Cayley graphs, association schemes & state transfer

Soffía Árnadóttir

Algebraic graph theory seminar University of Waterloo, November 7, 2022

Abstract

Abstract

Theorem

If G is an abelian group of odd order, then any non-empty, Cayley graph for G with integer eigenvalues has an odd eigenvalue.

Abstract

Theorem

If G is an abelian group of odd order, then any non-empty, Cayley graph for G with integer eigenvalues has an odd eigenvalue.

Theorem

Characterization of perfect state transfer in 2-circulants.

Outline

Association schemes Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Perfect state transfer Preliminaries The other stuff

Cayley graphs

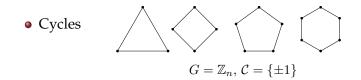
Definition

Let *G* be a group and $C \subseteq G \setminus \{e\}$ a subset with $C^{-1} = C$. The *Cayley graph*, $X := \operatorname{Cay}(G, C)$, has vertex set V(X) := G, and

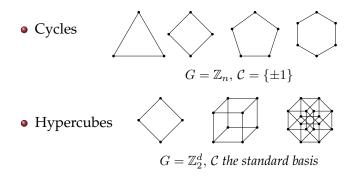
$$g \sim h$$
 if $hg^{-1} \in \mathcal{C}$.

The set C is called the *connection set* of the graph.

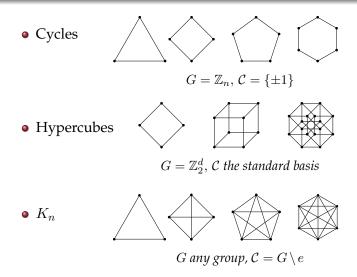
Examples



Examples



Examples



Cayley graphs

Definition

We say that Cay(G, C) is *normal* if $g^{-1}Cg = C$ for all $g \in G$. A Cayley graph for an abelian group is called a *translation graph*.

Cayley graphs

Definition

We say that Cay(G, C) is *normal* if $g^{-1}Cg = C$ for all $g \in G$. A Cayley graph for an abelian group is called a *translation graph*.

Definition

A Cayley graph of \mathbb{Z}_2^d is called a *cubelike graph* and a Cayley graph of a cyclic group is called a *circulant*.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Outline

2 Association schemes Preliminaries

> Eigenvalues The conjugacy class scheme The integral translation scheme

③ Perfect state transfer

Preliminaries The other stuff

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Association schemes

Definition

An *association scheme* (with *d* classes) is a set of $n \times n$ matrices, $\mathcal{A} = \{A_0, \dots, A_d\}$ with entries in $\{0, 1\}$ such that

• $A_0 = I$,

•
$$\sum_{r=0}^{d} A_r = J$$
,

•
$$A_r^T \in \mathcal{A}$$
 for all r ,

- $A_r A_s = A_s A_r$ for all r, s, and
- $A_r A_s$ lies in the span of \mathcal{A} for all r, s.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Association schemes

• The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.
- An association scheme $\mathcal{B} = \{B_0, \dots, B_k\}$ where each B_r is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$ is a *subscheme* of \mathcal{A} .

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.
- An association scheme $\mathcal{B} = \{B_0, \dots, B_k\}$ where each B_r is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$ is a *subscheme* of \mathcal{A} .
- Any Schur idempotent can be viewed as the adjacency matrix of a (possibly directed) graph. These are the *graphs in the scheme*.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Outline

Cayley graphs

Association schemes Preliminaries Eigenvalues

The conjugacy class scheme The integral translation scheme

③ Perfect state transfer

Preliminaries The other stuff

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Two bases

The association scheme, $\mathcal{A} = \{A_0, \dots, A_d\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. There is another basis, $\mathcal{E} = \{E_0, \dots, E_d\}$ of matrix idempotents satisfying

- $E_0 = \frac{1}{n}J$,
- $\sum_{r=0}^{d} E_r = I$,
- $E_r^T \in \mathcal{E}$ for all r,
- $E_r E_s = 0$ if $r \neq s$, and
- $E_r \circ E_s$ lies in the span of \mathcal{A} for all r, s.

The matrices E_0, \ldots, E_d are the *minimal matrix idempotents* of $\mathbb{C}[\mathcal{A}]$.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Eigenvalues of a scheme

Since A and E are a bases of $\mathbb{C}[A]$, there are scalars $p_r(s)$ and $q_r(s)$ such that

$$A_r = \sum_{s=0}^{d} p_r(s) E_s$$
 and $E_r = \frac{1}{n} \sum_{s=0}^{d} q_r(s) A_s.$

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Eigenvalues of a scheme

Since A and E are a bases of $\mathbb{C}[A]$, there are scalars $p_r(s)$ and $q_r(s)$ such that

$$A_r = \sum_{s=0}^{d} p_r(s) E_s$$
 and $E_r = \frac{1}{n} \sum_{s=0}^{d} q_r(s) A_s.$

Since the E_r are pairwise orthogonal idempotents, this implies that

$$A_r E_s = p_r(s) E_s$$

and so the scalars $p_r(0), \ldots, p_r(d)$ are eigenvalues of A_r .

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Eigenvalues of a scheme

Since A and E are a bases of $\mathbb{C}[A]$, there are scalars $p_r(s)$ and $q_r(s)$ such that

$$A_r = \sum_{s=0}^{d} p_r(s) E_s$$
 and $E_r = \frac{1}{n} \sum_{s=0}^{d} q_r(s) A_s.$

Since the E_r are pairwise orthogonal idempotents, this implies that

$$A_r E_s = p_r(s) E_s$$

and so the scalars $p_r(0), \ldots, p_r(d)$ are eigenvalues of A_r . We call the $p_r(s)$ the *eigenvalues of the scheme*, A.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Matrix of eigenvalues

Define the matrices P and Q by

$$P_{sr} = p_r(s)$$
 and $Q_{sr} = q_r(s)$.

We call *P* the *matrix of eigenvalues* of the scheme and *Q* the *matrix of dual eigenvalues*.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Matrix of eigenvalues

Define the matrices P and Q by

$$P_{sr} = p_r(s)$$
 and $Q_{sr} = q_r(s)$.

We call *P* the *matrix of eigenvalues* of the scheme and *Q* the *matrix of dual eigenvalues*. We have PQ = nI.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Matrix of eigenvalues

Define the matrices P and Q by

$$P_{sr} = p_r(s)$$
 and $Q_{sr} = q_r(s)$.

We call *P* the *matrix of eigenvalues* of the scheme and *Q* the *matrix of dual eigenvalues*. We have PQ = nI. If *A* is a Schur idempotent in $\mathbb{C}[\mathcal{A}]$, we can write

$$A = \sum_{r \in R} A_r$$

for some $R \subseteq \{0, ..., d\}$. If *x* is the indicator vector for *R*, then the eigenvalues of *A* are the entries of *Px*.

Preliminaries Eigenvalues **The conjugacy class scheme** The integral translation scheme

Outline

Cayley graphs

Association schemes Preliminaries Eigenvalues The conjugacy class scheme The integral translation schem

③ Perfect state transfer

Preliminaries The other stuff

Preliminaries Eigenvalues **The conjugacy class scheme** The integral translation scheme

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$). Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

Preliminaries Eigenvalues **The conjugacy class scheme** The integral translation scheme

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathcal{A} := \{A_0, \ldots, A_d\}$ is an association scheme.

Definition

This is the *conjugacy class scheme* of *G*.

Preliminaries Eigenvalues **The conjugacy class scheme** The integral translation scheme

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathcal{A} := \{A_0, \dots, A_d\}$ is an association scheme.

Definition

This is the *conjugacy class scheme* of *G*.

A normal Cayley graph of *G* is a graph in its conjugacy class scheme.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Translation schemes

If *G* is abelian, its conjugacy classes are singletons, so its conjugacy class scheme consists of permutation matrices.

Preliminaries Eigenvalues **The conjugacy class scheme** The integral translation scheme

Translation schemes

If G is abelian, its conjugacy classes are singletons, so its conjugacy class scheme consists of permutation matrices.

Definition

The conjugacy class scheme, A of an abelian group, G, is called the *abelian group scheme* of G. Any subscheme of A is called a *translation scheme* of G.

Preliminaries Eigenvalues **The conjugacy class scheme** The integral translation scheme

Translation schemes

If G is abelian, its conjugacy classes are singletons, so its conjugacy class scheme consists of permutation matrices.

Definition

The conjugacy class scheme, A of an abelian group, G, is called the *abelian group scheme* of G. Any subscheme of A is called a *translation scheme* of G.

A graph in a translation scheme of G is a translation graph of G, and any translation graph of G lies in a translation scheme of G.

Preliminaries Eigenvalues **The conjugacy class scheme** The integral translation scheme

Duality

Let \mathcal{A} be an association scheme with matrix of eigenvalues and dual eigenvalues P and Q, respectively. We say that \mathcal{A} is *formally self-dual* if $\overline{Q} = P$.

Preliminaries Eigenvalues **The conjugacy class scheme** The integral translation scheme

Duality

Let \mathcal{A} be an association scheme with matrix of eigenvalues and dual eigenvalues P and Q, respectively. We say that \mathcal{A} is *formally self-dual* if $\overline{Q} = P$.

Theorem 1

The abelian group scheme for an arbitrary abelian group is formally self-dual.

Preliminaries Eigenvalues **The conjugacy class scheme** The integral translation scheme

Duality

Let \mathcal{A} be an association scheme with matrix of eigenvalues and dual eigenvalues P and Q, respectively. We say that \mathcal{A} is *formally self-dual* if $\overline{Q} = P$.

Theorem 1

The abelian group scheme for an arbitrary abelian group is formally self-dual.

Idea of proof. The matrix of eigenvalues of the abelian group scheme is the character table of the group. Recall that we always have PQ = nI.

Preliminaries Eigenvalues The conjugacy class scheme **The integral translation scheme**

Outline

Cayley graphs

Association schemes Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

3 Perfect state transfer

The other stuff

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

The integral translation scheme

Define a relation on an abelian group *G* as follows. We say that $g, h \in G$ are *power-equivalent* if $\langle g \rangle = \langle h \rangle$. This is an equivalence relation; let D_0, \ldots, D_k be its equivalence classes.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

The integral translation scheme

Define a relation on an abelian group *G* as follows. We say that $g, h \in G$ are *power-equivalent* if $\langle g \rangle = \langle h \rangle$. This is an equivalence relation; let D_0, \ldots, D_k be its equivalence classes. Define the $n \times n$ matrices, $\mathcal{A} = \{A_0, \ldots, A_k\}$ by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in D_r, \\ 0 & \text{otherwise.} \end{cases}$$

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

The integral translation scheme

Define a relation on an abelian group *G* as follows. We say that $g, h \in G$ are *power-equivalent* if $\langle g \rangle = \langle h \rangle$. This is an equivalence relation; let D_0, \ldots, D_k be its equivalence classes. Define the $n \times n$ matrices, $\mathcal{A} = \{A_0, \ldots, A_k\}$ by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in D_r, \\ 0 & \text{otherwise.} \end{cases}$$

Definition

 \mathcal{A} is a scheme called the *integral translation scheme* of G.

Preliminaries Eigenvalues The conjugacy class scheme **The integral translation scheme**

The integral translation scheme

Definition

We say that a graph is *integral* if all its eigenvalues are integers.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

The integral translation scheme

Definition

We say that a graph is *integral* if all its eigenvalues are integers.

Theorem 2 (Bridges & Mena, 1981)

A translation graph of G is integral if and only if it lies in the integral translation scheme of G.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

The integral translation scheme

Definition

We say that a graph is *integral* if all its eigenvalues are integers.

Theorem 2 (Bridges & Mena, 1981)

A translation graph of G is integral if and only if it lies in the integral translation scheme of G.

Theorem 3

The integral translation scheme of an arbitrary abelian group is formally self-dual.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Integral translation graphs

Theorem 4 (Árnadóttir & Godsil)

If G is an abelian group of odd order, n, then any non-empty, integral Cayley graph for G has an odd eigenvalue.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Integral translation graphs

Theorem 4 (Árnadóttir & Godsil)

If G is an abelian group of odd order, n, then any non-empty, integral Cayley graph for G has an odd eigenvalue.

Idea of proof.

• The graph, *X*, lies in the integral translation scheme.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Integral translation graphs

Theorem 4 (Árnadóttir & Godsil)

If G is an abelian group of odd order, n, then any non-empty, integral Cayley graph for G has an odd eigenvalue.

- The graph, *X*, lies in the integral translation scheme.
- $\overline{P}P = nI$ and $\det(P)$ is real.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Integral translation graphs

Theorem 4 (Árnadóttir & Godsil)

If G is an abelian group of odd order, n, then any non-empty, integral Cayley graph for G has an odd eigenvalue.

- The graph, *X*, lies in the integral translation scheme.
- $\overline{P}P = nI$ and $\det(P)$ is real.
- $\det(P)^2 = \det(\overline{P}) \det(P) = \det(nI) = n^{d+1}$.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Integral translation graphs

Theorem 4 (Árnadóttir & Godsil)

If G is an abelian group of odd order, n, then any non-empty, integral Cayley graph for G has an odd eigenvalue.

- The graph, *X*, lies in the integral translation scheme.
- $\overline{P}P = nI$ and $\det(P)$ is real.
- $\det(P)^2 = \det(\overline{P}) \det(P) = \det(nI) = n^{d+1}$.
- det(P) is odd so P invertible modulo 2.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Integral translation graphs

Theorem 4 (Árnadóttir & Godsil)

If G is an abelian group of odd order, n, then any non-empty, integral Cayley graph for G has an odd eigenvalue.

- The graph, *X*, lies in the integral translation scheme.
- $\overline{P}P = nI$ and $\det(P)$ is real.
- $\det(P)^2 = \det(\overline{P}) \det(P) = \det(nI) = n^{d+1}$.
- det(P) is odd so P invertible modulo 2.
- The eigenvalues of *X* are entries of *Px* for a 01-vector *x*.

Preliminaries Eigenvalues The conjugacy class scheme The integral translation scheme

Integral translation graphs

Theorem 4 (Árnadóttir & Godsil)

If G is an abelian group of odd order, n, then any non-empty, integral Cayley graph for G has an odd eigenvalue.

- The graph, *X*, lies in the integral translation scheme.
- $\overline{P}P = nI$ and $\det(P)$ is real.
- $\det(P)^2 = \det(\overline{P}) \det(P) = \det(nI) = n^{d+1}$.
- det(P) is odd so P invertible modulo 2.
- The eigenvalues of *X* are entries of *Px* for a 01-vector *x*.
- If all entries of *Px* are even then *x* must be zero.

Preliminaries Eigenvalues The conjugacy class scheme **The integral translation scheme**

Integral translation graphs

Theorem 4 (Árnadóttir & Godsil)

If G is an abelian group of odd order, n, then any non-empty, integral Cayley graph for G has an odd eigenvalue.

Idea of proof.

- The graph, *X*, lies in the integral translation scheme.
- $\overline{P}P = nI$ and $\det(P)$ is real.
- $\det(P)^2 = \det(\overline{P}) \det(P) = \det(nI) = n^{d+1}$.
- det(P) is odd so P invertible modulo 2.
- The eigenvalues of *X* are entries of *Px* for a 01-vector *x*.
- If all entries of *Px* are even then *x* must be zero.

I'm pretty sure this holds for normal Cayley graphs.

Preliminaries The other stuff

Outline

2 Association schemes

Eigenvalues The conjugacy class scheme The integral translation scheme

Perfect state transfer Preliminaries The other stuff

Preliminaries The other stuff

Quantum walks

For a graph *X* with adjacency matrix *A*, and $t \in \mathbb{R}$, define the unitary matrix,

$$U(t) := e^{itA} = \sum_{n \ge 0} \frac{(it)^n}{n!} A^n.$$

Preliminaries The other stuff

Quantum walks

For a graph *X* with adjacency matrix *A*, and $t \in \mathbb{R}$, define the unitary matrix,

$$U(t) := e^{itA} = \sum_{n \ge 0} \frac{(it)^n}{n!} A^n.$$

A *quantum walk* on *X* is given by the collection

 $\{U(t):t\in\mathbb{R}\},\$

and we call U(t) the *transition matrix* of the walk at time t.

Preliminaries The other stuff

Perfect state transfer

Definition

For distinct vertices, x and y of X, we say that we have *perfect state transfer* (*PST*) from x to y at time t if

 $|U(t)_{x,y}| = 1.$

Preliminaries The other stuff

Perfect state transfer

Definition

For distinct vertices, x and y of X, we say that we have *perfect state transfer* (*PST*) from x to y at time t if

 $|U(t)_{x,y}| = 1.$

Theorem 5

A regular graph that admits perfect state transfer is integral.

Preliminaries The other stuff

Preliminaries The other stuff

Examples of PST

• P₃

Preliminaries The other stuff

- K₂
- P₃
- Hypercubes

Preliminaries The other stuff

- K₂
- P₃
- Hypercubes
- Many other cubelike graphs

Preliminaries The other stuff

- K₂
- P₃
- Hypercubes
- Many other cubelike graphs
- Some circulants

Preliminaries The other stuff

- K₂
- P₃
- Hypercubes
- Many other cubelike graphs
- Some circulants
- Some other Cayley graphs

Preliminaries The other stuff

Outline

Cayley graphs

2 Association schemes Proliminarios

> Eigenvalues The conjugacy class scheme The integral translation scheme

Perfect state transfer Preliminaries The other stuff

Preliminaries The other stuff

Circulants & 2-circulants

Recall that a *circulant* is a Cayley graph of the cyclic group \mathbb{Z}_n .

Preliminaries The other stuff

Circulants & 2-circulants

Recall that a *circulant* is a Cayley graph of the cyclic group \mathbb{Z}_n . In 2011, Bašić characterized perfect state transfer in circulants.

Preliminaries The other stuff

Circulants & 2-circulants

Recall that a *circulant* is a Cayley graph of the cyclic group \mathbb{Z}_n . In 2011, Bašić characterized perfect state transfer in circulants.

Definition

We call a 2-*circulant* a Cayley graph of an abelian group that has a cyclic Sylow-2-subgroup.

Preliminaries The other stuff

2-circulants

Let *G* be an abelian group of order $2^d m$ where *m* is odd. Assume *G* has a cyclic Sylow-2-subgroup. Then

$$G \cong \mathbb{Z}_{2^d} \times H$$

where |H| = m.

Preliminaries The other stuff

2-circulants

Let *G* be an abelian group of order $2^d m$ where *m* is odd. Assume *G* has a cyclic Sylow-2-subgroup. Then

 $G\cong \mathbb{Z}_{2^d}\times H$

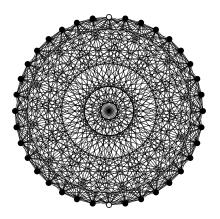
where |H| = m.

If $d \ge 1$, then *G* has a unique element, *a* of order two and if $d \ge 2$, it has a unique pair of inverse elements, *b*, -b of order four.

Preliminaries The other stuff

Example

 $G = \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3.$



Preliminaries The other stuff

Connection sets of 2-circulants

Let C be a power-closed subset of G. Define a partition, C_0, \ldots, C_d of C, by

$$\mathcal{C}_k := \{ g \in \mathcal{C} : \operatorname{ord}(g) = 2^k m', m' \text{ odd} \}.$$

Preliminaries The other stuff

Connection sets of 2-circulants

Let C be a power-closed subset of G. Define a partition, C_0, \ldots, C_d of C, by

$$\mathcal{C}_k := \{ g \in \mathcal{C} : \operatorname{ord}(g) = 2^k m', m' \operatorname{odd} \}.$$

$$\mathbb{Z}_{2^d} \ \times \ H$$

Preliminaries The other stuff

Connection sets of 2-circulants

Let C be a power-closed subset of G. Define a partition, C_0, \ldots, C_d of C, by

$$\mathcal{C}_k := \{ g \in \mathcal{C} : \operatorname{ord}(g) = 2^k m', m' \operatorname{odd} \}.$$

$$\mathbb{Z}_{2^d} \times H$$
 $\mathcal{C}_0 = \mathcal{C}_0$

Preliminaries The other stuff

Connection sets of 2-circulants

Let C be a power-closed subset of G. Define a partition, C_0, \ldots, C_d of C, by

$$\mathcal{C}_k := \{g \in \mathcal{C} : \operatorname{ord}(g) = 2^k m', m' \text{ odd}\}.$$

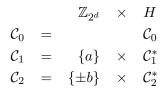
$$\begin{array}{rcl} \mathbb{Z}_{2^d} & \times & H \\ \mathcal{C}_0 & = & & \mathcal{C}_0 \\ \mathcal{C}_1 & = & \{a\} & \times & \mathcal{C}_1^* \end{array}$$

Preliminaries The other stuff

Connection sets of 2-circulants

Let C be a power-closed subset of G. Define a partition, C_0, \ldots, C_d of C, by

$$\mathcal{C}_k := \{g \in \mathcal{C} : \operatorname{ord}(g) = 2^k m', m' \text{ odd} \}.$$

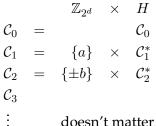


The other stuff

Connection sets of 2-circulants

Let \mathcal{C} be a power-closed subset of G. Define a partition, $\mathcal{C}_0,\ldots,\mathcal{C}_d$ of \mathcal{C} , by

$$\mathcal{C}_k := \{g \in \mathcal{C} : \operatorname{ord}(g) = 2^k m', m' \text{ odd}\}.$$



doesn't matter

Preliminaries The other stuff

Characterization

Theorem 6 (Árnadóttir & Godsil)

Let X = Cay(G, C) be a 2-circulant. Then X admits PST if and only if the following hold

- C is power-closed,
- *either a or b is in C but not both, and*

Preliminaries The other stuff

Proof idea

 $\begin{array}{l} \text{PST} \implies 3 \text{)} \\ \textit{Idea of proof.} \end{array}$

Preliminaries The other stuff

Proof idea

 $\begin{array}{l} \text{PST} \implies 3 \\ \text{Idea of proof.} \end{array}$

• Define $\mathcal{S} := \mathcal{S}_1 \cup \mathcal{S}_2$ where

$$\mathcal{S}_1 := \mathcal{C}_0 \setminus (\mathcal{C}_1^* \setminus \{0\}) \text{ and } \mathcal{S}_2 := (\mathcal{C}_1^* \setminus \{0\}) \setminus \mathcal{C}_0.$$

Preliminaries The other stuff

Proof idea

 $\begin{array}{l} \text{PST} \implies 3 \\ \text{Idea of proof.} \end{array}$

• Define $\mathcal{S} := \mathcal{S}_1 \cup \mathcal{S}_2$ where

$$\mathcal{S}_1 := \mathcal{C}_0 \setminus (\mathcal{C}_1^* \setminus \{0\}) \text{ and } \mathcal{S}_2 := (\mathcal{C}_1^* \setminus \{0\}) \setminus \mathcal{C}_0.$$

• Y := Cay(H, S) is an integral Cayley graph of odd order.

Preliminaries The other stuff

Proof idea

 $\begin{array}{l} \text{PST} \implies 3 \\ \textit{Idea of proof.} \end{array}$

• Define $S := S_1 \cup S_2$ where

$$\mathcal{S}_1 := \mathcal{C}_0 \setminus (\mathcal{C}_1^* \setminus \{0\}) \text{ and } \mathcal{S}_2 := (\mathcal{C}_1^* \setminus \{0\}) \setminus \mathcal{C}_0.$$

- $Y := \operatorname{Cay}(H, \mathcal{S})$ is an integral Cayley graph of odd order.
- We can show that *Y* has only even eigenvalues.

Preliminaries The other stuff

Proof idea

 $\begin{array}{l} \text{PST} \implies 3 \\ \textit{Idea of proof.} \end{array}$

• Define $S := S_1 \cup S_2$ where

$$\mathcal{S}_1 := \mathcal{C}_0 \setminus (\mathcal{C}_1^* \setminus \{0\}) \text{ and } \mathcal{S}_2 := (\mathcal{C}_1^* \setminus \{0\}) \setminus \mathcal{C}_0.$$

- $Y := \operatorname{Cay}(H, S)$ is an integral Cayley graph of odd order.
- We can show that *Y* has only even eigenvalues.
- Therefore S is empty, so $C_0 = C_1^* \setminus \{0\}$.

Preliminaries The other stuff

Future directions

How much of this can we generalize to normal Cayley graphs?

Preliminaries The other stuff

Future directions

How much of this can we generalize to normal Cayley graphs?

• At least some!

Preliminaries The other stuff

Future directions

How much of this can we generalize to normal Cayley graphs?

- At least some!
- Perhaps all?

Thank you