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It has adjacency matrix
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Quantum Walks

Definition
Let A be the adjacency matrix of a graph X. The continuous-time
quantum walk on X is given by the matrix

Ut) =€ =" (it) A", teR.

n!
n>0

The matrix U (t) is called the transition matrix of the walk.
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Quantum Walks

Definition
Let A be the adjacency matrix of a graph X. The continuous-time
quantum walk on X is given by the matrix

U(t) := 4 = Z (Z:L)' A" teR.
n>0

The matrix U (t) is called the transition matrix of the walk.

For more, see S. Bose [2] and M. Christandl et al, [3].

4/16



UNIVERSITY OF

WATERLOO

5/16



O—O

K,

We have

A:((l) (1)), so A =17 and A" = A,

for all n.
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Example - K5 again

(W—®

Ky
We have

A—<(1) é), so A =1, and A"l = A,

for all n. Therefore

, t2 it3 t
itA . o _ .
et =T+ itA —21 6A—|—24I+
= cos(t)I + isin(t)A.
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Perfect State Transfer

Definition
For distinct vertices, v and v of X, we say that we have perfect
state transfer (PST) from u to v at time ¢ if

U(t)e, = vey,

for some scalar v with || = 1.
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Periodicity

Definition
We say that a vertex w is periodic at time ¢ if

U(t)e, = vey,

for some scalar v with |y| = 1. We say that a graph X is
periodic at time ¢ if U(t) is diagonal.
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Recall that for K,

Ut = <cos(t) isin(t)).

isin(t) cos(t)
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Example - K yet again

Recall that for K>,

Ut) = (cos(t) z’sin(t)> '

isin(t) cos(t)
We see that

7

U(w/2)—<? 0) and U(r) = —1.
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Example - K yet again

Recall that for K>,

cos(t) isin(t)

U(t) = (Z sin(t)  cos(t) > '

We see that
0 1
U(r/2) = (z 0) and U(m)=—1.
So K3 has PST at time 7/2 and is periodic at time 7.
%Y WATERLGO
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Theorem (C. Godsil, [4])

If there is PST from w to v at time t, then there is PST from v to u at
time t. In this case, u and v are periodic at time 2t.
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Theorem (C. Godsil, [4])

If there is PST from w to v at time t, then there is PST from v to u at
time t. In this case, u and v are periodic at time 2t.

Theorem (A. Kay, [5])

If there is perfect state transfer from w to v in X and from u to w, then
v =w.

v
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Cayley graphs

Definition
Let G be a group and C C G\e a subset with C™! = C. The
Cayley graph, X := X (G,C), has vertex set V(X) := G and

g~h if hg lec.

We call C the connection set of the Cayley graph.
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Let X = X (G, C) be a Cayley graph.
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The adjacency matrix

Let X = X(G,C) be a Cayley graph.
@ The group G acts regularly on itself by left multiplication.
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The adjacency matrix

Let X = X(G,C) be a Cayley graph.
@ The group G acts regularly on itself by left multiplication.

@ Each element, g of G is therefore a permutation on the
vertices of X, so we can think of it as a permutation matrix
P,. In fact, since this action is regular, the map g — P, is an
isomorphism from G to a group of permutation matrices.
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The adjacency matrix

Let X = X(G,C) be a Cayley graph.
@ The group G acts regularly on itself by left multiplication.

@ Each element, g of G is therefore a permutation on the
vertices of X, so we can think of it as a permutation matrix
P,. In fact, since this action is regular, the map g — P, is an
isomorphism from G to a group of permutation matrices.

@ It can be shown thatif C = {g¢1,...,gx}, then

AX) =Py 4+ P,
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A cubelike graph is a Cayley graph of the elementary abelian
group Zy.
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Cubelike graphs

Definition
A cubelike graph is a Cayley graph of the elementary abelian
group Zy.

Figure: The hypercubes are cubelike
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Cubelike graphs

Theorem (A. Bernasconi et al, [1])
Let X = X (Z4,C) be a cubelike graph, and define

C = Z(L‘

If ¢ # 0, then X has PST at time /2.
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Proof.
We can write A = A(X) as a sum of permutation matrices

A=P +---+ P, P:=], P.P,=PP,.
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Proof.
We can write A = A(X) as a sum of permutation matrices

A=P +- -+ P, P?=1], P.P,=P,P,.

T

Then

oA _ Lit(Pit+Py) _ H oitPr
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Proof.
We can write A = A(X) as a sum of permutation matrices

A=P +---+ P, P?=1], P.P,=P,P,.

T

Then
k

eitA _ eit(P1+"-+Pk) _ H eitPr

r=1

Also, efr = cos(t)I + isin(t)P,.
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Proof.
We can write A = A(X) as a sum of permutation matrices

A=P +---+ P, P?=1], P.P,=P,P,.

r

Then
k
eitA _ eit(P1+---+Pk) _ H eitPr

r=1

Also, e = cos(t)I + isin(t)P,. Therefore

k
U(t) = [ (cos(t) + isin(t)P,),

r=1

thus U(7/2) = i* ], P>
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Thank you for listening
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