Cubic vertex-transitive graphs with infinite vertex stabilizers

Soffía Árnadóttir

University of Waterloo

December, 2021 University of Lethbridge Number theory & Combinatorics seminar

This talk is based on joint work with Waltraud Lederle and Rögnvaldur Möller: https://arxiv.org/abs/2101.04064.

Outline

2 Infinite stabilizers

Let Γ be a cubic, vertex-transitive graph with infinite vertex stabilizers.

Let Γ be a cubic, vertex-transitive graph with infinite vertex stabilizers.

• The 3-regular tree.

Let Γ be a cubic, vertex-transitive graph with infinite vertex stabilizers.

- The 3-regular tree.
- This graph

Outline

2 Infinite stabilizers

- 4-regular graphs
- 5 Main theorem

Graphs & digraphs

Definition

A *directed graph (digraph)* is an ordered pair of sets, $\Gamma = (V, A)$, where the elements of A, called *arcs*, are ordered pairs of distinct elements of V, called *vertices*. A *graph* is a digraph satisfying that if (α, β) is an arc, (β, α) is also an arc. In this case, we call the set $\{\alpha, \beta\}$ an *edge* and we think of the graph as a pair (V, E) where E is the set of edges. An *oriented graph* is a digraph satisfying that if (α, β) is an arc then (β, α) is not an arc.

Regular graphs

Definition

Let $\Gamma = (V, A)$ be a digraph. For a vertex, $\alpha \in V$, the sets of *in-neighbours* and *out-neighbours* are defined by

 $\mathrm{in}(\alpha):=\{\beta\in V: (\beta,\alpha)\in A\}, \quad \mathrm{out}(\alpha):=\{\beta\in V: (\alpha,\beta)\in A\}$

respectively. Their cardinalities are called the *in-* and *out-degree* of α , respectively. If Γ is a graph, these sets are equal and we call it the set of *neighbours*, denoted $N(\alpha)$, and its cardinality the *degree* of α . If all vertices in a graph have the same degree, k, we call it *regular* (or *k-regular*), and refer to k as the degree of the graph. A 3-regular graph is also called *cubic*.

Actions

Definition

A digraph $\Gamma = (V, A)$ is said to be *vertex-transitive* (*respectively arc-transitive*) if its automorphism group, Aut(Γ), acts transitively on the set of vertices (respectively arcs). A graph is *edge-transitive* if Aut(Γ) acts transitively on the set of edges.

Actions

Definition

A digraph $\Gamma = (V, A)$ is said to be *vertex-transitive* (*respectively arc-transitive*) if its automorphism group, Aut(Γ), acts transitively on the set of vertices (respectively arcs). A graph is *edge-transitive* if Aut(Γ) acts transitively on the set of edges.

We usually consider the action of a subgroup $G \leq \operatorname{Aut}(\Gamma)$ on Γ and then we talk about *G* being vertex-transitive (etc.) on Γ .

Actions

Definition

A digraph $\Gamma = (V, A)$ is said to be *vertex-transitive* (*respectively arc-transitive*) if its automorphism group, Aut(Γ), acts transitively on the set of vertices (respectively arcs). A graph is *edge-transitive* if Aut(Γ) acts transitively on the set of edges.

We usually consider the action of a subgroup $G \leq \operatorname{Aut}(\Gamma)$ on Γ and then we talk about *G* being vertex-transitive (etc.) on Γ .

Definition

If $G \leq \operatorname{Aut}(\Gamma)$ and $\alpha \in V$, we denote by G_{α} , the set of elements in *G* that fix α and call it the *vertex-stabilizer* of α in *G*.

Actions

Definition

Let *G* be a group acting vertex-transitively on a graph Γ with degree *k*. The stabilizer in *G* of a vertex α acts on the set of neighbours of α like a subgroup of *S*_k, and we call this the *local action* of *G* on Γ .

Outline

- 2 Infinite stabilizers
- 3 Ends
- 4-regular graphs
- 5 Main theorem

What's happening locally?

Let Γ be a connected, cubic, vertex transitive graph, let α be a vertex and $N(\alpha) = \{\beta, \gamma, \delta\}$ its neighbourhood.

What's happening locally?

Let Γ be a connected, cubic, vertex transitive graph, let α be a vertex and $N(\alpha) = \{\beta, \gamma, \delta\}$ its neighbourhood.

What's happening locally?

Let Γ be a connected, cubic, vertex transitive graph, let α be a vertex and $N(\alpha) = \{\beta, \gamma, \delta\}$ its neighbourhood.

*G*_α permutes the neighbourhood of α.

What's happening locally?

Let Γ be a connected, cubic, vertex transitive graph, let α be a vertex and $N(\alpha) = \{\beta, \gamma, \delta\}$ its neighbourhood.

- *G*_α permutes the neighbourhood of α.
- So this local action is a subgroup of *S*₃.

What's happening locally?

Let Γ be a connected, cubic, vertex transitive graph, let α be a vertex and $N(\alpha) = \{\beta, \gamma, \delta\}$ its neighbourhood.

- *G*_α permutes the neighbourhood of α.
- So this local action is a subgroup of *S*₃.
- Our options are $\{e\}, \mathbb{Z}_2, \mathbb{Z}_3, S_3$.

When can it be infinite?

• If the local action is trivial, then $G_{\alpha} = \{e\}$.

When can it be infinite?

- If the local action is trivial, then $G_{\alpha} = \{e\}$.
- If the local action is \mathbb{Z}_3 , then G_α is finite.

When can it be infinite?

- If the local action is trivial, then $G_{\alpha} = \{e\}$.
- If the local action is \mathbb{Z}_3 , then G_α is finite.
- We are left with \mathbb{Z}_2 and S_3 .

The local action is S_3

In this case our graph is arc-transitive.

The local action is S_3

In this case our graph is arc-transitive.

Theorem 1 (Tutte, 1959)

If Γ is a vertex- and arc-transitive cubic graph with infinite vertex-stabilizers, then Γ is the cubic tree.

The local action is \mathbb{Z}_2

Suppose that the local action is \mathbb{Z}_2 .

In this case, the graph is not arc-transitive. Can it still be edge-transitive?

The local action is \mathbb{Z}_2

Suppose that the local action is \mathbb{Z}_2 .

In this case, the graph is not arc-transitive. Can it still be edge-transitive?

Theorem 2 (Árnadóttir, Lederle, Möller)

Let Γ be a connected cubic graph and suppose $G \leq \operatorname{Aut}(\Gamma)$ acts vertex- and edge-transitively, but not arc-transitively on Γ such that the vertex-stabilizers of G are infinite. Then Γ is the tree.

Theorem 3 (Árnadóttir, Lederle, Möller)

Let Γ be a connected cubic graph and suppose $G \leq \operatorname{Aut}(\Gamma)$ acts vertex- and edge-transitively, but not arc-transitively on Γ such that the vertex-stabilizers of G are infinite. Then Γ is the tree.

Proof.

G has exactly two orbits on the arcs. Define a digraph, Γ_+ with the same vertex set as Γ and one of the arc orbits as arcs. Note that Γ_+ is arc-transitive. We can choose the arc orbit so that every vertex has in-degree one and out-degree two.

Proof.

G has exactly two orbits on the arcs. Define a digraph, Γ_+ with the same vertex set as Γ and one of the arc orbits as arcs. Note that Γ_+ is arc-transitive. We can choose the arc orbit so that every vertex has in-degree one and out-degree two.

Proof.

G has exactly two orbits on the arcs. Define a digraph, Γ_+ with the same vertex set as Γ and one of the arc orbits as arcs. Note that Γ_+ is arc-transitive. We can choose the arc orbit so that every vertex has in-degree one and out-degree two.

... impossible.

Two edge-orbits

Let Γ be a cubic, vertex transitive graph with infinite vertex stabilizers such that $Aut(\Gamma)$ acts locally like \mathbb{Z}_2 , and thus has two orbits on the edges.

Two edge-orbits

Let Γ be a cubic, vertex transitive graph with infinite vertex stabilizers such that $Aut(\Gamma)$ acts locally like \mathbb{Z}_2 , and thus has two orbits on the edges.

Lets call the edge orbits *red* and *blue*. Each vertex is incident with, say, one red edge and two blue edges.

Two edge-orbits

Let Γ be a cubic, vertex transitive graph with infinite vertex stabilizers such that $Aut(\Gamma)$ acts locally like \mathbb{Z}_2 , and thus has two orbits on the edges.

Lets call the edge orbits *red* and *blue*. Each vertex is incident with, say, one red edge and two blue edges.

Examples

Can we characterize such graphs?

Can we characterize such graphs?

No.

Outline

2 Infinite stabilizers

- 4-regular graphs
- 5 Main theorem

Rays and ends

Definition

A *ray* in a graph Γ is a subgraph with vertex set $\{\alpha_0, \alpha_1, \alpha_2, ...\}$ (where the α_i are distinct), and edge set $\{\alpha_i \alpha_{i+1} : i = 0, 1, 2, ...\}$.

Rays and ends

Definition

A *ray* in a graph Γ is a subgraph with vertex set $\{\alpha_0, \alpha_1, \alpha_2, ...\}$ (where the α_i are distinct), and edge set $\{\alpha_i \alpha_{i+1} : i = 0, 1, 2, ...\}$.

Definition

An *end* in a graph Γ is an equivalence class of rays, where two rays are equivalent if there is a third ray that intersects both in infinitely many vertices.

Number of ends

Theorem 4

A vertex-transitive graph with finitely many ends has at most two ends.

We will now focus on graphs with two ends.

Outline

2 Infinite stabilizers

Digraphs with in-and out-degree two

We start with this graph again.

Digraphs with in-and out-degree two

We start with this graph again.

We contract the red edges:

. . .

Digraphs with in-and out-degree two

We start with this graph again.

We contract the red edges:

. . .

Then orient everything to the right

We call this digraph Δ_2 . It is vertex-transitive with infinite vertex-stabilizers and in- and out-degree two. It also has two ends, and is *highly arc-transitive*.

Arcs and *s*-arcs

Definition

Let $s \ge 0$ be an integer. An *s*-arc in a digraph Γ is an (s+1)-tuple, $(\alpha_0, \ldots, \alpha_s)$ of vertices of Γ such that (α_{i-1}, α_i) is an arc in Γ for $i = 1, \ldots, s$ and $\alpha_{i-1} \ne \alpha_{i+1}$.

Arcs and *s*-arcs

Definition

Let $s \ge 0$ be an integer. An *s*-arc in a digraph Γ is an (s+1)-tuple, $(\alpha_0, \ldots, \alpha_s)$ of vertices of Γ such that (α_{i-1}, α_i) is an arc in Γ for $i = 1, \ldots, s$ and $\alpha_{i-1} \ne \alpha_{i+1}$.

Definition

We say that a digraph Γ is *s*-arc-transitive if its automorphism group acts transitively on the set of *s*-arcs. If Γ is *s*-arc-transitive for all $s \ge 0$, we call it *highly arc-transitive*.

Arc-digraphs & s-arc-digraph

Definition

Let Γ be a digraph. We define its *arc-digraph*, Arc(Γ), as having the arcs of Γ as its vertices and $((\alpha, \beta), (\gamma, \delta))$ is an arc if and only if $\beta = \gamma$.

Arc-digraphs & s-arc-digraph

Definition

Let Γ be a digraph. We define its *arc-digraph*, Arc(Γ), as having the arcs of Γ as its vertices and $((\alpha, \beta), (\gamma, \delta))$ is an arc if and only if $\beta = \gamma$.

Arc-digraphs & s-arc-digraph

Definition

Let Γ be a digraph. We define its *arc-digraph*, Arc(Γ), as having the arcs of Γ as its vertices and $((\alpha, \beta), (\gamma, \delta))$ is an arc if and only if $\beta = \gamma$.

Arc-digraphs & s-arc-digraph

Definition

Let Γ be a digraph and *s* a non-negative integer. Define the *s*-arc-digraph, Arc^s(Γ), of Γ inductively:

•
$$\operatorname{Arc}^1(\Gamma) := \operatorname{Arc}(\Gamma)$$
, and

•
$$\operatorname{Arc}^{s}(\Gamma) := \operatorname{Arc}(\operatorname{Arc}^{s-1}(\Gamma)).$$

The *s*-arc-digraphs of Δ_2

It is not too hard to see that the *s*-arc-digraphs of Δ_2 have inand out-degree two, are highly arc-transitive and have two ends.

The *s*-arc-digraphs of Δ_2

It is not too hard to see that the *s*-arc-digraphs of Δ_2 have inand out-degree two, are highly arc-transitive and have two ends.

The *s*-arc-digraphs of Δ_2

It is not too hard to see that the *s*-arc-digraphs of Δ_2 have inand out-degree two, are highly arc-transitive and have two ends.

In fact, the converse holds.

 Δ_2 and its *s*-arc-digraphs

Theorem 5 (Möller, Potočnik, Seifter, 2018)

Let Γ be a highly arc-transitive digraph with in- and out-degree two. If Γ has two ends, then it is isomorphic to $\operatorname{Arc}^{s}(\Delta_{2})$ for some $s \geq 0$.

 Δ_2 and its *s*-arc-digraphs

Theorem 5 (Möller, Potočnik, Seifter, 2018)

Let Γ be a highly arc-transitive digraph with in- and out-degree two. If Γ has two ends, then it is isomorphic to $\operatorname{Arc}^{s}(\Delta_{2})$ for some $s \geq 0$.

From 4-regular to 3-regular

Let Δ be a vertex-transitive digraph with in- and out degree two and infinite vertex stabilizers. We define the digraph Δ_* as follows.

From 4-regular to 3-regular

Let Δ be a vertex-transitive digraph with in- and out degree two and infinite vertex stabilizers. We define the digraph Δ_* as follows.

 Replace each vertex, α in Δ by a pair of vertices, α₋ and α₊.

From 4-regular to 3-regular

Let Δ be a vertex-transitive digraph with in- and out degree two and infinite vertex stabilizers. We define the digraph Δ_* as follows.

- Replace each vertex, α in Δ by a pair of vertices, α₋ and α₊.
- Let the arcs of Δ_{*} be

From 4-regular to 3-regular

Let Δ be a vertex-transitive digraph with in- and out degree two and infinite vertex stabilizers. We define the digraph Δ_* as follows.

- Replace each vertex, α in Δ by a pair of vertices, α₋ and α₊.
- Let the arcs of Δ_{*} be
 - (α_-, α_+) for every vertex α of Δ , and
 - (α₊, β₋) for every arc (α, β) of Δ.

Consider the underlying undirected graph of Δ_* .

• Clearly, it is cubic

Consider the underlying undirected graph of Δ_* .

- Clearly, it is cubic and
- under the right conditions, it is vertex-transitive with infinite vertex stabilizers and the edges $\{\alpha_-, \alpha_+\}$ and $\{\alpha_+, \beta_-\}$ lie in different edge orbits.

Consider the underlying undirected graph of Δ_* .

- Clearly, it is cubic and
- under the right conditions, it is vertex-transitive with infinite vertex stabilizers and the edges $\{\alpha_-, \alpha_+\}$ and $\{\alpha_+, \beta_-\}$ lie in different edge orbits.

The graphs $\operatorname{Arc}^{s}(\Delta_{2})$ satisfy these conditions.

Definition

For $s \ge 0$, denote by Θ_s the underlying undirected graph of $(\operatorname{Arc}^s(\Delta_2))_*$.

We can go in both directions

Outline

Main theorem

Theorem 6 (Árnadóttir, Lederle, Möller)

Let Γ be a connected, cubic, vertex-transitive graph with infinite vertex stabilizers. If Γ has two ends, then it is isomorphic to Θ_s for some $s \geq 0$.

Alternating *s*-arcs

Definition

Let Γ be a cubic, vertex-transitive graph with infinite vertex stabilizers and two orbits on its edges. Colour its edges as before. An *s*-arc ($\alpha_0, \ldots, \alpha_s$) is called *alternating* if the edges { α_{i-1}, α_i } and { α_i, α_{i+1} } have different colours for all $i = 1, \ldots, s - 1$.

Idea of proof

• We colour the edges of our graph as before.

- We colour the edges of our graph as before.
- Aut(Γ) acts transitively on the set of *s*-arcs that start with a given colour.

- We colour the edges of our graph as before.
- Aut(Γ) acts transitively on the set of *s*-arcs that start with a given colour.
- There is a subgroup that acts transitively on the blue edges and the red edges, but not on the blue / red arcs.

- We colour the edges of our graph as before.
- Aut(Γ) acts transitively on the set of *s*-arcs that start with a given colour.
- There is a subgroup that acts transitively on the blue edges and the red edges, but not on the blue / red arcs.
- Construct a digraph, replacing the edges of Γ with the arcs of one of the blue arc-orbits and one of the red arc-orbits.

- We colour the edges of our graph as before.
- Aut(Γ) acts transitively on the set of *s*-arcs that start with a given colour.
- There is a subgroup that acts transitively on the blue edges and the red edges, but not on the blue / red arcs.
- Construct a digraph, replacing the edges of Γ with the arcs of one of the blue arc-orbits and one of the red arc-orbits.
- Contract the red arcs to get a digraph with in- and out-degree two and two ends.

- We colour the edges of our graph as before.
- Aut(Γ) acts transitively on the set of *s*-arcs that start with a given colour.
- There is a subgroup that acts transitively on the blue edges and the red edges, but not on the blue / red arcs.
- Construct a digraph, replacing the edges of Γ with the arcs of one of the blue arc-orbits and one of the red arc-orbits.
- Contract the red arcs to get a digraph with in- and out-degree two and two ends.
- Sy (2), this digraph is highly arc-transitive, and so it is isomorphic to Arc^s(Δ₂) for some s ≥ 0.

Conclusion

Therefore $\Gamma \simeq (\operatorname{Arc}^s(\Delta_2))_* = \Theta_s$ for some *s*.

Connections topological groups

We can use this to show the following.

Theorem 7 (Árnadóttir, Lederle, Möller)

Let G be a compactly generated, totally disconnected, locally compact group that acts transitively on the vertices of a cubic graph, such that the vertex stabilizers are compact open subgroups. If every $g \in G$ normalizes a compact open subgroup of G then G has a compact, open, normal subgroup.

Thank you