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Abstract

Theorem (Árnadóttir & Godsil, 2023++)

If G is a group of odd order, then any non-empty, normal Cayley graph for G
with integer eigenvalues has an odd eigenvalue.
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Proof by example

Spectrum: {16(1), 13(2), 2(18), −1(36), −5(2), −8(4)}.
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Cayley graphs

Definition

Let G be a group and C ⊆ G\{e} a subset with C−1 = C. The Cayley
graph, X := Cay(G, C), has vertex set V (X) := G, and

g ∼ h if hg−1 ∈ C.

The set C is called the connection set of the graph.

Definition

We say that Cay(G, C) is normal if g−1Cg = C for all g ∈ G.
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Examples

Cycles

G = Zn, C = {±1}

Hypercubes

G = Zd
2, C the standard basis

Kn

G any group, C = G\e
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Association schemes

Let’s pretend I just defined an association scheme on n vertices,
A = {A0, . . . , Ad}.

The span of A is an algebra, C[A], called the Bose-Mesner algebra
of the scheme.

Any 01-matrix in C[A] is a Schur idempotent of C[A].

The Ar are the minimal Schur idempotents of C[A].

Each minimal Schur idempotent, Ar, has constant row-sum, vr.
We call v0, . . . , vd the valencies of the scheme.

An association scheme B = {B0, . . . , Bk} where each Br is a
Schur idempotent of C[A] is a subscheme of A.

Any Schur idempotent can be viewed as the adjacency matrix of
a (possibly directed) graph. These are the graphs in the scheme.
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Matrix of eigenvalues

The set A = {A0, . . . , Ad} is a basis for C[A]. We also have a basis of
matrix idempotents, {E0, . . . , Ed}.

There are scalars pr(s) such that

Ar =
d∑

s=0

pr(s)Es.

The Er are pairwise orthogonal idempotents, so this implies that

ArEs = pr(s)Es

for all r, s = 0, 1, . . . , d. Therefore, the scalars pr(0), . . . , pr(d) are
eigenvalues of Ar, and the columns of Es are eigenvectors of Ar.

We call the pr(s) the eigenvalues of the scheme, A and define the matrix
of eigenvalues by P = (pr(s))s,r.
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Some basic properties of P

Recall that vr is the row sum of Ar. We also define the multiplicities,
m0, . . . ,md of the scheme by letting mr be the rank of Er.

Fact 1

det(P ∗P ) = nd+1
d∏

r=0

vr
mr

.

Fact 2

If A is an association scheme with matrix of eigenvalues PA and B is a
subscheme with matrix of eigenvalues PB, then det(PB) | det(PA).

Fact 3

If X is a graph in a scheme with matrix of eigenvalues P , then there is a
01-vector x such that the eigenvalues of X are the entries of Px.
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The conjugacy class scheme

Let G be a group of order n with conjugacy classes C0, . . . , Cd (where
C0 = {e}).

Define the n× n matrices, A0, . . . , Ad by letting

(Ar)gh =

{
1 if hg−1 ∈ Cr,

0 otherwise.

Then A := {A0, . . . , Ad} is an association scheme.

Definition

This is the conjugacy class scheme of G.

Definition

A normal Cayley graph of G is a graph in its conjugacy class scheme.
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The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.

We say that conjugacy classes C1, C2 of G are power-equivalent if for all
g1 ∈ C1 and g2 ∈ C2, the subgroups ⟨g1⟩ and ⟨g2⟩ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.

It turns out that the graphs of this subscheme have only integer
eigenvalues, i.e. they are integral.

Definition

This is the integral conjugacy class scheme of G.
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The integral conjugacy class scheme

Theorem 1 (Bridges & Mena, 1981)

A normal Cayley graph of G is integral if and only if it lies in the integral
conjugacy class scheme of G.
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Integral normal Cayley graphs

Theorem 2 (Árnadóttir & Godsil, 2023++)

If G is a group of odd order then any non-empty, integral, normal Cayley
graph for G has an odd eigenvalue.
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Proof

Let A be the conjugacy class scheme of G and B the integral
conjugacy class scheme.

Let P1 and P2 be the matrices of eigenvalues of A and B
respectively.

Let X be an integral normal Cayley graph of G. Then it lies in B.
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Proof

Observation

It suffices to show that det(P2) is odd.

Proof.

Let x be a 01-vector such that the eigenvalues of X are the entries
of Px.

Assuming det(P ) is odd, P is invertible modulo two.

If the eigenvalues of X are all even, Px ≡ 0 (mod 2).
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Lemma 3

det(P ∗
1 P1) is an odd integer.

Proof.

The entries of P1 are algebraic integers, therefore, so are
det(P ∗

1 ),det(P1) and det(P ∗
1 P1).

Recall that

det(P ∗
1 P1) = nd+1

d∏
r=0

vr
mr

,

in particular, it is a rational number.

Since G has odd order, its conjugacy classes have odd size, so vr
is odd for all r = 0, . . . , d.
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is odd for all r = 0, . . . , d.
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Finally

Recall that det(P2) divides det(P1), since B is a subscheme of A.

Then also det(P ∗
2 ) | det(P ∗

1 ) and det(P ∗
2 P2) | det(P ∗

1 P1).

Clearly, det(P2) is an integer, so

det(P2)
2 = det(P ∗

2 P2) | det(P ∗
1 P1).

Therefore det(P2)
2 is an odd integer and then so is det(P2).

This completes the proof.
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