Normal Cayley graphs, association schemes and spectra

Arnbjörg Soffía Árnadóttir

Technical University of Denmark

29th Nordic Congress of Mathematicians July, 2023

Outline

- 2 Cayley graphs
- 3 Association schemes
- A picture of my cat
- 5 The conjugacy class scheme

Motivation

Cayley graphs Association schemes A picture of my cat The conjugacy class scheme

Outline

- 2 Cayley graphs
- 3 Association schemes
- A picture of my cat
- 5 The conjugacy class scheme

Spectra of graphs

For a graph *X* on *n* vertices, define its *adjacency matrix*, A := A(X) by

$$A_{uv} = \begin{cases} 1 & \text{if } u \sim v, \\ 0 & \text{otherwise,} \end{cases}$$

where $u, v \in V(X)$.

Spectra of graphs

For a graph *X* on *n* vertices, define its *adjacency matrix*, A := A(X) by

$$A_{uv} = \begin{cases} 1 & \text{if } u \sim v, \\ 0 & \text{otherwise,} \end{cases}$$

where $u, v \in V(X)$.

Definition

We define the *eigenvalues* / *eigenvectors of X* as the eigenvalues / eigenvectors of *A*.

Why spectral graph theory?

• Connections between spectrum and graph theoretic properties

- Connections between spectrum and graph theoretic properties:
 - Diameter < number of distinct eigenvalues,

- Connections between spectrum and graph theoretic properties:
 - Diameter < number of distinct eigenvalues,
 - Largest eigenvalue ≤ maximum degree

- Connections between spectrum and graph theoretic properties:
 - Diameter < number of distinct eigenvalues,
 - Largest eigenvalue ≤ maximum degree
 - Bipartiteness

- Connections between spectrum and graph theoretic properties:
 - Diameter < number of distinct eigenvalues,
 - Largest eigenvalue \leq maximum degree
 - Bipartiteness
- Which graphs are determined by their spectrum?

- Connections between spectrum and graph theoretic properties:
 - Diameter < number of distinct eigenvalues,
 - Largest eigenvalue \leq maximum degree
 - Bipartiteness
- Which graphs are determined by their spectrum?
- Expander graphs

- Connections between spectrum and graph theoretic properties:
 - Diameter < number of distinct eigenvalues,
 - Largest eigenvalue \leq maximum degree
 - Bipartiteness
- Which graphs are determined by their spectrum?
- Expander graphs
- Quantum walks

Outline

- 2 Cayley graphs
 - 3 Association schemes
- A picture of my cat
- 5 The conjugacy class scheme

Cayley graphs

Definition

Let *G* be a group and $C \subseteq G \setminus \{e\}$ a subset with $C^{-1} = C$. The *Cayley* graph, $X := \operatorname{Cay}(G, C)$, has vertex set V(X) := G, and

$$g \sim h$$
 if $hg^{-1} \in \mathcal{C}$.

The set C is called the *connection set* of the graph.

Cayley graphs

Definition

Let *G* be a group and $C \subseteq G \setminus \{e\}$ a subset with $C^{-1} = C$. The *Cayley* graph, $X := \operatorname{Cay}(G, C)$, has vertex set V(X) := G, and

$$g \sim h$$
 if $hg^{-1} \in \mathcal{C}$.

The set C is called the *connection set* of the graph.

Definition

We say that $\operatorname{Cay}(G, \mathcal{C})$ is *normal* if $g^{-1}\mathcal{C}g = \mathcal{C}$ for all $g \in G$.

Examples

Examples

 $G = \mathbb{Z}_2^d$, \mathcal{C} the standard basis

Examples

Theorem

Theorem (Árnadóttir & Godsil, 2023++)

If G is a group of odd order then any non-empty, normal Cayley graph for G with only integer eigenvalues has an odd eigenvalue.

Proof by example

Spectrum: $\{16^{(1)}, 13^{(2)}, 2^{(18)}, -1^{(36)}, -5^{(2)}, -8^{(4)}\}.$

Outline

- 2 Cayley graphs
- 3 Association schemes
- A picture of my cat
- 5 The conjugacy class scheme

Association schemes

Definition

An association scheme (with d classes) is a set of $n \times n$ matrices, $\mathcal{A} = \{A_0, \dots, A_d\}$ with entries in $\{0, 1\}$ such that

• $A_0 = I$,

•
$$\sum_{r=0}^{d} A_r = J$$
,

- $A_r^T \in \mathcal{A}$ for all r,
- $A_rA_s = A_sA_r$ for all r, s, and
- $A_r A_s$ lies in the span of \mathcal{A} for all r, s.

Association schemes

• The span of *A* is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Hadamard idempotent* of $\mathbb{C}[\mathcal{A}]$.

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Hadamard idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the *minimal Hadamard idempotents* of $\mathbb{C}[\mathcal{A}]$.

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Hadamard idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the *minimal Hadamard idempotents* of $\mathbb{C}[\mathcal{A}]$.
- An association scheme $\mathcal{B} = \{B_0, \dots, B_k\}$ where each B_r is a Hadamard idempotent of $\mathbb{C}[\mathcal{A}]$ is a *subscheme* of \mathcal{A} .

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Hadamard idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the minimal Hadamard idempotents of $\mathbb{C}[\mathcal{A}]$.
- An association scheme $\mathcal{B} = \{B_0, \dots, B_k\}$ where each B_r is a Hadamard idempotent of $\mathbb{C}[\mathcal{A}]$ is a *subscheme* of \mathcal{A} .
- Any Hadamard idempotent can be viewed as the adjacency matrix of a (possibly directed) graph. These are the *graphs in the scheme*.

Example

Let

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad A_{2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

 $\mathcal{A} = \{I, A_1, A_2\}$ is an association scheme with two classes.

Example

Let

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad A_{2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

 $\mathcal{A} = \{I, A_1, A_2\}$ is an association scheme with two classes. The graphs in the scheme are

Example

Let

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad A_{2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

 $\mathcal{A} = \{I, A_1, A_2\}$ is an association scheme with two classes. The graphs in the scheme are

The only proper subscheme is $\mathcal{B} = \{I, A_1 + A_2\}.$

Two bases

The association scheme, $\mathcal{A} = \{A_0, \dots, A_d\}$ is a basis for $\mathbb{C}[\mathcal{A}]$.

Two bases

The association scheme, $\mathcal{A} = \{A_0, \dots, A_d\}$ is a basis for $\mathbb{C}[\mathcal{A}]$.

There is another basis, $\mathcal{E} = \{E_0, \dots, E_d\}$ of matrix idempotents satisfying

- $E_0 = \frac{1}{n}J$,
- $\sum_{r=0}^{d} E_r = I$,
- $E_r^T \in \mathcal{E}$ for all r,
- $E_r E_s = 0$ if $r \neq s$, and
- $E_r \circ E_s$ lies in the span of \mathcal{A} for all r, s.

Two bases

The association scheme, $\mathcal{A} = \{A_0, \dots, A_d\}$ is a basis for $\mathbb{C}[\mathcal{A}]$.

There is another basis, $\mathcal{E} = \{E_0, \dots, E_d\}$ of matrix idempotents satisfying

- $E_0 = \frac{1}{n}J$,
- $\sum_{r=0}^{d} E_r = I$,
- $E_r^T \in \mathcal{E}$ for all r,
- $E_r E_s = 0$ if $r \neq s$, and
- $E_r \circ E_s$ lies in the span of \mathcal{A} for all r, s.

The matrices E_0, \ldots, E_d are the *minimal matrix idempotents* of $\mathbb{C}[\mathcal{A}]$.

Eigenvalues of a scheme

Since \mathcal{E} is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_r(s)$ such that

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

Eigenvalues of a scheme

Since \mathcal{E} is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_r(s)$ such that

4

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

Since the E_r are pairwise orthogonal idempotents, this implies that

$$A_r E_s = p_r(s) E_s$$

for all r, s = 0, 1, ..., d.

Eigenvalues of a scheme

Since \mathcal{E} is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_r(s)$ such that

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

Since the E_r are pairwise orthogonal idempotents, this implies that

$$A_r E_s = p_r(s) E_s$$

for all r, s = 0, 1, ..., d. Therefore, the scalars $p_r(0), ..., p_r(d)$ are eigenvalues of A_r , and the columns of E_s are eigenvectors of A_r .

Eigenvalues of a scheme

Since \mathcal{E} is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_r(s)$ such that

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

Since the E_r are pairwise orthogonal idempotents, this implies that

$$A_r E_s = p_r(s) E_s$$

for all r, s = 0, 1, ..., d. Therefore, the scalars $p_r(0), ..., p_r(d)$ are eigenvalues of A_r , and the columns of E_s are eigenvectors of A_r .

We call the $p_r(s)$ the eigenvalues of the scheme, A and define the matrix of eigenvalues by $P = (p_r(s))_{s,r}$.

Some basic properties of *P*

Let v_r be the row sum of A_r and m_r be the rank of E_r .

Some basic properties of *P*

Let v_r be the row sum of A_r and m_r be the rank of E_r .

Some basic properties of *P*

Let v_r be the row sum of A_r and m_r be the rank of E_r .

Fact 1

$$\det(P^*P) = n^{d+1} \prod_{r=0}^d \frac{v_r}{m_r}.$$

In particular, it is an integer.

Some basic properties of *P*

Let v_r be the row sum of A_r and m_r be the rank of E_r .

Fact 1

$$\det(P^*P) = n^{d+1} \prod_{r=0}^d \frac{v_r}{m_r}.$$

In particular, it is an integer.

Fact 2

If \mathcal{A} is an association scheme with matrix of eigenvalues $P_{\mathcal{A}}$ and \mathcal{B} is a subscheme with matrix of eigenvalues $P_{\mathcal{B}}$, then $\det(P_{\mathcal{B}}) \mid \det(P_{\mathcal{A}})$.

Some basic properties of *P*

Let v_r be the row sum of A_r and m_r be the rank of E_r .

Fact 1

$$\det(P^*P) = n^{d+1} \prod_{r=0}^d \frac{v_r}{m_r}.$$

In particular, it is an integer.

Fact 2

If \mathcal{A} is an association scheme with matrix of eigenvalues $P_{\mathcal{A}}$ and \mathcal{B} is a subscheme with matrix of eigenvalues $P_{\mathcal{B}}$, then $\det(P_{\mathcal{B}}) \mid \det(P_{\mathcal{A}})$.

Fact 3

If X is a graph in a scheme with matrix of eigenvalues P, then there is a 01-vector x such that the eigenvalues of X are the entries of Px.

Some basic properties of *P*

Fact 3

If X is a graph in a scheme with matrix of eigenvalues P, then there is a 01-vector x such that the eigenvalues of X are the entries of Px.

Some basic properties of *P*

Fact 3

If X is a graph in a scheme with matrix of eigenvalues P, then there is a 01-vector x such that the eigenvalues of X are the entries of Px.

Idea of proof. The adjacency matrix of *X* can be written $\sum_{r \in R} A_r$ where $R \subseteq \{1, \ldots, d\}$.

Some basic properties of *P*

Fact 3

If X is a graph in a scheme with matrix of eigenvalues P, then there is a 01-vector x such that the eigenvalues of X are the entries of Px.

Idea of proof. The adjacency matrix of *X* can be written $\sum_{r \in R} A_r$ where $R \subseteq \{1, \ldots, d\}$. Note that

$$A_r + A_s)E_j = A_rE_j + A_sE_j$$
$$= p_r(j)E_j + p_s(j)E_j$$
$$= (p_r(j) + p_s(j))E_j$$

so $p_r(j) + p_s(j)$ is an eigenvalue of $A_r + A_s$.

Outline

- 2 Cayley graphs
- 3 Association schemes
- A picture of my cat
- 5 The conjugacy class scheme

Outline

- 2 Cayley graphs
- 3 Association schemes
- 4 A picture of my cat
- 5 The conjugacy class scheme

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathcal{A} := \{A_0, \dots, A_d\}$ is an association scheme.

Definition

This is the *conjugacy class scheme* of *G*.

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathcal{A} := \{A_0, \dots, A_d\}$ is an association scheme.

Definition

This is the *conjugacy class scheme* of *G*.

Definition

A *normal Cayley graph* of *G* is a graph in its conjugacy class scheme.

A subscheme

Define a relation on the conjugacy classes of a group G as follows.

A subscheme

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C_1, C_2 of G are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate.

A subscheme

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C_1, C_2 of G are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.

A subscheme

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C_1, C_2 of G are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.

It turns out that the graphs this subscheme have only integer eigenvalues, i.e. they are *integral*.

A subscheme

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C_1, C_2 of G are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.

It turns out that the graphs this subscheme have only integer eigenvalues, i.e. they are *integral*.

Definition

This is the *integral conjugacy class scheme* of *G*.

The integral conjugacy class scheme

Theorem 1 (Bridges & Mena, 1981)

A normal Cayley graph of G is integral if and only if it lies in the integral conjugacy class scheme of G.

Integral normal Cayley graphs

Theorem 2 (Árnadóttir & Godsil, 2023++)

If G is a group of odd order then any non-empty, integral, normal Cayley graph for G has an odd eigenvalue.

Proof

Idea of proof.

• Such a graph lies in the integral conjugacy class scheme, *B*. Let *A* be the conjugacy class scheme.

Proof

Idea of proof.

- Such a graph lies in the integral conjugacy class scheme, *B*. Let *A* be the conjugacy class scheme.
- Let P_A and P_B be the matrices of eigenvalues.

Proof

Idea of proof.

- Such a graph lies in the integral conjugacy class scheme, *B*. Let *A* be the conjugacy class scheme.
- Let P_A and P_B be the matrices of eigenvalues.
- Recall that $det(P_{\mathcal{B}})$ divides $det(P_{\mathcal{A}})$.

Proof

Idea of proof.

- Such a graph lies in the integral conjugacy class scheme, *B*. Let *A* be the conjugacy class scheme.
- Let P_A and P_B be the matrices of eigenvalues.
- Recall that $det(P_{\mathcal{B}})$ divides $det(P_{\mathcal{A}})$.
- We show that $\det(P^*_{\mathcal{A}}P_{\mathcal{A}})$ is an odd integer, using

$$\det(P_{\mathcal{A}}^*P_{\mathcal{A}}) = n^{d+1} \prod \frac{v_r}{m_r},$$

and therefore $det(P_{\mathcal{B}})$ is odd.

Proof

Idea of proof.

- Such a graph lies in the integral conjugacy class scheme, *B*. Let *A* be the conjugacy class scheme.
- Let P_A and P_B be the matrices of eigenvalues.
- Recall that $det(P_{\mathcal{B}})$ divides $det(P_{\mathcal{A}})$.
- We show that $\det(P^*_{\mathcal{A}}P_{\mathcal{A}})$ is an odd integer, using

$$\det(P_{\mathcal{A}}^*P_{\mathcal{A}}) = n^{d+1} \prod \frac{v_r}{m_r},$$

and therefore $det(P_{\mathcal{B}})$ is odd.

• The entries of $P_{\mathcal{B}}x$ cannot all be even since $P_{\mathcal{B}}$ is invertible mod 2.

Thank you