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Random Walks

Definition 1
Let X be a graph. Its adjacency matrix, A = A(X), is indexed by
V (X) and is defined by

Au,v =

{
1 if u ∼ v,
0 otherwise.

The degree matrix, ∆, of X is the diagonal matrix with
∆u,u = deg(u). The Laplacian of X is the matrix L = ∆−A.
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Random Walks

Definition 2
Let X be a graph with adjacency matrix A, degree matrix ∆
and Laplacian L = ∆−A. The continuous random walk on X is
given by

M(t) = e−tL =
∑
n≥0

(−t)n

n!
Ln, t ∈ [0,∞).
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Quantum Walks

Definition 3
Let H be a real symmetric matrix. The continuous quantum walk
on H is given by the matrix

U(t) := eitH =
∑
n≥0

(it)n

n!
Hn, t ∈ R.

The matrix U(t) is called the transition matrix of the walk.

U(t) is a unitary matrix for all t.
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Mixing matrix

Definition 4
Given a continuous quantum walk with transition matrix U(t),
we define the mixing matrix of the walk by

M(t) := U(t) ◦ U(−t).

Since U(t) is unitary the norm of each row is one, and so M(t)
is a stochastic matrix for all t.
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Example - K2

a b

K2

We have

A =

(
0 1
1 0

)
, so A2n = I, and A2n+1 = A,

for all n. Therefore

eitA = I + itA− t2

2
I − it3

6
A+

t4

24
I + · · ·

= cos(t)I + i sin(t)A.



Preliminaries
State transfer and mixing

Spectral decomposition
Quantum walks on Cayley graphs

Example - K2

a b

K2

We have

A =

(
0 1
1 0

)
, so A2n = I, and A2n+1 = A,

for all n. Therefore

eitA = I + itA− t2

2
I − it3

6
A+

t4

24
I + · · ·

= cos(t)I + i sin(t)A.



Preliminaries
State transfer and mixing

Spectral decomposition
Quantum walks on Cayley graphs

Example - K2

a b

K2

We have

A =

(
0 1
1 0

)
, so A2n = I, and A2n+1 = A,

for all n. Therefore

eitA = I + itA− t2

2
I − it3

6
A+

t4

24
I + · · ·

= cos(t)I + i sin(t)A.



Preliminaries
State transfer and mixing

Spectral decomposition
Quantum walks on Cayley graphs

Example - K2

So the transition matrix at time t is

U(t) =

(
cos(t) i sin(t)
i sin(t) cos(t)

)
,

and the mixing matrix

M(t) =

(
cos2(t) sin2(t)
sin2(t) cos2(t)

)
.
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Perfect State Transfer

Definition 5
For distinct vertices, u and v of X , we say that we have perfect
state transfer (pst) from u to v at time t if

U(t)eu = γev,

for some scalar γ with |γ| = 1 or, equivalently, if

M(t)u,v = 1.
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Periodicity

Definition 6
We say that a vertex u is periodic at time t if

U(t)eu = γeu,

for some scalar γ with |γ| = 1 or, equivalently, if

M(t)u,u = 1.

We say that a graph X is periodic at time t if U(t) is diagonal.
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Uniform mixing

Definition 7
We say that we have uniform mixing at time t if all entries of
U(t) have the same absolute value or, equivalently, if all entries
of M(t) are equal.
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Example - K2 (continued)

Recall that for K2,

U(t) =

(
cos(t) i sin(t)
i sin(t) cos(t)

)
.

We see that

U(π/4) =
1√
2

(
1 i
i 1

)
, U(π/2) =

(
0 i
i 0

)
and U(π) = −I.
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Theorem 8
If there is perfect state transfer from u to v at time t, then there is
perfect state transfer from v to u at time t. It follows that u and v are
periodic at time 2t.

Theorem 9 (Kay, 2011)

If there is perfect state transfer from u to v in X and from u to w, then
v = w.
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Spectral decomposition

Let A be a hermitian matrix with distinct eigenvalues,
θ0, θ1, . . . , θd. Then A can be written as

A =

d∑
r=0

θrEr

where the matrices Er satisfy
E2
r = Er

ErEs = 0, if r 6= s∑
r Er = I .

This is called the spectral decomposition of A.
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Spectral decomposition

Theorem 10
If A is a hermitian matrix with distinct eigenvalues θ0, . . . , θd, and f
is a univariate function whose Taylor series converges to f on the
spectrum of A, then

f(A) =
d∑
r=0

f(θr)Er.

It follows that if A is the adjacency matrix of a graph then

U(t) = eitA =
d∑
r=0

eitθrEr.
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Example - P3

a b c

P3

The adjacency matrix has eigenvalues
√

2, 0,−
√

2, and spectral
idempotents (respectively)

E0 =
1

4

 1
√

2 1√
2 2

√
2

1
√

2 1

, E1 =
1

2

 1 0 −1
0 0 0
−1 0 1

,

E2 =
1

4

 1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1

.
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Example - P3
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Example - P3

Therefore
U(t) = eit

√
2E0 + E1 + e−it

√
2E2

and so

U(π/
√

2) = −E0 + E1 − E2 = −

0 0 1
0 1 0
1 0 0

.
We see that we have pst between a and c at time π/

√
2 and b is

periodic at that time.
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Paths

Figure: P2 : M(t)0,1
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Paths

Figure: P3 : M(t)0,2
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Paths

Figure: P4 : M(t)0,3
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Complete graphs

The complete graph on n vertices has adjacency matrix J − I .
It has eigenvalues n− 1, and −1 and the corresponding spectral
idempotents are

E0 :=
1

n
J, E1 := I − 1

n
J.

Therefore

U(t) = eit(n−1)E0 + e−itE1 = e−it
(
I +

eitn − 1

n
J

)
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Complete graphs

For any vertex u and any time t we have

U(t)u,u = e−it
(

1 +
eitn − 1

n

)
and so

|U(t)u,u| ≥ 1− 2

n
.
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Cayley graphs

Definition 11

Let G be a group and C ⊆ G\e a subset with C−1 = C. The
Cayley graph, X := X(G, C), has vertex set V (X) := G and

g ∼ h if hg−1 ∈ C.
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Cayley graphs

A group acts transitively on itself by right/left multiplication.
It follows that

Cayley graphs are vertex transitive,
the adjacency matrix of a Cayley graph can be written as

A = P1 + · · ·+ Pk

where k = |C| and Pi are permutation matrices.
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Vertex transitive graphs

Theorem 12 (Godsil, 2010)

Let X be a vertex transitive graph, and suppose there is perfect state
transfer from u to v at time t. Then there is some scalar γ and some
permutation matrix P with order two such that

U(t) = γP.

Moreover, P is an automorphism of X that has no fixed points.
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Cubelike graphs

Definition 13
A cubelike graph is a Cayley graph of the elementary abelian
group Zn2 .

Theorem 14 (Bernasconi et al., 2008)

Let X = X(Zn2 , C) be a cubelike graph. Then X is periodic with
period dividing π. Its period is equal to π if and only if

c :=
∑
g∈C

g 6= 0

and in this case there is perfect state transfer from 0 to c at time π/2.
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Proof.
We can write A = A(X) as a sum of permutation matrices

A = P1 + · · ·+ Pk, P 2
r = I, PrPs = PsPr.

Then

eitA = eit(P1+···+Pk) =

k∏
r=1

eitPr .

Also, eitPr = cos(t)I + i sin(t)Pr, so

U(t) =

k∏
r=1

(cos(t)I + i sin(t)Pr) ,

thus U(π/2) = ik
∏
r Pr.
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Thank you



Cayley graphs of Sn

Theorem 15 (Gerhardt, Watrous; 2003)

Let X = X(Sn, C) where C is the set of transpositions of Sn and let
M(t) be the mixing matrix of a continuous quantum walk on X . If σ
is any n-cycle of Sn, then

M(t)e,σ ≤
22n−2

(n!)2
.



Paths

Figure: P11 : M(t)0,10
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