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Why do we care?

Cayley graphs

Definition

Let G be a group and C ⊆ G\{e} a subset with C−1 = C. The Cayley
graph, X := Cay(G, C), has vertex set V (X) := G, and

g ∼ h if hg−1 ∈ C.

The set C is called the connection set of the graph.

Definition

We say that Cay(G, C) is normal if g−1Cg = C for all g ∈ G.
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Examples

Cycles

G = Zn, C = {±1}

Hypercubes

G = Zd
2, C the standard basis

Kn

G any group, C = G\e
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Association schemes

Definition

An association scheme (with d classes) is a set of n× n matrices,
A = {A0, . . . , Ad} with entries in {0, 1} such that

A0 = I ,∑d
r=0 Ar = J ,

AT
r ∈ A for all r,

ArAs = AsAr for all r, s, and

ArAs lies in the span of A for all r, s.
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Association schemes

The span of A is an algebra, C[A], called the Bose-Mesner algebra
of the scheme.

Any 01-matrix in C[A] is a Schur idempotent of C[A].

The Ar are the minimal Schur idempotents of C[A].

An association scheme B = {B0, . . . , Bk} where each Br is a
Schur idempotent of C[A] is a subscheme of A.

Any Schur idempotent can be viewed as the adjacency matrix of
a (possibly directed) graph. These are the graphs in the scheme.
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Examples

Let

A1 =


0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

 and A2 =


0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0


A = {I, A1, A2} is an association scheme with 3 classes.

The graphs in the scheme are
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Two bases

The association scheme, A = {A0, . . . , Ad} is a basis for C[A].

There is another basis, E = {E0, . . . , Ed} of matrix idempotents
satisfying

E0 = 1
nJ ,∑d

r=0 Er = I ,

ET
r ∈ E for all r,

ErEs = 0 if r ̸= s, and

Er ◦ Es lies in the span of A for all r, s.

The matrices E0, . . . , Ed are the minimal matrix idempotents of C[A].
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Eigenvalues of a scheme

Since E is a basis of C[A], there are scalars pr(s) such that

Ar =

d∑
s=0

pr(s)Es.

Since the Er are pairwise orthogonal idempotents, this implies that

ArEs = pr(s)Es

for all r, s = 0, 1, . . . , d. Therefore, the scalars pr(0), . . . , pr(d) are
eigenvalues of Ar, and the columns of Es are eigenvectors of Ar.

We call the pr(s) the eigenvalues of the scheme, A and define the matrix
of eigenvalues by P = (pr(s))s,r.
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Eigenvalues of graphs in a scheme

Observation

If X is a graph in a scheme with matrix of eigenvalues P , then there is a
01-vector x such that the eigenvalues of X are the entries of Px.

Idea of proof. The adjacency matrix of X can be written
∑

r∈R Ar

where R ⊆ {1, . . . , d}. Note that

(Ar +As)Ej = ArEj +AsEj

= pr(j)Ej + ps(j)Ej

= (pr(j) + ps(j))Ej

so pr(j) + ps(j) is an eigenvalue of Ar +As.
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The conjugacy class scheme

Let G be a group of order n with conjugacy classes C0, . . . , Cd (where
C0 = {e}).

Define the n× n matrices, A0, . . . , Ad by letting

(Ar)gh =

{
1 if hg−1 ∈ Cr,

0 otherwise.

Then A := {A0, . . . , Ad} is an association scheme.

Definition

This is the conjugacy class scheme of G.

A normal Cayley graph of G is a graph in its conjugacy class scheme.
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Integral graphs

Definition

We say that a graph is integral if all its eigenvalues are integers.

Example:

This graph

Spectrum: {3(1), 1(5), −2(4)}.
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The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C1, C2 of G are power-equivalent if for all
g1 ∈ C1 and g2 ∈ C2, the subgroups ⟨g1⟩ and ⟨g2⟩ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.

It turns out that the Schur idempotents of this subscheme have only
integer eigenvalues.

Definition

This is the integral conjugacy class scheme of G.
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The integral conjugacy class scheme

Theorem 1 (Bridges & Mena, 1981)

A normal Cayley graph of G is integral if and only if it lies in the integral
conjugacy class scheme of G.
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Integral normal Cayley graphs

Theorem 2 (Árnadóttir & Godsil, 2023++)

If G is a group of odd order then any non-empty, integral, normal Cayley
graph for G has an odd eigenvalue.
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Example

Let G = H ×Z3 where H is the unique non-abelian group of order 21.
It has seven power-conjugacy classes, C0, C1, . . . , C6 of size
(1, 2, 6, 12, 14, 14, 14).

Let C := C1 ∪ C6. Then X := Cay(G, C) is a connected, normal Cayley
graph for a group of odd order and its spectrum is

{16(1), 13(2), 2(18), −1(36), −5(2), −8(4)}.

21 / 22



Cayley graphs
Association schemes

Why do we care?
Cute theorem

Example

Let G = H ×Z3 where H is the unique non-abelian group of order 21.
It has seven power-conjugacy classes, C0, C1, . . . , C6 of size
(1, 2, 6, 12, 14, 14, 14).

Let C := C1 ∪ C6. Then X := Cay(G, C) is a connected, normal Cayley
graph for a group of odd order and its spectrum is

{16(1), 13(2), 2(18), −1(36), −5(2), −8(4)}.

21 / 22



Cayley graphs
Association schemes

Why do we care?
Cute theorem

Thank you (and a picture of a graph)
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