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Rögnvaldur Möller:
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stabilizers.

The 3-regular tree.
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Graphs & digraphs

Definition
A directed graph (digraph) is an ordered pair of sets, Γ = (V,A),
where the elements of A, called arcs, are ordered pairs of
distinct elements of V , called vertices. A graph is a digraph
satisfying that if (α, β) is an arc, (β, α) is also an arc. In this
case, we call the set {α, β} an edge and we think of the graph as
a pair (V,E) where E is the set of edges. An oriented graph is a
digraph satisfying that if (α, β) is an arc then (β, α) is not an arc.
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Regular graphs

Definition
Let Γ = (V,A) be a digraph. For a vertex, α ∈ V , the sets of
in-neighbours and out-neighbours are defined by

in(α) := {β ∈ V : (β, α) ∈ A}, out(α) := {β ∈ V : (α, β) ∈ A}

respectively. Their cardinalities are called the in- and out-degree
of α, respectively. If Γ is a graph, these sets are equal and we
call it the set of neighbours, denoted N(α), and its cardinality
the degree of α. If all vertices in a graph have the same degree,
k, we call it regular (or k-regular), and refer to k as the degree of
the graph. A 3-regular graph is also called cubic.
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Actions

Definition
A digraph Γ = (V,A) is said to be vertex-transitive (respectively
arc-transitive) if its automorphism group, Aut(Γ), acts
transitively on the set of vertices (respectively arcs). A graph is
edge-transitive if Aut(Γ) acts transitively on the set of edges.

We usually consider the action of a subgroup G ≤ Aut(Γ) on Γ
and then we talk about G being vertex-transitive (etc.) on Γ.

Definition
If G ≤ Aut(Γ) and α ∈ V , we denote by Gα, the set of elements
in G that fix α and call it the vertex-stabilizer of α in G.
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Actions

Definition
Let G be a group acting vertex-transitively on a graph Γ with
degree k. The stabilizer in G of a vertex α acts on the set of
neighbours of α like a subgroup of Sk, and we call this the local
action of G on Γ.
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What’s happening locally?

Let Γ be a connected, cubic, vertex transitive graph, let α be a
vertex and N(α) = {β, γ, δ} its neighbourhood.

α
β

γ

δ

Gα permutes
the neighbourhood of α.

So this local action
is a subgroup of S3.

Our options
are {e},Z2,Z3, S3.
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When can it be infinite?

If the local action is trivial, then Gα = {e}.

If the local action is Z3, then Gα is finite.

We are left with Z2 and S3.
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The local action is S3

In this case our graph is arc-transitive.

Theorem 1 (Tutte, 1959)

If Γ is a vertex- and arc-transitive cubic graph with infinite
vertex-stabilizers, then Γ is the cubic tree.
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The local action is Z2

Suppose that the local action is Z2.

In this case, the graph is not arc-transitive. Can it still be
edge-transitive?

Theorem 2 (Árnadóttir, Lederle, Möller)

Let Γ be a connected cubic graph and suppose G ≤ Aut(Γ) acts
vertex- and edge-transitively, but not arc-transitively on Γ such that
the vertex-stabilizers of G are infinite. Then Γ is the tree.
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Theorem 3 (Árnadóttir, Lederle, Möller)

Let Γ be a connected cubic graph and suppose G ≤ Aut(Γ) acts
vertex- and edge-transitively, but not arc-transitively on Γ such that
the vertex-stabilizers of G are infinite. Then Γ is the tree.

Proof.
G has exactly two orbits on the arcs. Define a digraph, Γ+ with
the same vertex set as Γ and one of the arc orbits as arcs. Note
that Γ+ is arc-transitive. We can choose the arc orbit so that
every vertex has in-degree one and out-degree two.
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Proof.
G has exactly two orbits on the arcs. Define a digraph, Γ+ with
the same vertex set as Γ and one of the arc orbits as arcs. Note
that Γ+ is arc-transitive. We can choose the arc orbit so that
every vertex has in-degree one and out-degree two.

α

... impossible.
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Two edge-orbits

Let Γ be a cubic, vertex transitive graph with infinite vertex
stabilizers such that Aut(Γ) acts locally like Z2, and thus has
two orbits on the edges.

Lets call the edge orbits red and blue. Each vertex is incident
with, say, one red edge and two blue edges.

α

β

γ

γ

α
β

γ

δ
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Can we characterize such graphs?

No.
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Rays and ends

Definition
A ray in a graph Γ is a subgraph with vertex set {α0, α1, α2, . . . }
(where the αi are distinct), and edge set
{αiαi+1 : i = 0, 1, 2, . . . }.

Definition
An end in a graph Γ is an equivalence class of rays, where two
rays are equivalent if there is a third ray that intersects both in
infinitely many vertices.
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Number of ends

Theorem 4
A vertex-transitive graph with finitely many ends has at most two
ends.

We will now focus on graphs with two ends.
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Digraphs with in-and out-degree two

We start with this graph again.

We contract the red edges:

Then orient everything to the right
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∆2

We call this digraph ∆2. It is vertex-transitive with infinite
vertex-stabilizers and in- and out-degree two. It also has two
ends, and is highly arc-transitive.
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Arcs and s-arcs

Definition
Let s ≥ 0 be an integer. An s-arc in a digraph Γ is an
(s+ 1)-tuple, (α0, . . . , αs) of vertices of Γ such that (αi−1, αi) is
an arc in Γ for i = 1, . . . , s and αi−1 6= αi+1.

Definition
We say that a digraph Γ is s-arc-transitive if its automorphism
group acts transitively on the set of s-arcs. If Γ is
s-arc-transitive for all s ≥ 0, we call it highly arc-transitive.
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Arc-digraphs & s-arc-digraph

Definition
Let Γ be a digraph. We define its arc-digraph, Arc(Γ), as having
the arcs of Γ as its vertices and ((α, β), (γ, δ)) is an arc if and
only if β = γ.

1 4

2 3
13

34

23

12

41



Preliminaries
Infinite stabilizers

Ends
4-regular graphs

Main theorem

Arc-digraphs & s-arc-digraph

Definition
Let Γ be a digraph. We define its arc-digraph, Arc(Γ), as having
the arcs of Γ as its vertices and ((α, β), (γ, δ)) is an arc if and
only if β = γ.

1 4

2 3

13
34

23

12

41



Preliminaries
Infinite stabilizers

Ends
4-regular graphs

Main theorem

Arc-digraphs & s-arc-digraph

Definition
Let Γ be a digraph. We define its arc-digraph, Arc(Γ), as having
the arcs of Γ as its vertices and ((α, β), (γ, δ)) is an arc if and
only if β = γ.

1 4

2 3
13

34

23

12

41



Preliminaries
Infinite stabilizers

Ends
4-regular graphs

Main theorem

Arc-digraphs & s-arc-digraph

Definition
Let Γ be a digraph and s a non-negative integer. Define the
s-arc-digraph, Arcs(Γ), of Γ inductively:

Arc1(Γ) := Arc(Γ), and
Arcs(Γ) := Arc(Arcs−1(Γ)).



Preliminaries
Infinite stabilizers

Ends
4-regular graphs

Main theorem

The s-arc-digraphs of ∆2

It is not too hard to see that the s-arc-digraphs of ∆2 have in-
and out-degree two, are highly arc-transitive and have two
ends.

In fact, the converse holds.
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∆2 and its s-arc-digraphs

Theorem 5 (Möller, Potočnik, Seifter, 2018)

Let Γ be a highly arc-transitive digraph with in- and out-degree two.
If Γ has two ends, then it is isomorphic to Arcs(∆2) for some s ≥ 0.

, , . . .
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From 4-regular to 3-regular

Let ∆ be a vertex-transitive digraph with in- and out degree
two and infinite vertex stabilizers. We define the digraph ∆∗ as
follows.

α
β

α− α+

+

+

β−

−

Replace each vertex, α in ∆ by
a pair of vertices, α− and α+.

Let the arcs of ∆∗ be

(α−, α+)
for every vertex α of ∆, and

(α+, β−)
for every arc (α, β) of ∆.
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Consider the underlying undirected graph of ∆∗.

Clearly, it is cubic

and

under the right conditions, it is vertex-transitive with
infinite vertex stabilizers and the edges {α−, α+} and
{α+, β−} lie in different edge orbits.

The graphs Arcs(∆2) satisfy these conditions.

Definition
For s ≥ 0, denote by Θs the underlying undirected graph of
(Arcs(∆2))∗.
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We can go in both directions

∆2

edge contraction∗

Θ0
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Main theorem

Theorem 6 (Árnadóttir, Lederle, Möller)

Let Γ be a connected, cubic, vertex-transitive graph with infinite
vertex stabilizers. If Γ has two ends, then it is isomorphic to Θs for
some s ≥ 0.
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Alternating s-arcs

Definition
Let Γ be a cubic, vertex-transitive graph with infinite vertex
stabilizers and two orbits on its edges. Colour its edges as
before. An s-arc (α0, . . . , αs) is called alternating if the edges
{αi−1, αi} and {αi, αi+1} have different colours for all
i = 1, . . . , s− 1.
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Idea of proof

1 We colour the edges of our graph as before.

2 Aut(Γ) acts transitively on the set of s-arcs that start with a
given colour.

3 There is a subgroup that acts transitively on the blue edges
and the red edges, but not on the blue / red arcs.

4 Construct a digraph, replacing the edges of Γ with the arcs
of one of the blue arc-orbits and one of the red arc-orbits.

5 Contract the red arcs to get a digraph with in- and
out-degree two and two ends.

6 By (2), this digraph is highly arc-transitive, and so it is
isomorphic to Arcs(∆2) for some s ≥ 0.
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Conclusion

Therefore Γ ' (Arcs(∆2))∗ = Θs for some s.



Preliminaries
Infinite stabilizers

Ends
4-regular graphs

Main theorem

Connections topological groups

We can use this to show the following.

Theorem 7 (Árnadóttir, Lederle, Möller)

Let G be a compactly generated, totally disconnected, locally compact
group that acts transitively on the vertices of a cubic graph, such that
the vertex stabilizers are compact open subgroups. If every g ∈ G
normalizes a compact open subgroup of G then G has a compact,
open, normal subgroup.
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