Spectra of normal Cayley graphs

Arnbjörg Soffía Árnadóttir

Technical University of Denmark

10th Slovenian Conference on Graph Theory

June, 2023

Abstract

Theorem (Árnadóttir & Godsil, 2023++)

If G is a group of odd order, then any non-empty, normal Cayley graph for G with integer eigenvalues has an odd eigenvalue.

Proof by example

Spectrum: $\{16^{(1)}, 13^{(2)}, 2^{(18)}, -1^{(36)}, -5^{(2)}, -8^{(4)}\}.$

Outline

2 Association schemes

Preliminaries

Matrix of eigenvalues

Group schemes

The conjugacy class scheme

The integral conjugacy class scheme

A picture of my cat

4 Theorem

Proof

Cayley graphs

Definition

Let *G* be a group and $C \subseteq G \setminus \{e\}$ a subset with $C^{-1} = C$. The *Cayley* graph, $X := \operatorname{Cay}(G, C)$, has vertex set V(X) := G, and

$$g \sim h$$
 if $hg^{-1} \in \mathcal{C}$.

The set C is called the *connection set* of the graph.

Cayley graphs

Definition

Let *G* be a group and $C \subseteq G \setminus \{e\}$ a subset with $C^{-1} = C$. The *Cayley* graph, $X := \operatorname{Cay}(G, C)$, has vertex set V(X) := G, and

$$g \sim h$$
 if $hg^{-1} \in \mathcal{C}$.

The set C is called the *connection set* of the graph.

Definition

We say that Cay(G, C) is *normal* if $g^{-1}Cg = C$ for all $g \in G$.

Examples

• Cycles $\bigcap_{G = \mathbb{Z}_n, C = \{\pm 1\}}$

Examples

Examples

Preliminaries Matrix of eigenvalues

Outline

Preliminaries

Matrix of eigenvalues

Group schemes

The conjugacy class scheme The integral conjugacy class scheme A picture of my cat

4 Theorem

Proof

Preliminaries Matrix of eigenvalues

Association schemes

Preliminaries Matrix of eigenvalues

Association schemes

Let's pretend I just defined an association scheme on n vertices, $\mathcal{A} = \{A_0, \dots, A_d\}.$

• The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the *Bose-Mesner algebra* of the scheme.

Association schemes

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.

Association schemes

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.

Association schemes

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the *minimal Schur idempotents* of $\mathbb{C}[\mathcal{A}]$.
- Each minimal Schur idempotent, A_r , has constant row-sum, v_r . We call v_0, \ldots, v_d the *valencies* of the scheme.

Association schemes

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.
- Each minimal Schur idempotent, A_r , has constant row-sum, v_r . We call v_0, \ldots, v_d the *valencies* of the scheme.
- An association scheme $\mathcal{B} = \{B_0, \dots, B_k\}$ where each B_r is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$ is a *subscheme* of \mathcal{A} .

Association schemes

- The span of A is an algebra, $\mathbb{C}[A]$, called the *Bose-Mesner algebra* of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a *Schur idempotent* of $\mathbb{C}[\mathcal{A}]$.
- The A_r are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.
- Each minimal Schur idempotent, A_r , has constant row-sum, v_r . We call v_0, \ldots, v_d the *valencies* of the scheme.
- An association scheme $\mathcal{B} = \{B_0, \dots, B_k\}$ where each B_r is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$ is a *subscheme* of \mathcal{A} .
- Any Schur idempotent can be viewed as the adjacency matrix of a (possibly directed) graph. These are the *graphs in the scheme*.

Association schemes

Outline

- 2 Association schemes

Matrix of eigenvalues

- Group schemes

 - A picture of my cat

Preliminaries Matrix of eigenvalues

Matrix of eigenvalues

The set $\mathcal{A} = \{A_0, \dots, A_d\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. We also have a basis of matrix idempotents, $\{E_0, \dots, E_d\}$.

Preliminaries Matrix of eigenvalues

Matrix of eigenvalues

The set $\mathcal{A} = \{A_0, \dots, A_d\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. We also have a basis of matrix idempotents, $\{E_0, \dots, E_d\}$. There are scalars $p_r(s)$ such that

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

Preliminaries Matrix of eigenvalues

Matrix of eigenvalues

The set $\mathcal{A} = \{A_0, \ldots, A_d\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. We also have a basis of matrix idempotents, $\{E_0, \ldots, E_d\}$. There are scalars $p_r(s)$ such that

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

The E_r are pairwise orthogonal idempotents, so this implies that

$$A_r E_s = p_r(s) E_s$$

for all r, s = 0, 1, ..., d.

Preliminaries Matrix of eigenvalues

Matrix of eigenvalues

The set $\mathcal{A} = \{A_0, \ldots, A_d\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. We also have a basis of matrix idempotents, $\{E_0, \ldots, E_d\}$. There are scalars $p_r(s)$ such that

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

The E_r are pairwise orthogonal idempotents, so this implies that

$$A_r E_s = p_r(s) E_s$$

for all r, s = 0, 1, ..., d. Therefore, the scalars $p_r(0), ..., p_r(d)$ are eigenvalues of A_r , and the columns of E_s are eigenvectors of A_r .

Preliminaries Matrix of eigenvalues

Matrix of eigenvalues

The set $\mathcal{A} = \{A_0, \ldots, A_d\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. We also have a basis of matrix idempotents, $\{E_0, \ldots, E_d\}$. There are scalars $p_r(s)$ such that

$$A_r = \sum_{s=0}^d p_r(s) E_s.$$

The E_r are pairwise orthogonal idempotents, so this implies that

$$A_r E_s = p_r(s) E_s$$

for all r, s = 0, 1, ..., d. Therefore, the scalars $p_r(0), ..., p_r(d)$ are eigenvalues of A_r , and the columns of E_s are eigenvectors of A_r .

We call the $p_r(s)$ the *eigenvalues of the scheme*, A and define the *matrix of eigenvalues* by $P = (p_r(s))_{s,r}$.

Preliminaries Matrix of eigenvalue

Some basic properties of *P*

Recall that v_r is the row sum of A_r . We also define the *multiplicities*, m_0, \ldots, m_d of the scheme by letting m_r be the rank of E_r .

Preliminaries Matrix of eigenvalues

Some basic properties of *P*

Recall that v_r is the row sum of A_r . We also define the *multiplicities*, m_0, \ldots, m_d of the scheme by letting m_r be the rank of E_r .

Fact 1

$$\det(P^*P) = n^{d+1} \prod_{r=0}^d \frac{v_r}{m_r}.$$

Preliminaries Matrix of eigenvalues

Some basic properties of *P*

Recall that v_r is the row sum of A_r . We also define the *multiplicities*, m_0, \ldots, m_d of the scheme by letting m_r be the rank of E_r .

Fact 1

$$\det(P^*P) = n^{d+1} \prod_{r=0}^d \frac{v_r}{m_r}.$$

Fact 2

If \mathcal{A} is an association scheme with matrix of eigenvalues $P_{\mathcal{A}}$ and \mathcal{B} is a subscheme with matrix of eigenvalues $P_{\mathcal{B}}$, then $\det(P_{\mathcal{B}}) \mid \det(P_{\mathcal{A}})$.

Preliminaries Matrix of eigenvalues

Some basic properties of *P*

Recall that v_r is the row sum of A_r . We also define the *multiplicities*, m_0, \ldots, m_d of the scheme by letting m_r be the rank of E_r .

Fact 1

$$\det(P^*P) = n^{d+1} \prod_{r=0}^d \frac{v_r}{m_r}.$$

Fact 2

If \mathcal{A} is an association scheme with matrix of eigenvalues $P_{\mathcal{A}}$ and \mathcal{B} is a subscheme with matrix of eigenvalues $P_{\mathcal{B}}$, then $\det(P_{\mathcal{B}}) \mid \det(P_{\mathcal{A}})$.

Fact 3

If X is a graph in a scheme with matrix of eigenvalues P, then there is a 01-vector x such that the eigenvalues of X are the entries of Px.

he conjugacy class scheme he integral conjugacy class scheme a picture of my cat

Outline

Preliminaries

Matrix of eigenvalues

Group schemes

The conjugacy class scheme

The integral conjugacy class scheme

A picture of my cat

Proof

The conjugacy class scheme The integral conjugacy class scheme A picture of my cat

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

The conjugacy class scheme The integral conjugacy class scheme A picture of my cat

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

The conjugacy class scheme The integral conjugacy class scheme A picture of my cat

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathcal{A} := \{A_0, \ldots, A_d\}$ is an association scheme.

Definition

This is the *conjugacy class scheme* of *G*.

The conjugacy class scheme The integral conjugacy class scheme A picture of my cat

The conjugacy class scheme

Let *G* be a group of order *n* with conjugacy classes C_0, \ldots, C_d (where $C_0 = \{e\}$).

Define the $n \times n$ matrices, A_0, \ldots, A_d by letting

$$(A_r)_{gh} = \begin{cases} 1 & \text{if } hg^{-1} \in C_r, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathcal{A} := \{A_0, \dots, A_d\}$ is an association scheme.

Definition

This is the *conjugacy class scheme* of *G*.

Definition

A *normal Cayley graph* of G is a graph in its conjugacy class scheme.

Group schemes

The integral conjugacy class scheme

Outline

Group schemes

The integral conjugacy class scheme

A picture of my cat

Theorem

The conjugacy class scheme **The integral conjugacy class scheme** A picture of my cat

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.

he conjugacy class scheme **he integral conjugacy class scheme** A picture of my cat

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group *G* as follows. We say that conjugacy classes C_1, C_2 of *G* are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate.

The conjugacy class scheme The integral conjugacy class scheme A picture of my cat

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group *G* as follows. We say that conjugacy classes C_1, C_2 of *G* are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate. This relation defines a subscheme of the conjugacy class scheme.

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C_1, C_2 of G are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.

It turns out that the graphs of this subscheme have only integer eigenvalues, i.e. they are *integral*.

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C_1, C_2 of G are *power-equivalent* if for all $g_1 \in C_1$ and $g_2 \in C_2$, the subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.

It turns out that the graphs of this subscheme have only integer eigenvalues, i.e. they are *integral*.

Definition

This is the *integral conjugacy class scheme* of *G*.

The conjugacy class scheme The integral conjugacy class scheme A picture of my cat

The integral conjugacy class scheme

Theorem 1 (Bridges & Mena, 1981)

A normal Cayley graph of G is integral if and only if it lies in the integral conjugacy class scheme of G.

Group schemes

Outline

Group schemes

A picture of my cat

Outline

- 2 Association schemes
 - Preliminaries
 - Matrix of eigenvalues

Group schemes

The conjugacy class scheme The integral conjugacy class scheme

A picture of my cat

Proof

Proof

Integral normal Cayley graphs

Theorem 2 (Árnadóttir & Godsil, 2023++)

If G is a group of odd order then any non-empty, integral, normal Cayley graph for G has an odd eigenvalue.

• Let *A* be the conjugacy class scheme of *G* and *B* the integral conjugacy class scheme.

Proof

- Let *A* be the conjugacy class scheme of *G* and *B* the integral conjugacy class scheme.
- Let *P*₁ and *P*₂ be the matrices of eigenvalues of *A* and *B* respectively.

Proof

- Let A be the conjugacy class scheme of G and B the integral conjugacy class scheme.
- Let P_1 and P_2 be the matrices of eigenvalues of A and B respectively.
- Let X be an integral normal Cayley graph of G. Then it lies in \mathcal{B} .

Proof

Proof

Observation

It suffices to show that $det(P_2)$ is odd.

Observation

It suffices to show that $det(P_2)$ is odd.

Proof.

• Let *x* be a 01-vector such that the eigenvalues of *X* are the entries of *Px*.

Observation

It suffices to show that $det(P_2)$ is odd.

Proof.

- Let *x* be a 01-vector such that the eigenvalues of *X* are the entries of *Px*.
- Assuming det(P) is odd, P is invertible modulo two.

Observation

It suffices to show that $det(P_2)$ is odd.

Proof.

- Let *x* be a 01-vector such that the eigenvalues of *X* are the entries of *Px*.
- Assuming det(P) is odd, P is invertible modulo two.
- If the eigenvalues of X are all even, $Px \equiv 0 \pmod{2}$.

Observation

It suffices to show that $det(P_2)$ is odd.

Proof.

- Let *x* be a 01-vector such that the eigenvalues of *X* are the entries of *Px*.
- Assuming det(P) is odd, P is invertible modulo two.
- If the eigenvalues of X are all even, $Px \equiv 0 \pmod{2}$.

Proof

Lemma 3

 $\det(P_1^*P_1)$ is an odd integer.

Proof

Lemma 3

 $\det(P_1^*P_1)$ is an odd integer.

Proof.

• The entries of *P*₁ are algebraic integers, therefore, so are det(*P*₁^{*}), det(*P*₁) and det(*P*₁^{*}*P*₁).

Proof

Lemma 3

 $\det(P_1^*P_1)$ is an odd integer.

Proof.

- The entries of P_1 are algebraic integers, therefore, so are $\det(P_1^*), \det(P_1)$ and $\det(P_1^*P_1)$.
- Recall that

$$\det(P_1^*P_1) = n^{d+1} \prod_{r=0}^d \frac{v_r}{m_r},$$

in particular, it is a rational number.

Proof

Lemma 3

 $\det(P_1^*P_1)$ is an odd integer.

Proof.

- The entries of P_1 are algebraic integers, therefore, so are $\det(P_1^*), \det(P_1)$ and $\det(P_1^*P_1)$.
- Recall that

$$\det(P_1^*P_1) = n^{d+1} \prod_{r=0}^d \frac{v_r}{m_r},$$

in particular, it is a rational number.

• Since *G* has odd order, its conjugacy classes have odd size, so v_r is odd for all r = 0, ..., d.

Proof

Lemma 3

 $\det(P_1^*P_1)$ is an odd integer.

Proof.

- The entries of P_1 are algebraic integers, therefore, so are $\det(P_1^*), \det(P_1)$ and $\det(P_1^*P_1)$.
- Recall that

$$\det(P_1^*P_1) = n^{d+1} \prod_{r=0}^d \frac{v_r}{m_r},$$

in particular, it is a rational number.

Since G has odd order, its conjugacy classes have odd size, so v_r is odd for all r = 0,..., d.

• Recall that $det(P_2)$ divides $det(P_1)$, since \mathcal{B} is a subscheme of \mathcal{A} .

- Recall that $det(P_2)$ divides $det(P_1)$, since \mathcal{B} is a subscheme of \mathcal{A} .
- Then also $\det(P_2^*) \mid \det(P_1^*)$ and $\det(P_2^*P_2) \mid \det(P_1^*P_1)$.

- Recall that $det(P_2)$ divides $det(P_1)$, since \mathcal{B} is a subscheme of \mathcal{A} .
- Then also $\det(P_2^*) \mid \det(P_1^*)$ and $\det(P_2^*P_2) \mid \det(P_1^*P_1)$.
- Clearly, $det(P_2)$ is an integer, so

 $\det(P_2)^2 = \det(P_2^* P_2) \mid \det(P_1^* P_1).$

- Recall that $det(P_2)$ divides $det(P_1)$, since \mathcal{B} is a subscheme of \mathcal{A} .
- Then also $\det(P_2^*) \mid \det(P_1^*)$ and $\det(P_2^*P_2) \mid \det(P_1^*P_1)$.
- Clearly, $det(P_2)$ is an integer, so

$$\det(P_2)^2 = \det(P_2^* P_2) \mid \det(P_1^* P_1).$$

• Therefore $\det(P_2)^2$ is an odd integer and then so is $\det(P_2)$.

- Recall that $det(P_2)$ divides $det(P_1)$, since \mathcal{B} is a subscheme of \mathcal{A} .
- Then also $\det(P_2^*) \mid \det(P_1^*)$ and $\det(P_2^*P_2) \mid \det(P_1^*P_1)$.
- Clearly, $det(P_2)$ is an integer, so

$$\det(P_2)^2 = \det(P_2^* P_2) \mid \det(P_1^* P_1).$$

• Therefore $det(P_2)^2$ is an odd integer and then so is $det(P_2)$. This completes the proof.

Thank you