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Spectra of graphs

For a graph X on n vertices, define its adjacency matrix, A := A(X) by

Auv =

{
1 if u ∼ v,

0 otherwise,

where u, v ∈ V (X).

Definition

We define the eigenvalues / eigenvectors of X as the eigenvalues /
eigenvectors of A.
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Why spectral graph theory?

Connections between spectrum and graph theoretic properties:

Diameter < number of distinct eigenvalues,

Largest eigenvalue ≤ maximum degree

Bipartiteness

Which graphs are determined by their spectrum?

Expander graphs

Quantum walks
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Cayley graphs

Definition

Let G be a group and C ⊆ G\{e} a subset with C−1 = C. The Cayley
graph, X := Cay(G, C), has vertex set V (X) := G, and

g ∼ h if hg−1 ∈ C.

The set C is called the connection set of the graph.

Definition

We say that Cay(G, C) is normal if g−1Cg = C for all g ∈ G.

7 / 27
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Examples

Cycles

G = Zn, C = {±1}

Hypercubes

G = Zd
2, C the standard basis

Kn

G any group, C = G\e
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Theorem

Theorem (Árnadóttir & Godsil, 2023++)

If G is a group of odd order then any non-empty, normal Cayley graph for G
with only integer eigenvalues has an odd eigenvalue.
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Proof by example

Spectrum: {16(1), 13(2), 2(18), −1(36), −5(2), −8(4)}.
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Association schemes

Definition

An association scheme (with d classes) is a set of n× n matrices,
A = {A0, . . . , Ad} with entries in {0, 1} such that

A0 = I ,∑d
r=0 Ar = J ,

AT
r ∈ A for all r,

ArAs = AsAr for all r, s, and

ArAs lies in the span of A for all r, s.

12 / 27
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Association schemes

The span of A is an algebra, C[A], called the Bose-Mesner algebra
of the scheme.

Any 01-matrix in C[A] is a Hadamard idempotent of C[A].

The Ar are the minimal Hadamard idempotents of C[A].

An association scheme B = {B0, . . . , Bk} where each Br is a
Hadamard idempotent of C[A] is a subscheme of A.

Any Hadamard idempotent can be viewed as the adjacency
matrix of a (possibly directed) graph. These are the graphs in the
scheme.

13 / 27
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Example

Let

A1 =


0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

 and A2 =


0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0


A = {I, A1, A2} is an association scheme with two classes.

The graphs in the scheme are

The only proper subscheme is B = {I, A1 +A2}.

14 / 27
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Two bases

The association scheme, A = {A0, . . . , Ad} is a basis for C[A].

There is another basis, E = {E0, . . . , Ed} of matrix idempotents
satisfying

E0 = 1
nJ ,∑d

r=0 Er = I ,

ET
r ∈ E for all r,

ErEs = 0 if r ̸= s, and

Er ◦ Es lies in the span of A for all r, s.

The matrices E0, . . . , Ed are the minimal matrix idempotents of C[A].
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Eigenvalues of a scheme

Since E is a basis of C[A], there are scalars pr(s) such that

Ar =

d∑
s=0

pr(s)Es.

Since the Er are pairwise orthogonal idempotents, this implies that

ArEs = pr(s)Es

for all r, s = 0, 1, . . . , d. Therefore, the scalars pr(0), . . . , pr(d) are
eigenvalues of Ar, and the columns of Es are eigenvectors of Ar.

We call the pr(s) the eigenvalues of the scheme, A and define the matrix
of eigenvalues by P = (pr(s))s,r.

16 / 27
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Some basic properties of P
Let vr be the row sum of Ar and mr be the rank of Er.

Fact 1

det(P ∗P ) = nd+1
d∏

r=0

vr
mr

.

In particular, it is an integer.

Fact 2

If A is an association scheme with matrix of eigenvalues PA and B is a
subscheme with matrix of eigenvalues PB, then det(PB) | det(PA).

Fact 3

If X is a graph in a scheme with matrix of eigenvalues P , then there is a
01-vector x such that the eigenvalues of X are the entries of Px.

17 / 27
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Some basic properties of P

Fact 3

If X is a graph in a scheme with matrix of eigenvalues P , then there is a
01-vector x such that the eigenvalues of X are the entries of Px.

Idea of proof. The adjacency matrix of X can be written
∑

r∈R Ar

where R ⊆ {1, . . . , d}. Note that

(Ar +As)Ej = ArEj +AsEj

= pr(j)Ej + ps(j)Ej

= (pr(j) + ps(j))Ej

so pr(j) + ps(j) is an eigenvalue of Ar +As.

18 / 27
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The conjugacy class scheme

Let G be a group of order n with conjugacy classes C0, . . . , Cd (where
C0 = {e}).

Define the n× n matrices, A0, . . . , Ad by letting

(Ar)gh =

{
1 if hg−1 ∈ Cr,

0 otherwise.

Then A := {A0, . . . , Ad} is an association scheme.

Definition

This is the conjugacy class scheme of G.

Definition

A normal Cayley graph of G is a graph in its conjugacy class scheme.

22 / 27
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A subscheme

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C1, C2 of G are power-equivalent if for all
g1 ∈ C1 and g2 ∈ C2, the subgroups ⟨g1⟩ and ⟨g2⟩ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.

It turns out that the graphs this subscheme have only integer
eigenvalues, i.e. they are integral.

Definition

This is the integral conjugacy class scheme of G.

23 / 27
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eigenvalues, i.e. they are integral.

Definition

This is the integral conjugacy class scheme of G.
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The integral conjugacy class scheme

Theorem 1 (Bridges & Mena, 1981)

A normal Cayley graph of G is integral if and only if it lies in the integral
conjugacy class scheme of G.
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Integral normal Cayley graphs

Theorem 2 (Árnadóttir & Godsil, 2023++)

If G is a group of odd order then any non-empty, integral, normal Cayley
graph for G has an odd eigenvalue.
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Proof

Idea of proof.

Such a graph lies in the integral conjugacy class scheme, B. Let A
be the conjugacy class scheme.

Let PA and PB be the matrices of eigenvalues.

Recall that det(PB) divides det(PA).

We show that det(P ∗
APA) is an odd integer, using

det(P ∗
APA) = nd+1

∏ vr
mr

,

and therefore det(PB) is odd.

The entries of PBx cannot all be even since PB is invertible mod 2.
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