k}.
k∨

j=1

i
.
= j ∧ struct [l]

.
= tj ∧ ϕj

On the symbolic level, we update β0 to include the disjunction of which
possibilities send a message, add a mapping in the FLICs and remove the pos-
sibilities that are not sending.

{(snd(t1).P1, ϕ1,A1,X1, α1, δ1), . . . ,

(snd(tk).Pk, ϕk,Ak,Xk, αk, δk)} ⊎ P
=⇒ {(P1, ϕ1,A1.−l 7→ t1,X1, α1, δ1), . . . ,

(Pk, ϕk,Ak.−l 7→ tk,Xk, αk, δk)}

where l is a fresh label, every process in P is the nil process and the rest of the
node is updated as follows: β0 ← β0 ∧

∨k
i=1 ϕi.

The formula for the concrete message and the existence of a corresponding
structure is included in our definition of multi message-analysis problems, in the
semantics of the symbolic states.

42

Terminate On the ground level, the intruder observes that the execution has
terminated because no messages are sent, so they can rule out all possibilities
that are not terminated.

{(0, ϕ1, struct1), . . . , (0, ϕk, structk)} ⊎ P
−→ {(0, ϕ1, struct1), . . . , (0, ϕk, structk)}

where every process in P starts with a send step and β ← β ∧
∨k

i=1 ϕi.
On the symbolic level, we update β0 to include the disjunction of which

possibilities terminate.

{(0, ϕ1,A1,X1, α1, δ1), . . . , (0, ϕk,Ak,Xk, αk, δk)} ⊎ P
=⇒ {(0, ϕ1,A1,X1, α1, δ1), . . . , (0, ϕk,Ak,Xk, αk, δk)}

where every process in P starts with a send step and the rest of the node is
updated as follows: β0 ← β0 ∧

∨k
i=1 ϕi.

Note that on the ground level, eventually the marked possibility either sends
or terminates and the corresponding rule is applied. Since other steps are done
in the normalization rules or require that all possibilities start with the same
step (non-deterministic choices and receives), the processes that do not send are
actually terminating (nil process). Thus, on the symbolic level both rules are
in general applicable at the same time.

A.2.3 Correctness

Our normalization and evaluation rules are relations on nodes. They corre-
spond to internal transitions for the symbolic execution of transactions, which
is distinct from the overall transition system with symbolic states, where the
transactions are atomic. We define =⇒

P
to be the relation between an initial

node of a transaction P and a symbolic state, using the relation =⇒ of nor-
malization and evaluation rules until all processes in P have terminated and a
symbolic state is reached. Then we can define S=⇒

P
the set of symbolic states

that are reached by executing the transaction P , i.e., we can talk about one
transition corresponding to the execution of one atomic transaction. Similarly,
we define S−→

P
to be the set of ground states after the execution of one atomic

transaction starting from a ground state S (transitions from [2]):

S=⇒
P

= {S ′ | init(P,S) =⇒
P
S ′}

S−→
P

= {S′ | init(P, S) −→
P

S′}

Our rules are correct w.r.t. the transitions that can happen on the ground level.

Proposition A.8 (Reachability correctness). Let S be a symbolic state and P
be a transaction process. Let [[S=⇒

P
]] be the ground states after transitions between

43

symbolic states, and [[S]]−→
P

be the ground states after transitions between ground
states:

[[S=⇒
P
]] = {S | S ′ ∈ S=⇒

P
and S ∈ [[S ′]]}

[[S]]−→
P

= {S′ | S ∈ [[S]] and S′ ∈ S−→
P
}

Then we have [[S=⇒
P
]] = [[S]]−→

P
.

A.3 Lifting to the Full Algebraic Model
So far, we have considered a model where the intruder does not have access to the
destructors, which implies the considerable simplification that we can operate
entirely within the free algebra (except for the statements with try/catch, where
honest agents apply destructors).

A.3.1 The Supported Algebraic Theories

We have given in Fig. 1 a concrete example theory, but our result can be quite
easily used for many similar theories. For instance, many modelers prefer for
asymmetric cryptography that private keys are defined as atomic constants and
the corresponding public key is obtained by a public function pub (so one can do
without private functions). We like, in contrast, to start with public keys and
have a private function inv to obtain the respective public key. This allows us
to define a public function from agent names to public keys, which can be con-
venient in reasoning about privacy when the public-key infrastructure is fixed.
Similarly, one may want to define further functions, in particular transparent
functions like pair, i.e., functions that describe message serialization and where
the intruder can extract every subterm. Finally, in some cases it is convenient
to model some private extractor functions when we are dealing with messages
where the recipient has to perform a small guessing attack. For instance, in a
protocol like Basic Hash [23] (found also in our examples basicHash.nn) the
reader actually needs to try out every shared key with a tag to find out which
tag it is. Rather than describing transitions that iterate over all tags and try
to decrypt, it is convenient to model a private extract function that “magically”
extracts the name of the tag, if the message is of the correct form, and returns
false otherwise. This extraction must be a private function since the intruder
should not be able to see this unless they know the respective shared keys; if
they do, then the experiments in our method automatically allow the intruder
to perform the guessing attack.

We thus distinguish three kinds of algebraic properties of destructors that
can be used arbitrarily in our approach:

Definition A.2. A constructor/destructor rule is a rewrite rule of one of the
following forms:

44

• Decryption: d(k, c(k′, x1, . . . , xn)) → xi where d is a destructor symbol,
c is a constructor symbol, i ∈ {1, . . . , n}, fv(k) = fv(k′) and the xi are
variables.

• Transparency: a constructor c of arity n and destructors d1, . . . , dn with
the property di(c(x1, . . . , xn))→ xi for i ∈ {1, . . . , n}. We then say that c
is transparent.

• Private extractors: d(c(t1, . . . , tn)) → t0 where d is a private destructor,
c is a constructor and t0 is a subterm of one of the ti.

Let E be a set of such rules, where we require that every destructor d occurs in ex-
actly one rule of E and E forms a convergent term-rewriting system. Moreover,
each constructor c can occur in at most one of the three categories (decryption,
transparency, and private extractors).

Define ≈ to be the least congruence relation on ground terms such that

d(k, t) ≈

ti if t ≈ c(k′, t1, . . . , tn) and for some σ,

(d(k, c(k′, t1, . . . , tn))→ ti) ∈ σ(E)

ff otherwise

and for unary destructors the definition is the same but k is omitted. Moreover,
we require for every decryption rule d(k, c(k′, x1, . . . , xn)) → xi that k ≈ f(k′)
or k′ ≈ f(k) for some public function f .

Remark. The requirement k ≈ f(k′) or k′ ≈ f(k) for some public f means that,
given the decryption key k, one can derive the encryption key k′ or the other
way around. In particular, in most asymmetric encryption schemes, the public
key can be derived from the private key; for signatures the private key takes
the role of the “encryption key”. This requirement forces us to define in our
example theory the rule pubk(inv(k))→ k. Suppose for a second we would omit
this rule, denying the intruder to derive the public key to a given private key.
Suppose further that the intruder has received two messages l1 7→ inv(pk(x))
and l2 7→ pk(y) and is wondering whether maybe x .

= y. Then they could make
the experiment whether dcrypt(l1, crypt(l2, r, r)) ≈ ff and this would be the case
iff x ̸ .= y. For our method, we want however to ensure that the intruder never
needs to decrypt messages that they encrypted themselves. In the example, with
the public-key extraction rule, the intruder can derive pubk(inv(pk(x))) ≈ pk(x)
and now directly compare this with l2. The requirement allows us in the proof
below to show that the intruder cannot learn anything new from decrypting
terms that they have encrypted themselves. ◁

Observe that every ground term t is equivalent to a unique destructor-free
ground term t0 (that we call the ≈-normal form) and that can be computed
by applying a rewrite rule, when possible, to an inner-most destructor5 in t
and replacing by ff if no rewrite rule is applicable, and repeating this until all
destructors are eliminated.

5Here “inner-most” means that no proper subterm has a destructor. This reduction strat-
egy may be called “call by value” and this is necessary as the following example shows:

45

A.3.2 Destructor Oracles

So far, the intruder can only use constructors and labels in recipes, but not
destructors, just as if they were not public functions. It is obvious that the entire
machinery is an order of magnitude more complicated if one adds destructors,
namely for sending messages to honest agents, analyzing their answers and
conducting experiments. Given the quite involved development up to this point,
we are sure that the reader is relieved to read that we go for a much simpler
path. The idea is that transactions can already apply destructors and we can
thus model oracles that provide decryption services for the intruder, namely
the intruder has to provide a term to decrypt and the proposed decryption key
and the oracle gives back the result of applying the destructor. More formally,
given any decryption rule (d(k, c(x1, . . . , xn))→ xi) ∈ E, we define the following
transaction

rcv(X).rcv(Y).try Z
.
= d(X,Y) in snd(Z).snd(X)

and call it the destructor oracle for said rewrite rule. For a transparent function
of arity n, there is no need for a key and for each i ∈ {1, . . . , n}, the ith subterm
can be retrieved with destructor di, so we define one oracle per transparent
function (returning all subterms) with the following transaction:

rcv(Y).try Z1
.
= d1(Y) in . . . try Zn

.
= dn(Y) in

snd(Z1). · · · .snd(Zn)

Finally, private extractors are not available to the intruder, anyway.
Obviously, such transactions are redundant if the intruder has access to the

destructors and also it is sound to add such transactions. Also redundant is the
output snd(X), because X is already an input, but this ensures that different
ways of composing the key will be considered by our compose-checks.

The reader may wonder why we do not do the same also for constructors,
e.g., rcv(X1). · · · .rcv(Xn).snd(c(X1, . . . , Xn)), so we could use an intruder who
neither encrypts nor decrypts and just uses oracles for both jobs. The reason is
that constructors give rise to an infinite set of terms that can be generated and
it is difficult to limit that—this is why we use the lazy intruder technique as a
way to finitely represent the infinitely many choices in a finite and yet complete
way. For destructors on the other hand, we do not have the same problem since
it is limited what we can achieve here. In particular there is no need for the
intruder to destruct terms that they have constructed themselves, thus allowing
us to limit the use of destructors, respectively the destructor oracle rules, in a
simple way:

dscrypt(dscrypt(k, c), scrypt(dscrypt(k, d), s, r)) ≈ s and it is not equivalent to ff (which an
“outer-most” or “call by name” strategy would produce), because scrypt(dscrypt(k, d), s, r) ≈
scrypt(ff, s, r) ≈ scrypt(scrypt(k, c), s, r) and thus the outer-most destructor must result in s
according to Definition A.2. Also observe that at most one rewrite rule can be applied to an
inner-most destructor subterm of t since E is convergent.

46

Definition A.3 (Term marking). We introduce first a marking for all terms
that the intruder receives in a FLIC (i.e., that a label maps to) and their sub-
terms. The default initial marking is ⋆, representing a term that can potentially
be decomposed using the destructor oracles. The exceptions are privacy and in-
truder variables, as well as functions that do not have a public destructor; all
such terms (and subterms if they have) are marked with ✓.

We keep the marks throughout the state transition system, where marks can
change according to the analysis strategy explained below. In particular, when a
variable gets instantiated, the resulting term keeps its ✓ marking.

Besides for ⋆ and ✓, we will also use the marking + which represents that a
term cannot presently be decomposed since the intruder currently does not know
the decryption key, but may learn it later.

Definition A.4 (Destructor oracle application strategy). Let S be a normal
symbolic state. (Recall that in S all FLICs are simple, and thus intruder
variables represent messages the intruder composed; and S is normal, i.e., all
compose-checks have been made.)

We now define the following strategy that is applied as long as there is a
label l that maps to a ⋆-marked term. Let l be the first label (in the order of the
FLICs’ domain) that maps to a ⋆-marked term c(t1, . . . , tn) in some FLIC; note
that by construction, it can only be a constructor term. If c is an encryption
and if d(k, c(t1, . . . , tn))→ ti ∈ σ(E) is an appropriate instance of a destructor
rule (i.e., the intruder can decrypt iff they can produce k), then we apply the
destructor oracle for that rule under the specialization that the recipe for Y (the
oracle input for the constructor-term) must be the label l. If c is a transparent
function, then we use the appropriate oracle that applies all its destructors and
returns all subterms.

Applying the oracle transaction leads to a finite number of successor states
S ′1, . . . ,S ′k (there is at least one, so k ≥ 1) that are again normal and have
simple FLICs. In each S ′i the decryption has either worked in every FLIC, or
failed in every FLIC. We now update the marks in the S ′i as follows.

If S ′i is a state where decryption has failed in every FLIC, assuming that c
is the constructor for which we had attempted the destructor oracle rule, then
in every FLIC where l 7→ c(t1, . . . , tn) that is marked ⋆, we change to mark +
because it is currently not decipherable. If it was already marked ✓, we do not
change the label. (Note that in some FLIC, l may map to a term with a different
constructor c′; if that term is marked ⋆, it maintains this marking, so that one
of the next analysis steps will be to check if the respective destructor for c′ can
be applied.)

In an S ′i where decryption has worked, we update and introduce markings in
each FLIC as follows. If it was a decryption rule, and thus in a given FLIC, l
maps to some term c(k′, t1, . . . , tn) and the result of the analysis is bound to a
new label l′ 7→ ti (for some i ∈ {1, . . . , n}); the decryption key is bound to new
label l′′ 7→ k. If mi is the mark of ti in l, then the new occurrence of ti at l′ shall
also be marked with mi. In turn, c(k′, t1, . . . , tn) are now all marked ✓, because
they are fully analyzed. Similarly the key term l′′ 7→ k and all its subterms

47

receive the ✓ mark, because they have been produced by the intruder already
(and are thus taken from another label that is already analyzed, or composed by
the intruder and thus not interesting for decryption). If the destructor is not a
decryption but a transparency rule, the marking is similar for the new subterms.

We repeat this process of attempting to decrypt the first ⋆-marked term until
there are no more ⋆-marks. A symbolic state is called analyzed if it contains no
more ⋆-marked terms.

We also call a label l in a symbolic state S a shorthand, if there exists a
recipe r over labels before l such that A{| l |} ≈ A{| r |} for every FLIC A in S.
The destructor oracle application strategy augments FLICs only by shorthands
and thus does not change what is derivable for an intruder who can decompose.

Lemma A.9. For a symbolic state S, the destructor oracle application strategy
produces in finitely many steps a set {S1, . . . ,Sn} of symbolic states that are
analyzed. Further, for every ground state S ∈ [[S]] there exists S′ ∈ [[Si]], for
some i ∈ {1, . . . , n}, such that S and S′ are equivalent except that the FLICs
in S′ may contain further shorthands; and vice versa, for every S′ ∈ [[Si]] there
exists S ∈ [[S]] such that S′ is equivalent to S except for shorthands.

Proof. It is quite straightforward to see that all states that we reach by analysis
steps are equivalent modulo the augmentation with shorthands: the intruder
learns only terms that could be obtained with access to destructors anyway,
and none of the transactions puts a constraint on the intruder since in the worst
case the decryption fails and the intruder just does not learn anything from it.

For termination, we define a measure (a, b) for states S as a lexicographical
ordering of the following two well-founded components a and b:

• a is the total number of ⋆ marks and + marks in the FLICs.

• b is the total number of ⋆ marks in the FLICs.

Consider going from a state S to S ′ with a destructor oracle transaction accord-
ing to our strategy. We show that on the transition from S to S ′ the measure
can only decrease. In an intermediate state of the transaction, when we eval-
uate the try-statements, we split each possibility into two further cases (the
one where the try succeeds, and where it fails), but from the send-statements
only one version survives – the intruder observes from the outcome whether
the destructor works or not. Thus the number of possibilities can only remain
the same or decrease from S to S ′. (We have a decrease if in some FLICs
the decryption works and in others not, because then each S ′ is reduced either
to those that worked or those that did not.) Any instantiations of intruder
variables that happen are neutral for the measure, because intruder variables
in received messages are already marked ✓, and thus also the instantiation is
marked ✓. The only changes in the measures are from updating the mark of
the term under analysis and the marking of the newly received terms (i.e., the
result of the analysis and the decryption key that is repeated by the oracle).

We now distinguish the two cases whether S ′ represents a successful de-
cryption or failure (w.r.t. the destructor oracle rule that brings us from S to
S ′).

48

In the first case, if the destructor fails, then in every FLIC where l maps
to a term marked ⋆, we replace it by + (others we leave alone). This does not
change the a measure, but reduces the b measure by at least one (since there
was at least one ⋆-marked term we have addressed).

In the second case, if the destructor is successful, let us consider decryption
again. In every FLIC where the label l maps to c(k′, t1, . . . , tn) marked ⋆, recall
that the strategy marks the newly received l′ 7→ ti with the same mark as the
respective subterm ti in l; in turn the term c(k′, t1, . . . , tn) with all its subterms
gets marked ✓ (and similar in a transparency rule). This reduces the a measure
by at least one: even if l′ 7→ ti now contains several ⋆ or + marks, these marks
were counted in the previous marking of l 7→ c(k′, t1, . . . , tn), which is now
marked with ✓ for c and the subterms, so the mark ⋆ that c bore is not counted
anymore. If there are any FLICs where l is mapped to a term marked + or ✓,
we do not necessarily have a reduction, but new l′-term can only contain ⋆ and
+ marks that are removed from l. Since there is always at least one ⋆-marked
term in S to apply a destructor oracle rule, the a measure is strictly reduced
from S to S ′.

The measure is well-founded and thus proves there is no infinite chain of anal-
ysis steps, and since the branching is also finite (because applying a transaction
leads to finitely many successor states), it thus follows with König’s lemma that
for every state S, we obtain a finite number of analyzed states S ′1, . . . ,S ′n with
the destructor oracle strategy.

In analyzed states, the intruder does not need any destructors anymore:

Lemma A.10. Let S be a normal analyzed state, S ∈ [[S]] and r be any recipe
over the domain of S. Then there is a destructor-free recipe r′ such that A{| r |} ≈
A{| r′ |} in every FLIC A of S.

Proof. Note also that this proof works on a ground state S which does not
contain intruder variables anymore (but still privacy variables). Thus, the FLICs
now contain just incoming messages. We also formulate this only for decryption,
transparency is in all cases very similar.

We have to show how to replace any subterm rd = d(r1, r2) of r with a
destructor-free equivalent recipe. We can also w.l.o.g. assume that r1 and r2
are destructor-free (by starting with the inner-most occurrence of a destructor).
Thus r2 is either a label or a composed recipe:

1. Case r2 = c(r′1, . . . , r
′
n) for some public function c. If c is not a constructor

corresponding to destructor d, then we can already replace rd with ff and
are done. Otherwise rd means the intruder applies a destructor to a term
they constructed themselves. We distinguish three subcases:

(a) If rd does not yield ff in any FLIC, then the result of the destructor
must be the i-th subterm (for some i ∈ {1, . . . , n}) of r2 in every
FLIC, i.e., A{| rd |} = A{| r′i |} for every FLIC A, and we can thus
replace rd by r′i.

49

(b) If rd yields ff in all FLICs, i.e. A{| rd |} = ff in every FLIC A, we can
just replace rd by ff.

(c) If rd yields ff in some FLIC A1 and does not yield ff in another FLIC
A2, it means that comparing rd with ff is an intruder experiment
that distinguishes the FLICs. We show that this contradicts the fact
that S is analyzed and normal. The only reason that A1 and A2

give different results is that the encryption and decryption key do
not match in A1 but do match in A2. Recall that in a decryption
rule with decryption key k and encryption key k′, we require that
either k ≈ f(k′) or k′ ≈ f(k) for some public function f . We only
prove the case k ≈ f(k′), the other case is analogous. In A2, r1 and
r′1 correspond to k and k′, respectively. Thus, comparing r1 with
f(r′1) is also an experiment that distinguishes the frames. If f is
a constructor, this directly contradicts that S is normal. If f is a
destructor, we now show that this has already been analyzed, i.e.,
there must be a label l′ that is a shorthand for f(r′1) and thus this
contradicts that S is normal (because then the intruder has already
compared r1 with l′). If r′1 is a label, then directly the analysis rule
f(r′1) must have been applied; if r′1 = c(r′′1 , . . . , r

′′
n) and since f is

unary, c is transparent, i.e., it is directly equivalent to one of r′′i .
Thus the experiment to compare r1 with r′′i already distinguishes the
frames and that must have been done already since S is normal and
these recipes are destructor-free. Thus, in all cases this contradicts
that S is normal.

2. Case r2 = l for a label l. We distinguish two subcases:

(a) Case l maps to a term t in at least one of the FLICs such that t
was at some point marked ⋆, i.e., t is a term for which a destructor
exists and the respective destructor rule has been tried for l by the
analysis strategy. (The other cases being that the t in every FLIC
is marked ✓, because it has no destructor or originated from the
intruder.) The state resulting from the application of the respective
destructor oracle rule has the property that the destructor either
succeeded in all FLICs or failed in all FLICs. In the case of failure, we
can simply replace rd by ff and are done. In the case of success, there
are labels holding the result of the destructor, say, l1 for decryption
result and l2 repeating the decryption key if it is a decryption rule.
(For the case of transparency the proof is similar.) One may wonder
if comparing r1 with l2 could distinguish the FLICs. This would
contradict that S is normal because r1 and l2 have no destructors.
Thus, A{| r1 |} = A{| l2 |} in every FLIC A, and thus A{| rd |} = A{| l1 |}
and we can replace rd by l1.

(b) Case l maps in all FLICs to terms that have been marked ✓ through-
out. If they are all terms that have no destructor, then we can of
course directly replace rd with ff. Otherwise, in at least one FLIC A,

50

l maps to a term c(s1, . . . , sm) where c was composed by the intruder,
i.e., there are destructor-free recipes r′1, . . . , r′m that produce si in A,
thus A{| l |} = A{| c(r′1, . . . , r′m) |}. As these recipes are all destructor-
free, this is an experiment that must work in all FLICs (otherwise S
is not normal). Thus, we can first replace rd = d(r1, c(r

′
1, . . . , r

′
m))

which then can be reduced to a destructor-free recipe following the
case 1) of this proof.

Note that we defined that a state is normal with respect to intruder ex-
periments performed with destructor-free recipes. We now consider intruder
experiments that may contain destructors:

Lemma A.11. Let S be an analyzed state and normal w.r.t. destructor-free
recipes. Then it is also normal w.r.t. arbitrary recipes.

Proof. Suppose S is analyzed and normal w.r.t. destructor-free recipes, and
let S ∈ [[S]]. Suppose there are recipes r1 and r2 with destructors such that
comparing r1 and r2 is an experiment that distinguishes concr from a struct i
in S, then by Lemma A.10, there exist equivalent destructor-free r′1 and r′2 that
thus also distinguish concr and struct i and thus S (thus S) is not normal w.r.t.
destructor-free recipes.

We can now prove the correctness of our decision procedure. Note that we
need a bound on the number of transitions, and this bound is restricting the
number of transactions that are executed: and all “internal” transitions taken
by our compose-checks and analysis steps do not count towards that bound.

Theorem 6.1 (Correctness). Given a protocol specification for (α, β)-privacy,
a bound on the number of transitions and an algebraic theory allowed by Defi-
nition A.2, our decision procedure is sound, complete and terminating.

Proof. This is essentially lifting Proposition A.8 to the case where the intruder
has access to destructors (except private destructors, of course). A problem
is however that the states that our lifting produces include shorthands, i.e.,
the terms obtained from the destructor oracle rules. The construction ensures
that such shorthands are indeed just shorthands in the sense that each corre-
sponds to a recipe with destructor (that gives the same term in each FLIC as
the shorthand). We can thus regards states with shorthands as an equivalent
representation of the state without shorthands.

Let now S be a symbolic state that is analyzed and normal w.r.t. destructor-
free recipes. By Lemma A.11, it is also normal w.r.t. arbitrary recipes. In the
model where destructors are private, by Proposition A.8, we have for transaction
process P that [[S=⇒

P
]] = [[S]]−→

P
, i.e., what is reachable on the symbolic level is

equivalent to what is reachable on the ground level using P . We now show how
to arrive at the same result for the case where the intruder can access destructors
(except private extractors, of course.) Consider first the recipes for messages

51

that the intruder may send during this transaction. These recipes can only use
labels that already occur in S — whatever messages the process sends out in
response is not available to the intruder when sending. Given a ground state
S ∈ [[S]] and some recipes with destructors that the intruder sends during this
transition, they are equivalent to destructor-free recipes due to Lemma A.10.
Thus, [[S]]−→

P
is the same when allowing destructors in recipes the intruder sends

for the messages that P receives.
Observe that the symbolic states S=⇒

P
that are reached from S with P are

not yet analyzed and only normalized w.r.t. destructor-free experiments. By
applying the destructor oracle strategy to every S ′ ∈ S=⇒

P
, we obtain finitely

many analyzed states S such that [[S=⇒
P
]] =

⋃
S′′∈S[[S ′′]] by Lemma A.9. By

Lemma A.11 these symbolic states in S are also normal w.r.t. recipes with
destructors.

Thus, starting at a normal analyzed symbolic state S and given a transaction
process P , our procedure computes a finite set of normal analyzed symbolic
states that represent exactly those states that can be reached on the ground
level with P from any state represented by S. Thus, by repeatedly applying
this procedure, we obtain a correct finite representation of all states reachable
from S after a given number of transactions.

A.4 Decidability of Our Fragment of Herbrand logic
We support the fragment such that:

• The alphabet Σ0 is finite (in particular, there are finitely many constants).

• The equivalence class [t]E of every Σ0-term t is computable (and thus
finite).

• Every variable x (both bound and unbound) must range over a fixed do-
main of constants, dom(x) ⊆ Σ0

0.

Before giving a decision procedure, we first need some definitions. Given the
Herbrand universe U induced by Σ0 and given α, we define the relevant part of
U for α as follows:

Uα
0 = {[σ(ti)]E | R(t1, . . . , tn) occurs in α and

for all x ∈ fv(t1, . . . , tn), σ(x) ∈ dom(x)}

We say that θ is an interpretation representation (w.r.t. α) iff θ maps every
x ∈ fv(α) to some element of dom(x) and every n-ary relation symbol R to a
subset of (Uα

0)
n. We say that θ represents interpretation I iff θ(x) = I(x) for

every x ∈ fv(α) and t⃗ ∈ θ(R) iff t⃗ ∈ I(R) for every n-ary relation symbol R and
t⃗ ∈ (Uα

0)
n.

We now describe an algorithm that, given α, returns the set of all inter-
pretation representations that represent a model of α (which implies a decision

52

procedure for the model relation). We first compute all interpretation repre-
sentations for α. This is finite since there are only finitely many variables and
they have finite domains; moreover, Uα

0 is finite, since finitely many relations
R(t1, . . . , tn) are used, their variables can range over finitely many values, and
the equivalence classes of every term is finite. Thus there are finitely many possi-
ble interpretations of every R over Uα

0 . For a given interpretation representation
θ, we can check the model relation with α as follows:

θ |= s
.
= t iff [θ(s)]E = [θ(t)]E

θ |= R(t1, . . . , tn) iff ([θ(t1)]E , . . . , [θ(tn)]E) ∈ θ(R)
θ |= ϕ ∧ ψ iff θ |= ϕ and θ |= ψ

θ |= ¬ϕ iff not θ |= ϕ

θ |= ∃x. ϕ iff there exists c ∈ dom(x) such that
θ[x 7→ c] |= ϕ

53

	Introduction
	Overview of the Procedure and Preliminaries
	(alpha, beta)-privacy for a state
	(alpha, beta)-privacy for a Transition System

	FLICs: Framed Lazy Intruder Constraints
	Defining Constraints
	Solving Constraints

	The Symbolic States
	The Intruder Experiments
	Putting it All Together
	Tool support
	Future work
	Appendix
	Proofs
	Correctness of the Representation with Symbolic States
	Normalization Rules
	Evaluation Rules
	Correctness

	Lifting to the Full Algebraic Model
	The Supported Algebraic Theories
	Destructor Oracles

	Decidability of Our Fragment of Herbrand logic

