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Abstract

Theorem
If G is an abelian group of odd order, then any non-empty, Cayley
graph for G with integer eigenvalues has an odd eigenvalue.

Theorem
Characterization of perfect state transfer in 2-circulants.
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Cayley graphs

Definition

Let G be a group and C ⊆ G\{e} a subset with C−1 = C. The
Cayley graph, X := Cay(G, C), has vertex set V (X) := G, and

g ∼ h if hg−1 ∈ C.

The set C is called the connection set of the graph.
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Examples

Cycles

G = Zn, C = {±1}

Hypercubes

G = Zd
2, C the standard basis

Kn

G any group, C = G\e
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Cayley graphs

Definition

We say that Cay(G, C) is normal if g−1Cg = C for all g ∈ G. A
Cayley graph for an abelian group is called a translation graph.

Definition

A Cayley graph of Zd
2 is called a cubelike graph and a Cayley

graph of a cyclic group is called a circulant.
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Association schemes

Definition
An association scheme (with d classes) is a set of n× n matrices,
A = {A0, . . . , Ad} with entries in {0, 1} such that

A0 = I ,∑d
r=0Ar = J ,

AT
r ∈ A for all r,

ArAs = AsAr for all r, s, and
ArAs lies in the span of A for all r, s.
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Association schemes

The span of A is an algebra, C[A], called the Bose-Mesner
algebra of the scheme.

Any 01-matrix in C[A] is a Schur idempotent of C[A].
The Ar are the minimal Schur idempotents of C[A].
An association scheme B = {B0, . . . , Bk} where each Br is
a Schur idempotent of C[A] is a subscheme of A.
Any Schur idempotent can be viewed as the adjacency
matrix of a (possibly directed) graph. These are the graphs
in the scheme.
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Two bases

The association scheme, A = {A0, . . . , Ad} is a basis for C[A].
There is another basis, E = {E0, . . . , Ed} of matrix idempotents
satisfying

E0 =
1
nJ ,∑d

r=0Er = I ,
ET

r ∈ E for all r,
ErEs = 0 if r ̸= s, and
Er ◦ Es lies in the span of A for all r, s.

The matrices E0, . . . , Ed are the minimal matrix idempotents of
C[A].
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Eigenvalues of a scheme

Since A and E are a bases of C[A], there are scalars pr(s) and
qr(s) such that

Ar =

d∑
s=0

pr(s)Es and Er =
1

n

d∑
s=0

qr(s)As.

Since the Er are pairwise orthogonal idempotents, this implies
that

ArEs = pr(s)Es

and so the scalars pr(0), . . . , pr(d) are eigenvalues of Ar.
We call the pr(s) the eigenvalues of the scheme, A.
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Matrix of eigenvalues

Define the matrices P and Q by

Psr = pr(s) and Qsr = qr(s).

We call P the matrix of eigenvalues of the scheme and Q the
matrix of dual eigenvalues.

We have PQ = nI .
If A is a Schur idempotent in C[A], we can write

A =
∑
r∈R

Ar

for some R ⊆ {0, . . . , d}. If x is the indicator vector for R, then
the eigenvalues of A are the entries of Px.
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The conjugacy class scheme

Let G be a group of order n with conjugacy classes C0, . . . , Cd

(where C0 = {e}).

Define the n× n matrices, A0, . . . , Ad by letting

(Ar)gh =

{
1 if hg−1 ∈ Cr,

0 otherwise.

Then A := {A0, . . . , Ad} is an association scheme.

Definition
This is the conjugacy class scheme of G.

A normal Cayley graph of G is a graph in its conjugacy class
scheme.
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Translation schemes

If G is abelian, its conjugacy classes are singletons, so its
conjugacy class scheme consists of permutation matrices.

Definition
The conjugacy class scheme, A of an abelian group, G, is called
the abelian group scheme of G. Any subscheme of A is called a
translation scheme of G.

A graph in a translation scheme of G is a translation graph of G,
and any translation graph of G lies in a translation scheme of G.
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Duality

Let A be an association scheme with matrix of eigenvalues and
dual eigenvalues P and Q, respectively. We say that A is
formally self-dual if Q = P .

Theorem 1
The abelian group scheme for an arbitrary abelian group is formally
self-dual.

Idea of proof. The matrix of eigenvalues of the abelian group
scheme is the character table of the group. Recall that we
always have PQ = nI .
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The integral translation scheme

Define a relation on an abelian group G as follows. We say that
g, h ∈ G are power-equivalent if ⟨g⟩ = ⟨h⟩. This is an equivalence
relation; let D0, . . . , Dk be its equivalence classes.

Define the n× n matrices, A = {A0, . . . , Ak} by letting

(Ar)gh =

{
1 if hg−1 ∈ Dr,

0 otherwise.

Definition
A is a scheme called the integral translation scheme of G.
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The integral translation scheme

Definition
We say that a graph is integral if all its eigenvalues are integers.

Theorem 2 (Bridges & Mena, 1981)

A translation graph of G is integral if and only if it lies in the integral
translation scheme of G.

Theorem 3
The integral translation scheme of an arbitrary abelian group is
formally self-dual.
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Integral translation graphs

Theorem 4 (Árnadóttir & Godsil)

If G is an abelian group of odd order, n, then any non-empty, integral
Cayley graph for G has an odd eigenvalue.

Idea of proof.

The graph, X , lies in the integral translation scheme.
PP = nI and det(P ) is real.
det(P )2 = det(P ) det(P ) = det(nI) = nd+1.

det(P ) is odd so P invertible modulo 2.
The eigenvalues of X are entries of Px for a 01-vector x.
If all entries of Px are even then x must be zero.

I’m pretty sure this holds for normal Cayley graphs.
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Quantum walks

For a graph X with adjacency matrix A, and t ∈ R, define the
unitary matrix,

U(t) := eitA =
∑
n≥0

(it)n

n!
An.

A quantum walk on X is given by the collection

{U(t) : t ∈ R},

and we call U(t) the transition matrix of the walk at time t.
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Perfect state transfer

Definition
For distinct vertices, x and y of X , we say that we have perfect
state transfer (PST) from x to y at time t if

|U(t)x,y| = 1.

Theorem 5
A regular graph that admits perfect state transfer is integral.
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Examples of PST

K2

P3

Hypercubes
Many other cubelike graphs
Some circulants
Some other Cayley graphs
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Outline

1 Cayley graphs

2 Association schemes
Preliminaries
Eigenvalues
The conjugacy class scheme
The integral translation scheme

3 Perfect state transfer
Preliminaries
The other stuff
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Circulants & 2-circulants

Recall that a circulant is a Cayley graph of the cyclic group Zn.

In 2011, Bašić characterized perfect state transfer in circulants.

Definition
We call a 2-circulant a Cayley graph of an abelian group that has
a cyclic Sylow-2-subgroup.
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2-circulants

Let G be an abelian group of order 2dm where m is odd.
Assume G has a cyclic Sylow-2-subgroup. Then

G ∼= Z2d ×H

where |H| = m.

If d ≥ 1, then G has a unique element, a of order two and if
d ≥ 2, it has a unique pair of inverse elements, b,−b of order
four.
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Example

G = Z4 × Z3 × Z3.
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Connection sets of 2-circulants

Let C be a power-closed subset of G. Define a partition,
C0, . . . , Cd of C, by

Ck := {g ∈ C : ord(g) = 2km′,m′ odd}.

Z2d × H

C0 = C0
C1 = {a} × C∗

1

C2 = {±b} × C∗
2

C3
... doesn’t matter
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Characterization

Theorem 6 (Árnadóttir & Godsil)

Let X = Cay(G, C) be a 2-circulant. Then X admits PST if and only
if the following hold

1 C is power-closed,
2 either a or b is in C but not both, and
3 C0 = C∗

1 \{0} = C∗
2 \{0}.
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Proof idea

PST =⇒ 3)
Idea of proof.

Define S := S1 ∪ S2 where

S1 := C0 \ (C∗
1 \{0}) and S2 := (C∗

1 \{0})\C0.

Y := Cay(H,S) is an integral Cayley graph of odd order.
We can show that Y has only even eigenvalues.
Therefore S is empty, so C0 = C∗

1 \{0}.
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Future directions

How much of this can we generalize to normal Cayley graphs?

At least some!
Perhaps all?

Thank you
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