Association schemes and spectra of normal Cayley graphs

Arnbjörg Soffía Árnadóttir

25th Conference of the International Linear Algebra Society

June, 2023

Outline

- 2 Association schemes
 - Preliminaries
 - Eigenvalues
 - The conjugacy class scheme
 - Integrality

Cute theorem

Cayley graphs

Definition

Let *G* be a group and $C \subseteq G \setminus \{e\}$ a subset with $C^{-1} = C$. The *Cayley* graph, $X := \operatorname{Cay}(G, C)$, has vertex set V(X) := G, and

$$g \sim h$$
 if $hg^{-1} \in \mathcal{C}$.

The set C is called the *connection set* of the graph.

Cayley graphs

Definition

Let *G* be a group and $C \subseteq G \setminus \{e\}$ a subset with $C^{-1} = C$. The *Cayley* graph, $X := \operatorname{Cay}(G, C)$, has vertex set V(X) := G, and

$$g \sim h$$
 if $hg^{-1} \in \mathcal{C}$.

The set C is called the *connection set* of the graph.

Definition

We say that Cay(G, C) is *normal* if $g^{-1}Cg = C$ for all $g \in G$.

Examples

• Cycles

Examples

Examples

Preliminaries

Eigenvalues The conjugacy class sch Integrality

Outline

2 Association schemes

Preliminaries

Eigenvalues The conjugacy class scheme Integrality

Cute theorem

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Association schemes

Definition

An association scheme (with d classes) is a set of $n \times n$ matrices, $\mathcal{A} = \{A_0, \dots, A_d\}$ with entries in $\{0, 1\}$ such that

- $A_0 = I$,
- $\sum_{r=0}^{d} A_r = J,$
- $A_r^T \in \mathcal{A}$ for all r,
- $A_r A_s = A_s A_r$ for all r, s, and
- $A_r A_s$ lies in the span of \mathcal{A} for all r, s.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Association schemes

• The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the *Bose-Mesner algebra* of the scheme.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.
- An association scheme $\mathcal{B} = \{B_0, \dots, B_k\}$ where each B_r is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$ is a *subscheme* of \mathcal{A} .

Preliminaries Eigenvalues The conjugacy class scheme Integrality

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.
- An association scheme $\mathcal{B} = \{B_0, \dots, B_k\}$ where each B_r is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$ is a *subscheme* of \mathcal{A} .
- Any Schur idempotent can be viewed as the adjacency matrix of a (possibly directed) graph. These are the *graphs in the scheme*.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Examples

Let

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad A_{2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

 $\mathcal{A} = \{I, A_1, A_2\}$ is an association scheme with 3 classes.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Examples

Let

$$A_1 = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

 $\mathcal{A} = \{I, A_1, A_2\}$ is an association scheme with 3 classes.

The graphs in the scheme are

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Outline

2 Association schemes

Preliminaries

Eigenvalues

The conjugacy class scheme Integrality

Cute theorem

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Two bases

The association scheme, $\mathcal{A} = \{A_0, \dots, A_d\}$ is a basis for $\mathbb{C}[\mathcal{A}]$.

There is another basis, $\mathcal{E} = \{E_0, \dots, E_d\}$ of matrix idempotents satisfying

- $E_0 = \frac{1}{n}J$,
- $\sum_{r=0}^{d} E_r = I$,
- $E_r^T \in \mathcal{E}$ for all r,
- $E_r E_s = 0$ if $r \neq s$, and
- $E_r \circ E_s$ lies in the span of \mathcal{A} for all r, s.

The matrices E_0, \ldots, E_d are the *minimal matrix idempotents* of $\mathbb{C}[\mathcal{A}]$.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Eigenvalues of a scheme

Since \mathcal{E} is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_r(s)$ such that

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Eigenvalues of a scheme

Since \mathcal{E} is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_r(s)$ such that

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

Since the E_r are pairwise orthogonal idempotents, this implies that

$$A_r E_s = p_r(s) E_s$$

for all r, s = 0, 1, ..., d.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Eigenvalues of a scheme

Since \mathcal{E} is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_r(s)$ such that

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

Since the E_r are pairwise orthogonal idempotents, this implies that

$$A_r E_s = p_r(s) E_s$$

for all r, s = 0, 1, ..., d. Therefore, the scalars $p_r(0), ..., p_r(d)$ are eigenvalues of A_r , and the columns of E_s are eigenvectors of A_r .

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Eigenvalues of a scheme

Since \mathcal{E} is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_r(s)$ such that

4

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

Since the E_r are pairwise orthogonal idempotents, this implies that

$$A_r E_s = p_r(s) E_s$$

for all r, s = 0, 1, ..., d. Therefore, the scalars $p_r(0), ..., p_r(d)$ are eigenvalues of A_r , and the columns of E_s are eigenvectors of A_r .

We call the $p_r(s)$ the eigenvalues of the scheme, A and define the matrix of eigenvalues by $P = (p_r(s))_{s,r}$.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Eigenvalues of graphs in a scheme

Observation

If X is a graph in a scheme with matrix of eigenvalues P, then there is a 01-vector x such that the eigenvalues of X are the entries of Px.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Eigenvalues of graphs in a scheme

Observation

If X is a graph in a scheme with matrix of eigenvalues P, then there is a 01-vector x such that the eigenvalues of X are the entries of Px.

Idea of proof. The adjacency matrix of *X* can be written $\sum_{r \in R} A_r$ where $R \subseteq \{1, \ldots, d\}$.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

Eigenvalues of graphs in a scheme

Observation

If X is a graph in a scheme with matrix of eigenvalues P, then there is a 01-vector x such that the eigenvalues of X are the entries of Px.

Idea of proof. The adjacency matrix of *X* can be written $\sum_{r \in R} A_r$ where $R \subseteq \{1, \ldots, d\}$. Note that

$$\begin{aligned} (A_r + A_s)E_j &= A_rE_j + A_sE_j \\ &= p_r(j)E_j + p_s(j)E_j \\ &= (p_r(j) + p_s(j))E_j \end{aligned}$$

so $p_r(j) + p_s(j)$ is an eigenvalue of $A_r + A_s$.

Preliminaries Eigenvalues **The conjugacy class scheme** Integrality

Outline

2 Association schemes

Preliminaries

Eigenvalues

The conjugacy class scheme

Integrality

Cute theorem

Preliminaries Eigenvalues **The conjugacy class scheme** Integrality

The conjugacy class scheme

Let G be a group of order n with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Preliminaries Eigenvalues **The conjugacy class scheme** Integrality

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

Preliminaries Eigenvalues **The conjugacy class scheme** Integrality

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathcal{A} := \{A_0, \dots, A_d\}$ is an association scheme.

Definition

This is the *conjugacy class scheme* of *G*.

Preliminaries Eigenvalues **The conjugacy class scheme** Integrality

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathcal{A} := \{A_0, \dots, A_d\}$ is an association scheme.

Definition

This is the *conjugacy class scheme* of *G*.

A normal Cayley graph of *G* is a graph in its conjugacy class scheme.

Preliminaries Eigenvalues The conjugacy class scheme **Integrality**

Outline

2 Association schemes

Preliminaries

Eigenvalues

The conjugacy class scheme

Integrality

Cute theorem

Preliminaries Eigenvalues The conjugacy class scheme **Integrality**

Integral graphs

Definition

We say that a graph is *integral* if all its eigenvalues are integers.

Preliminaries Eigenvalues The conjugacy class scheme **Integrality**

Integral graphs

Definition

We say that a graph is *integral* if all its eigenvalues are integers.

Example:

This graph

Spectrum: $\{3^{(1)}, 1^{(5)}, -2^{(4)}\}.$

Preliminaries Eigenvalues The conjugacy class scheme Integrality

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.

Define a relation on the conjugacy classes of a group *G* as follows. We say that conjugacy classes C_1, C_2 of *G* are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate.

Define a relation on the conjugacy classes of a group *G* as follows. We say that conjugacy classes C_1, C_2 of *G* are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate. This relation defines a subscheme of the conjugacy class scheme.

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C_1, C_2 of G are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.

It turns out that the Schur idempotents of this subscheme have only integer eigenvalues.

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C_1, C_2 of G are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.

It turns out that the Schur idempotents of this subscheme have only integer eigenvalues.

Definition

This is the *integral conjugacy class scheme* of *G*.

Preliminaries Eigenvalues The conjugacy class scheme Integrality

The integral conjugacy class scheme

Theorem 1 (Bridges & Mena, 1981)

A normal Cayley graph of G is integral if and only if it lies in the integral conjugacy class scheme of G.

Cute theorem

Outline

2 Association schemes

- Preliminaries
- Eigenvalues
- The conjugacy class scheme
- Integrality

Cute theorem

Cute theorem

Integral normal Cayley graphs

Theorem 2 (Árnadóttir & Godsil, 2023++)

If G is a group of odd order then any non-empty, integral, normal Cayley graph for G has an odd eigenvalue.

Example

Let $G = H \times \mathbb{Z}_3$ where H is the unique non-abelian group of order 21. It has seven power-conjugacy classes, C_0, C_1, \ldots, C_6 of size (1, 2, 6, 12, 14, 14, 14).

Example

Let $G = H \times \mathbb{Z}_3$ where H is the unique non-abelian group of order 21. It has seven power-conjugacy classes, C_0, C_1, \ldots, C_6 of size (1, 2, 6, 12, 14, 14, 14).

Let $C := C_1 \cup C_6$. Then X := Cay(G, C) is a connected, normal Cayley graph for a group of odd order and its spectrum is

$$\{16^{(1)}, 13^{(2)}, 2^{(18)}, -1^{(36)}, -5^{(2)}, -8^{(4)}\}.$$

Cute theorem

Thank you (and a picture of a graph)

