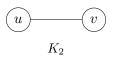
Soffía Árnadóttir University of Waterloo

NEWAC50AWM

November, 2021

Outline

Example - K_2



Example - K_2

 K_2

It has adjacency matrix

$$A(K_2) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}.$$

Quantum Walks

Definition

Let *A* be the adjacency matrix of a graph *X*. The *continuous-time quantum walk* on *X* is given by the matrix

$$U(t) := e^{itA} = \sum_{n \ge 0} \frac{(it)^n}{n!} A^n, \quad t \in \mathbb{R}.$$

The matrix U(t) is called the *transition matrix* of the walk.

Quantum Walks

Definition

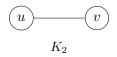
Let *A* be the adjacency matrix of a graph *X*. The *continuous-time quantum walk* on *X* is given by the matrix

$$U(t) := e^{itA} = \sum_{n \ge 0} \frac{(it)^n}{n!} A^n, \quad t \in \mathbb{R}.$$

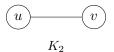
The matrix U(t) is called the *transition matrix* of the walk.

For more, see S. Bose [2] and M. Christandl et al, [3].

Example - K_2 again



Example - K₂ again

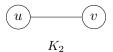


We have

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, so $A^{2n} = I$, and $A^{2n+1} = A$,

for all n.

Example - K₂ again



We have

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, so $A^{2n} = I$, and $A^{2n+1} = A$,

for all n. Therefore

$$e^{itA} = I + itA - \frac{t^2}{2}I - \frac{it^3}{6}A + \frac{t^4}{24}I + \cdots$$

= $\cos(t)I + i\sin(t)A$.

Perfect State Transfer

Definition

For distinct vertices, u and v of X, we say that we have *perfect state transfer* (*PST*) from u to v at time t if

$$U(t)\mathbf{e}_u = \gamma \mathbf{e}_v,$$

for some scalar γ with $|\gamma| = 1$.

Periodicity

Definition

We say that a vertex u is *periodic* at time t if

$$U(t)\mathbf{e}_u = \gamma \mathbf{e}_u,$$

for some scalar γ with $|\gamma| = 1$. We say that a graph *X* is periodic at time *t* if U(t) is diagonal.

Example - K_2 **yet again**

Recall that for K_2 ,

$$U(t) = \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}.$$

Example - K_2 **yet again**

Recall that for K_2 ,

$$U(t) = \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}.$$

We see that

$$U(\pi/2) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
 and $U(\pi) = -I$.

Example - K_2 **yet again**

Recall that for K_2 ,

$$U(t) = \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}.$$

We see that

$$U(\pi/2) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
 and $U(\pi) = -I$.

So K_2 has PST at time $\pi/2$ and is periodic at time π .

Theorem (C. Godsil, [4])

If there is PST from u to v at time t, then there is PST from v to u at time t. In this case, u and v are periodic at time 2t.

Theorem (C. Godsil, [4])

If there is PST from u to v at time t, then there is PST from v to u at time t. In this case, u and v are periodic at time 2t.

Theorem (A. Kay, [5])

If there is perfect state transfer from u to v in X and from u to w, then v = w.

Outline

Cayley graphs

Definition

Let *G* be a group and $C \subseteq G \setminus e$ a subset with $C^{-1} = C$. The *Cayley graph*, X := X(G, C), has vertex set V(X) := G and

$$g \sim h$$
 if $hg^{-1} \in \mathcal{C}$.

We call C the *connection set* of the Cayley graph.

The adjacency matrix

Let $X = X(G, \mathcal{C})$ be a Cayley graph.

The adjacency matrix

Let $X = X(G, \mathcal{C})$ be a Cayley graph.

• The group *G* acts regularly on itself by left multiplication.

The adjacency matrix

Let $X = X(G, \mathcal{C})$ be a Cayley graph.

- The group *G* acts regularly on itself by left multiplication.
- Each element, g of G is therefore a permutation on the vertices of X, so we can think of it as a permutation matrix P_g. In fact, since this action is regular, the map g → P_g is an isomorphism from G to a group of permutation matrices.

The adjacency matrix

Let $X = X(G, \mathcal{C})$ be a Cayley graph.

- The group *G* acts regularly on itself by left multiplication.
- Each element, g of G is therefore a permutation on the vertices of X, so we can think of it as a permutation matrix P_g. In fact, since this action is regular, the map g → P_g is an isomorphism from G to a group of permutation matrices.
- It can be shown that if $C = \{g_1, \ldots, g_k\}$, then

$$A(X) = P_{g_1} + \dots + P_{g_k}.$$

Cubelike graphs

Definition

A *cubelike graph* is a Cayley graph of the elementary abelian group \mathbb{Z}_2^n .

Cubelike graphs

Definition

A *cubelike graph* is a Cayley graph of the elementary abelian group \mathbb{Z}_2^n .

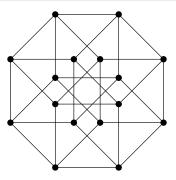


Figure: The hypercubes are cubelike

Cubelike graphs

Theorem (A. Bernasconi et al, [1]) Let $X = X(\mathbb{Z}_2^n, C)$ be a cubelike graph, and define

$$c := \sum_{x \in \mathcal{C}} x.$$

If $c \neq 0$, then X has PST at time $\pi/2$.

We can write A = A(X) as a sum of permutation matrices

$$A = P_1 + \dots + P_k, \qquad P_r^2 = I, \quad P_r P_s = P_s P_r.$$

We can write A = A(X) as a sum of permutation matrices

$$A = P_1 + \dots + P_k, \qquad P_r^2 = I, \quad P_r P_s = P_s P_r.$$

Then

$$e^{itA} = e^{it(P_1 + \dots + P_k)} = \prod_{r=1}^k e^{itP_r}.$$

We can write A = A(X) as a sum of permutation matrices

$$A = P_1 + \dots + P_k, \qquad P_r^2 = I, \quad P_r P_s = P_s P_r.$$

Then

$$e^{itA} = e^{it(P_1 + \dots + P_k)} = \prod_{r=1}^k e^{itP_r}.$$

Also, $e^{itP_r} = \cos(t)I + i\sin(t)P_r$.

We can write A = A(X) as a sum of permutation matrices

$$A = P_1 + \dots + P_k, \qquad P_r^2 = I, \quad P_r P_s = P_s P_r.$$

Then

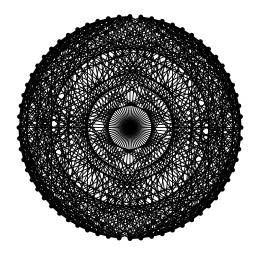
$$e^{itA} = e^{it(P_1 + \dots + P_k)} = \prod_{r=1}^k e^{itP_r}.$$

Also, $e^{itP_r} = \cos(t)I + i\sin(t)P_r$. Therefore

$$U(t) = \prod_{r=1}^{k} \left(\cos(t)I + i\sin(t)P_r \right),$$

thus $U(\pi/2) = i^k \prod_r P_r$.

Thank you for listening



References

References

- Anna Bernasconi, Chris Godsil, and Simone Severini. Quantum networks on cubelike graphs. *Phys. Rev. A* (3), 78(5):052320, 5, 2008.
- [2] Sougato Bose. Quantum communication through an unmodulated spin chain. *Physical Review Letters*, 91(20), Nov 2003.
- [3] Matthias Christandl, Nilanjana Datta, Tony C. Dorlas, Artur Ekert, Alastair Kay, and Andrew J. Landahl. Perfect transfer of arbitrary states in quantum spin networks. *Physical Review A*, 71(3), Mar 2005.
- [4] Chris Godsil. State transfer on graphs. *Discrete Math.*, 312(1):129–147, 2012.
- [5] Alastair Kay. Basics of perfect communication through quantum networks. *Physical Review A*, 84(2), Aug 2011.