## Normal Cayley graphs, association schemes and spectra

Arnbjörg Soffía Árnadóttir<br>Technical University of Denmark

## DTU <br> 

29th Nordic Congress of Mathematicians
July, 2023

## Outline

(1) Motivation
(2) Cayley graphs
(3) Association schemes
(4) A picture of my cat
(5) The conjugacy class scheme

## Outline

(1) Motivation
(2) Cayley graphs
(3) Association schemes

4 A picture of my cat
(5) The conjugacy class scheme

## Spectra of graphs

For a graph $X$ on $n$ vertices, define its adjacency matrix, $A:=A(X)$ by

$$
A_{u v}= \begin{cases}1 & \text { if } u \sim v \\ 0 & \text { otherwise }\end{cases}
$$

where $u, v \in V(X)$.

## Spectra of graphs

For a graph $X$ on $n$ vertices, define its adjacency matrix, $A:=A(X)$ by

$$
A_{u v}= \begin{cases}1 & \text { if } u \sim v \\ 0 & \text { otherwise }\end{cases}
$$

where $u, v \in V(X)$.

## Definition

We define the eigenvalues / eigenvectors of $X$ as the eigenvalues / eigenvectors of $A$.

## Why spectral graph theory?

## Why spectral graph theory?

- Connections between spectrum and graph theoretic properties


## Why spectral graph theory?

- Connections between spectrum and graph theoretic properties:
- Diameter < number of distinct eigenvalues,


## Why spectral graph theory?

- Connections between spectrum and graph theoretic properties:
- Diameter < number of distinct eigenvalues,
- Largest eigenvalue $\leq$ maximum degree


## Why spectral graph theory?

- Connections between spectrum and graph theoretic properties:
- Diameter < number of distinct eigenvalues,
- Largest eigenvalue $\leq$ maximum degree
- Bipartiteness


## Why spectral graph theory?

- Connections between spectrum and graph theoretic properties:
- Diameter $<$ number of distinct eigenvalues,
- Largest eigenvalue $\leq$ maximum degree
- Bipartiteness
- Which graphs are determined by their spectrum?


## Why spectral graph theory?

- Connections between spectrum and graph theoretic properties:
- Diameter $<$ number of distinct eigenvalues,
- Largest eigenvalue $\leq$ maximum degree
- Bipartiteness
- Which graphs are determined by their spectrum?
- Expander graphs


## Why spectral graph theory?

- Connections between spectrum and graph theoretic properties:
- Diameter $<$ number of distinct eigenvalues,
- Largest eigenvalue $\leq$ maximum degree
- Bipartiteness
- Which graphs are determined by their spectrum?
- Expander graphs
- Quantum walks


## Outline

(1) Motivation
(2) Cayley graphs

3 Association schemes

4 A picture of my cat
(5) The conjugacy class scheme

## Cayley graphs

## Definition

Let $G$ be a group and $\mathcal{C} \subseteq G \backslash\{e\}$ a subset with $\mathcal{C}^{-1}=\mathcal{C}$. The Cayley graph, $X:=\operatorname{Cay}(G, \mathcal{C})$, has vertex set $V(X):=G$, and

$$
g \sim h \quad \text { if } \quad h g^{-1} \in \mathcal{C} .
$$

The set $\mathcal{C}$ is called the connection set of the graph.

## Cayley graphs

## Definition

Let $G$ be a group and $\mathcal{C} \subseteq G \backslash\{e\}$ a subset with $\mathcal{C}^{-1}=\mathcal{C}$. The Cayley graph, $X:=\operatorname{Cay}(G, \mathcal{C})$, has vertex set $V(X):=G$, and

$$
g \sim h \quad \text { if } \quad h g^{-1} \in \mathcal{C} .
$$

The set $\mathcal{C}$ is called the connection set of the graph.

## Definition

We say that $\operatorname{Cay}(G, \mathcal{C})$ is normal if $g^{-1} \mathcal{C} g=\mathcal{C}$ for all $g \in G$.

## Examples

- Cycles



## Examples

- Cycles

- Hypercubes


$$
G=\mathbb{Z}_{2}^{d}, \mathcal{C} \text { the standard basis }
$$

## Examples

- Cycles
- Hypercubes


$$
G=\mathbb{Z}_{n}, \mathcal{C}=\{ \pm 1\}
$$



$$
G=\mathbb{Z}_{2}^{d}, \mathcal{C} \text { the standard basis }
$$

- $K_{n}$

$G$ any group, $\mathcal{C}=G \backslash e$


## Theorem

## Theorem (Árnadóttir \& Godsil, 2023++)

If $G$ is a group of odd order then any non-empty, normal Cayley graph for $G$ with only integer eigenvalues has an odd eigenvalue.

## Proof by example



Spectrum: $\left\{16^{(1)}, 13^{(2)}, 2^{(18)},-1^{(36)},-5^{(2)},-8^{(4)}\right\}$.

## Outline

(1) Motivation
(2) Cayley graphs
(3) Association schemes

4 A picture of my cat
(5) The conjugacy class scheme

## Association schemes

## Definition

An association scheme (with $d$ classes) is a set of $n \times n$ matrices, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ with entries in $\{0,1\}$ such that

- $A_{0}=I$,
- $\sum_{r=0}^{d} A_{r}=J$,
- $A_{r}^{T} \in \mathcal{A}$ for all $r$,
- $A_{r} A_{s}=A_{s} A_{r}$ for all $r, s$, and
- $A_{r} A_{s}$ lies in the span of $\mathcal{A}$ for all $r, s$.


## Association schemes

- The span of $\mathcal{A}$ is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.


## Association schemes

- The span of $\mathcal{A}$ is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a Hadamard idempotent of $\mathbb{C}[\mathcal{A}]$.


## Association schemes

- The span of $\mathcal{A}$ is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a Hadamard idempotent of $\mathbb{C}[\mathcal{A}]$.
- The $A_{r}$ are the minimal Hadamard idempotents of $\mathbb{C}[\mathcal{A}]$.


## Association schemes

- The span of $\mathcal{A}$ is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a Hadamard idempotent of $\mathbb{C}[\mathcal{A}]$.
- The $A_{r}$ are the minimal Hadamard idempotents of $\mathbb{C}[\mathcal{A}]$.
- An association scheme $\mathcal{B}=\left\{B_{0}, \ldots, B_{k}\right\}$ where each $B_{r}$ is a Hadamard idempotent of $\mathbb{C}[\mathcal{A}]$ is a subscheme of $\mathcal{A}$.


## Association schemes

- The span of $\mathcal{A}$ is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a Hadamard idempotent of $\mathbb{C}[\mathcal{A}]$.
- The $A_{r}$ are the minimal Hadamard idempotents of $\mathbb{C}[\mathcal{A}]$.
- An association scheme $\mathcal{B}=\left\{B_{0}, \ldots, B_{k}\right\}$ where each $B_{r}$ is a Hadamard idempotent of $\mathbb{C}[\mathcal{A}]$ is a subscheme of $\mathcal{A}$.
- Any Hadamard idempotent can be viewed as the adjacency matrix of a (possibly directed) graph. These are the graphs in the scheme.


## Example

Let

$$
A_{1}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \text { and } A_{2}=\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

$\mathcal{A}=\left\{I, A_{1}, A_{2}\right\}$ is an association scheme with two classes.

## Example

Let

$$
A_{1}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \text { and } A_{2}=\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

$\mathcal{A}=\left\{I, A_{1}, A_{2}\right\}$ is an association scheme with two classes.
The graphs in the scheme are


## Example

Let

$$
A_{1}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \text { and } A_{2}=\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

$\mathcal{A}=\left\{I, A_{1}, A_{2}\right\}$ is an association scheme with two classes.
The graphs in the scheme are


The only proper subscheme is $\mathcal{B}=\left\{I, A_{1}+A_{2}\right\}$.

## Two bases

The association scheme, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ is a basis for $\mathbb{C}[\mathcal{A}]$.

## Two bases

The association scheme, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ is a basis for $\mathbb{C}[\mathcal{A}]$.
There is another basis, $\mathcal{E}=\left\{E_{0}, \ldots, E_{d}\right\}$ of matrix idempotents satisfying

- $E_{0}=\frac{1}{n} J$,
- $\sum_{r=0}^{d} E_{r}=I$,
- $E_{r}^{T} \in \mathcal{E}$ for all $r$,
- $E_{r} E_{s}=0$ if $r \neq s$, and
- $E_{r} \circ E_{s}$ lies in the span of $\mathcal{A}$ for all $r, s$.


## Two bases

The association scheme, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ is a basis for $\mathbb{C}[\mathcal{A}]$.
There is another basis, $\mathcal{E}=\left\{E_{0}, \ldots, E_{d}\right\}$ of matrix idempotents satisfying

- $E_{0}=\frac{1}{n} J$,
- $\sum_{r=0}^{d} E_{r}=I$,
- $E_{r}^{T} \in \mathcal{E}$ for all $r$,
- $E_{r} E_{s}=0$ if $r \neq s$, and
- $E_{r} \circ E_{s}$ lies in the span of $\mathcal{A}$ for all $r, s$.

The matrices $E_{0}, \ldots, E_{d}$ are the minimal matrix idempotents of $\mathbb{C}[\mathcal{A}]$.

## Eigenvalues of a scheme

Since $\mathcal{E}$ is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_{r}(s)$ such that

$$
A_{r}=\sum_{s=0}^{d} p_{r}(s) E_{s} .
$$

## Eigenvalues of a scheme

Since $\mathcal{E}$ is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_{r}(s)$ such that

$$
A_{r}=\sum_{s=0}^{d} p_{r}(s) E_{s} .
$$

Since the $E_{r}$ are pairwise orthogonal idempotents, this implies that

$$
A_{r} E_{s}=p_{r}(s) E_{s}
$$

for all $r, s=0,1, \ldots, d$.

## Eigenvalues of a scheme

Since $\mathcal{E}$ is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_{r}(s)$ such that

$$
A_{r}=\sum_{s=0}^{d} p_{r}(s) E_{s}
$$

Since the $E_{r}$ are pairwise orthogonal idempotents, this implies that

$$
A_{r} E_{s}=p_{r}(s) E_{s}
$$

for all $r, s=0,1, \ldots, d$. Therefore, the scalars $p_{r}(0), \ldots, p_{r}(d)$ are eigenvalues of $A_{r}$, and the columns of $E_{s}$ are eigenvectors of $A_{r}$.

## Eigenvalues of a scheme

Since $\mathcal{E}$ is a basis of $\mathbb{C}[\mathcal{A}]$, there are scalars $p_{r}(s)$ such that

$$
A_{r}=\sum_{s=0}^{d} p_{r}(s) E_{s}
$$

Since the $E_{r}$ are pairwise orthogonal idempotents, this implies that

$$
A_{r} E_{s}=p_{r}(s) E_{s}
$$

for all $r, s=0,1, \ldots, d$. Therefore, the scalars $p_{r}(0), \ldots, p_{r}(d)$ are eigenvalues of $A_{r}$, and the columns of $E_{s}$ are eigenvectors of $A_{r}$.
We call the $p_{r}(s)$ the eigenvalues of the scheme, $\mathcal{A}$ and define the matrix of eigenvalues by $P=\left(p_{r}(s)\right)_{s, r}$.

## Some basic properties of $P$

Let $v_{r}$ be the row sum of $A_{r}$ and $m_{r}$ be the rank of $E_{r}$.

## Some basic properties of $P$

Let $v_{r}$ be the row sum of $A_{r}$ and $m_{r}$ be the rank of $E_{r}$.

## Fact 1

$$
\operatorname{det}\left(P^{*} P\right)=n^{d+1} \prod_{r=0}^{d} \frac{v_{r}}{m_{r}}
$$

## Some basic properties of $P$

Let $v_{r}$ be the row sum of $A_{r}$ and $m_{r}$ be the rank of $E_{r}$.

## Fact 1

$$
\operatorname{det}\left(P^{*} P\right)=n^{d+1} \prod_{r=0}^{d} \frac{v_{r}}{m_{r}}
$$

In particular, it is an integer.

## Some basic properties of $P$

Let $v_{r}$ be the row sum of $A_{r}$ and $m_{r}$ be the rank of $E_{r}$.

## Fact 1

$$
\operatorname{det}\left(P^{*} P\right)=n^{d+1} \prod_{r=0}^{d} \frac{v_{r}}{m_{r}}
$$

In particular, it is an integer.

## Fact 2

If $\mathcal{A}$ is an association scheme with matrix of eigenvalues $P_{\mathcal{A}}$ and $\mathcal{B}$ is a subscheme with matrix of eigenvalues $P_{\mathcal{B}}$, then $\operatorname{det}\left(P_{\mathcal{B}}\right) \mid \operatorname{det}\left(P_{\mathcal{A}}\right)$.

## Some basic properties of $P$

Let $v_{r}$ be the row sum of $A_{r}$ and $m_{r}$ be the rank of $E_{r}$.

## Fact 1

$$
\operatorname{det}\left(P^{*} P\right)=n^{d+1} \prod_{r=0}^{d} \frac{v_{r}}{m_{r}}
$$

In particular, it is an integer.

## Fact 2

If $\mathcal{A}$ is an association scheme with matrix of eigenvalues $P_{\mathcal{A}}$ and $\mathcal{B}$ is a subscheme with matrix of eigenvalues $P_{\mathcal{B}}$, then $\operatorname{det}\left(P_{\mathcal{B}}\right) \mid \operatorname{det}\left(P_{\mathcal{A}}\right)$.

## Fact 3

If $X$ is a graph in a scheme with matrix of eigenvalues $P$, then there is a 01 -vector $x$ such that the eigenvalues of $X$ are the entries of $P x$.

## Some basic properties of $P$

## Fact 3

If $X$ is a graph in a scheme with matrix of eigenvalues $P$, then there is a 01 -vector $x$ such that the eigenvalues of $X$ are the entries of $P x$.

## Some basic properties of $P$

## Fact 3

If $X$ is a graph in a scheme with matrix of eigenvalues $P$, then there is a 01 -vector $x$ such that the eigenvalues of $X$ are the entries of $P x$.

Idea of proof. The adjacency matrix of $X$ can be written $\sum_{r \in R} A_{r}$ where $R \subseteq\{1, \ldots, d\}$.

## Some basic properties of $P$

## Fact 3

If $X$ is a graph in a scheme with matrix of eigenvalues $P$, then there is a 01 -vector $x$ such that the eigenvalues of $X$ are the entries of $P x$.

Idea of proof. The adjacency matrix of $X$ can be written $\sum_{r \in R} A_{r}$ where $R \subseteq\{1, \ldots, d\}$. Note that

$$
\begin{aligned}
\left(A_{r}+A_{s}\right) E_{j} & =A_{r} E_{j}+A_{s} E_{j} \\
& =p_{r}(j) E_{j}+p_{s}(j) E_{j} \\
& =\left(p_{r}(j)+p_{s}(j)\right) E_{j}
\end{aligned}
$$

so $p_{r}(j)+p_{s}(j)$ is an eigenvalue of $A_{r}+A_{s}$.

## Outline

(1) Motivation
(2) Cayley graphs
(3) Association schemes

4 A picture of my cat
(5) The conjugacy class scheme


## Outline

## (1) Motivation

(2) Cayley graphs

3 Association schemes

4 A picture of my cat
(5) The conjugacy class scheme

## The conjugacy class scheme

Let $G$ be a group of order $n$ with conjugacy classes $C_{0}, \ldots, C_{d}$ (where $\left.C_{0}=\{e\}\right)$.

## The conjugacy class scheme

Let $G$ be a group of order $n$ with conjugacy classes $C_{0}, \ldots, C_{d}$ (where $\left.C_{0}=\{e\}\right)$.

Define the $n \times n$ matrices, $A_{0}, \ldots, A_{d}$ by letting

$$
\left(A_{r}\right)_{g h}= \begin{cases}1 & \text { if } h g^{-1} \in C_{r} \\ 0 & \text { otherwise }\end{cases}
$$

## The conjugacy class scheme

Let $G$ be a group of order $n$ with conjugacy classes $C_{0}, \ldots, C_{d}$ (where $\left.C_{0}=\{e\}\right)$.

Define the $n \times n$ matrices, $A_{0}, \ldots, A_{d}$ by letting

$$
\left(A_{r}\right)_{g h}= \begin{cases}1 & \text { if } h g^{-1} \in C_{r} \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathcal{A}:=\left\{A_{0}, \ldots, A_{d}\right\}$ is an association scheme.

## Definition

This is the conjugacy class scheme of $G$.

## The conjugacy class scheme

Let $G$ be a group of order $n$ with conjugacy classes $C_{0}, \ldots, C_{d}$ (where $\left.C_{0}=\{e\}\right)$.

Define the $n \times n$ matrices, $A_{0}, \ldots, A_{d}$ by letting

$$
\left(A_{r}\right)_{g h}= \begin{cases}1 & \text { if } h g^{-1} \in C_{r} \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathcal{A}:=\left\{A_{0}, \ldots, A_{d}\right\}$ is an association scheme.

## Definition

This is the conjugacy class scheme of $G$.

## Definition

A normal Cayley graph of $G$ is a graph in its conjugacy class scheme.

## A subscheme

Define a relation on the conjugacy classes of a group $G$ as follows.

## A subscheme

Define a relation on the conjugacy classes of a group $G$ as follows.
We say that conjugacy classes $C_{1}, C_{2}$ of $G$ are power-equivalent if for all $g_{1} \in C_{1}$ and $g_{2} \in C_{2}$, the subgroups $\left\langle g_{1}\right\rangle$ and $\left\langle g_{2}\right\rangle$ are conjugate.

## A subscheme

Define a relation on the conjugacy classes of a group $G$ as follows.
We say that conjugacy classes $C_{1}, C_{2}$ of $G$ are power-equivalent if for all $g_{1} \in C_{1}$ and $g_{2} \in C_{2}$, the subgroups $\left\langle g_{1}\right\rangle$ and $\left\langle g_{2}\right\rangle$ are conjugate.
This relation defines a subscheme of the conjugacy class scheme.

## A subscheme

Define a relation on the conjugacy classes of a group $G$ as follows.
We say that conjugacy classes $C_{1}, C_{2}$ of $G$ are power-equivalent if for all $g_{1} \in C_{1}$ and $g_{2} \in C_{2}$, the subgroups $\left\langle g_{1}\right\rangle$ and $\left\langle g_{2}\right\rangle$ are conjugate.
This relation defines a subscheme of the conjugacy class scheme.
It turns out that the graphs this subscheme have only integer eigenvalues, i.e. they are integral.

## A subscheme

Define a relation on the conjugacy classes of a group $G$ as follows.
We say that conjugacy classes $C_{1}, C_{2}$ of $G$ are power-equivalent if for all $g_{1} \in C_{1}$ and $g_{2} \in C_{2}$, the subgroups $\left\langle g_{1}\right\rangle$ and $\left\langle g_{2}\right\rangle$ are conjugate.
This relation defines a subscheme of the conjugacy class scheme.
It turns out that the graphs this subscheme have only integer eigenvalues, i.e. they are integral.

## Definition

This is the integral conjugacy class scheme of $G$.

## The integral conjugacy class scheme

Theorem 1 (Bridges \& Mena, 1981)
A normal Cayley graph of $G$ is integral if and only if it lies in the integral conjugacy class scheme of $G$.

## Integral normal Cayley graphs

## Theorem 2 (Árnadóttir \& Godsil, 2023++)

If $G$ is a group of odd order then any non-empty, integral, normal Cayley graph for $G$ has an odd eigenvalue.

## Proof

Idea of proof.

- Such a graph lies in the integral conjugacy class scheme, $\mathcal{B}$. Let $\mathcal{A}$ be the conjugacy class scheme.


## Proof

Idea of proof.

- Such a graph lies in the integral conjugacy class scheme, $\mathcal{B}$. Let $\mathcal{A}$ be the conjugacy class scheme.
- Let $P_{\mathcal{A}}$ and $P_{\mathcal{B}}$ be the matrices of eigenvalues.


## Proof

Idea of proof.

- Such a graph lies in the integral conjugacy class scheme, $\mathcal{B}$. Let $\mathcal{A}$ be the conjugacy class scheme.
- Let $P_{\mathcal{A}}$ and $P_{\mathcal{B}}$ be the matrices of eigenvalues.
- Recall that $\operatorname{det}\left(P_{\mathcal{B}}\right) \operatorname{divides} \operatorname{det}\left(P_{\mathcal{A}}\right)$.


## Proof

Idea of proof.

- Such a graph lies in the integral conjugacy class scheme, $\mathcal{B}$. Let $\mathcal{A}$ be the conjugacy class scheme.
- Let $P_{\mathcal{A}}$ and $P_{\mathcal{B}}$ be the matrices of eigenvalues.
- Recall that $\operatorname{det}\left(P_{\mathcal{B}}\right)$ divides $\operatorname{det}\left(P_{\mathcal{A}}\right)$.
- We show that $\operatorname{det}\left(P_{\mathcal{A}}^{*} P_{\mathcal{A}}\right)$ is an odd integer, using

$$
\operatorname{det}\left(P_{\mathcal{A}}^{*} P_{\mathcal{A}}\right)=n^{d+1} \prod \frac{v_{r}}{m_{r}},
$$

and therefore $\operatorname{det}\left(P_{\mathcal{B}}\right)$ is odd.

## Proof

Idea of proof.

- Such a graph lies in the integral conjugacy class scheme, $\mathcal{B}$. Let $\mathcal{A}$ be the conjugacy class scheme.
- Let $P_{\mathcal{A}}$ and $P_{\mathcal{B}}$ be the matrices of eigenvalues.
- Recall that $\operatorname{det}\left(P_{\mathcal{B}}\right) \operatorname{divides} \operatorname{det}\left(P_{\mathcal{A}}\right)$.
- We show that $\operatorname{det}\left(P_{\mathcal{A}}^{*} P_{\mathcal{A}}\right)$ is an odd integer, using

$$
\operatorname{det}\left(P_{\mathcal{A}}^{*} P_{\mathcal{A}}\right)=n^{d+1} \prod \frac{v_{r}}{m_{r}},
$$

and therefore $\operatorname{det}\left(P_{\mathcal{B}}\right)$ is odd.

- The entries of $P_{\mathcal{B}} x$ cannot all be even since $P_{\mathcal{B}}$ is invertible mod 2 .



## Thank you

