Spectra of normal Cayley graphs

Arnbjörg Soffía Árnadóttir

Technical University of Denmark

10th Slovenian Conference on Graph Theory
June, 2023

Abstract

Theorem (Árnadóttir \& Godsil, 2023++)

If G is a group of odd order, then any non-empty, normal Cayley graph for G with integer eigenvalues has an odd eigenvalue.

Proof by example

Spectrum: $\left\{16^{(1)}, 13^{(2)}, 2^{(18)},-1^{(36)},-5^{(2)},-8^{(4)}\right\}$.

Outline

(1) Cayley graphs
(2) Association schemes

Preliminaries
Matrix of eigenvalues
(3) Group schemes

The conjugacy class scheme
The integral conjugacy class scheme
A picture of my cat
(4) Theorem

Proof

Cayley graphs

Definition

Let G be a group and $\mathcal{C} \subseteq G \backslash\{e\}$ a subset with $\mathcal{C}^{-1}=\mathcal{C}$. The Cayley graph, $X:=\operatorname{Cay}(G, \mathcal{C})$, has vertex set $V(X):=G$, and

$$
g \sim h \quad \text { if } \quad h g^{-1} \in \mathcal{C}
$$

The set \mathcal{C} is called the connection set of the graph.

Cayley graphs

Definition

Let G be a group and $\mathcal{C} \subseteq G \backslash\{e\}$ a subset with $\mathcal{C}^{-1}=\mathcal{C}$. The Cayley graph, $X:=\operatorname{Cay}(G, \mathcal{C})$, has vertex set $V(X):=G$, and

$$
g \sim h \quad \text { if } \quad h g^{-1} \in \mathcal{C} .
$$

The set \mathcal{C} is called the connection set of the graph.

Definition

We say that $\operatorname{Cay}(G, \mathcal{C})$ is normal if $g^{-1} \mathcal{C} g=\mathcal{C}$ for all $g \in G$.

Examples

- Cycles

Examples

- Cycles

- Hypercubes

$G=\mathbb{Z}_{2}^{d}, \mathcal{C}$ the standard basis

Examples

- Cycles

- Hypercubes

$G=\mathbb{Z}_{2}^{d}, \mathcal{C}$ the standard basis
- K_{n}

G any group, $\mathcal{C}=G \backslash e$

Outline

(1) Cayley graphs
(2) Association schemes

Preliminaries
Matrix of eigenvalues
(3) Group schemes

The conjugacy class scheme
The integral conjugacy class scheme
A picture of my cat
(4) Theorem

Proof

Association schemes

Let's pretend I just defined an association scheme on n vertices, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$.

Association schemes

Let's pretend I just defined an association scheme on n vertices, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$.

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.

Association schemes

Let's pretend I just defined an association scheme on n vertices, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$.

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$.

Association schemes

Let's pretend I just defined an association scheme on n vertices, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$.

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$.
- The A_{r} are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.

Association schemes

Let's pretend I just defined an association scheme on n vertices, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$.

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$.
- The A_{r} are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.
- Each minimal Schur idempotent, A_{r}, has constant row-sum, v_{r}. We call v_{0}, \ldots, v_{d} the valencies of the scheme.

Association schemes

Let's pretend I just defined an association scheme on n vertices, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$.

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$.
- The A_{r} are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.
- Each minimal Schur idempotent, A_{r}, has constant row-sum, v_{r}. We call v_{0}, \ldots, v_{d} the valencies of the scheme.
- An association scheme $\mathcal{B}=\left\{B_{0}, \ldots, B_{k}\right\}$ where each B_{r} is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$ is a subscheme of \mathcal{A}.

Association schemes

Let's pretend I just defined an association scheme on n vertices, $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$.

- The span of \mathcal{A} is an algebra, $\mathbb{C}[\mathcal{A}]$, called the Bose-Mesner algebra of the scheme.
- Any 01-matrix in $\mathbb{C}[\mathcal{A}]$ is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$.
- The A_{r} are the minimal Schur idempotents of $\mathbb{C}[\mathcal{A}]$.
- Each minimal Schur idempotent, A_{r}, has constant row-sum, v_{r}. We call v_{0}, \ldots, v_{d} the valencies of the scheme.
- An association scheme $\mathcal{B}=\left\{B_{0}, \ldots, B_{k}\right\}$ where each B_{r} is a Schur idempotent of $\mathbb{C}[\mathcal{A}]$ is a subscheme of \mathcal{A}.
- Any Schur idempotent can be viewed as the adjacency matrix of a (possibly directed) graph. These are the graphs in the scheme.

Outline

(1) Cayley graphs
(2) Association schemes

Preliminaries

Matrix of eigenvalues
(3) Group schemes

The conjugacy class scheme
The integral conjugacy class scheme
A picture of my cat
(4) Theorem

Proof

Matrix of eigenvalues

The set $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. We also have a basis of matrix idempotents, $\left\{E_{0}, \ldots, E_{d}\right\}$.

Matrix of eigenvalues

The set $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. We also have a basis of matrix idempotents, $\left\{E_{0}, \ldots, E_{d}\right\}$. There are scalars $p_{r}(s)$ such that

$$
A_{r}=\sum_{s=0}^{d} p_{r}(s) E_{s} .
$$

Matrix of eigenvalues

The set $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. We also have a basis of matrix idempotents, $\left\{E_{0}, \ldots, E_{d}\right\}$. There are scalars $p_{r}(s)$ such that

$$
A_{r}=\sum_{s=0}^{d} p_{r}(s) E_{s} .
$$

The E_{r} are pairwise orthogonal idempotents, so this implies that

$$
A_{r} E_{s}=p_{r}(s) E_{s}
$$

for all $r, s=0,1, \ldots, d$.

Matrix of eigenvalues

The set $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. We also have a basis of matrix idempotents, $\left\{E_{0}, \ldots, E_{d}\right\}$. There are scalars $p_{r}(s)$ such that

$$
A_{r}=\sum_{s=0}^{d} p_{r}(s) E_{s}
$$

The E_{r} are pairwise orthogonal idempotents, so this implies that

$$
A_{r} E_{s}=p_{r}(s) E_{s}
$$

for all $r, s=0,1, \ldots, d$. Therefore, the scalars $p_{r}(0), \ldots, p_{r}(d)$ are eigenvalues of A_{r}, and the columns of E_{s} are eigenvectors of A_{r}.

Matrix of eigenvalues

The set $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ is a basis for $\mathbb{C}[\mathcal{A}]$. We also have a basis of matrix idempotents, $\left\{E_{0}, \ldots, E_{d}\right\}$. There are scalars $p_{r}(s)$ such that

$$
A_{r}=\sum_{s=0}^{d} p_{r}(s) E_{s}
$$

The E_{r} are pairwise orthogonal idempotents, so this implies that

$$
A_{r} E_{s}=p_{r}(s) E_{s}
$$

for all $r, s=0,1, \ldots, d$. Therefore, the scalars $p_{r}(0), \ldots, p_{r}(d)$ are eigenvalues of A_{r}, and the columns of E_{s} are eigenvectors of A_{r}.
We call the $p_{r}(s)$ the eigenvalues of the scheme, \mathcal{A} and define the matrix of eigenvalues by $P=\left(p_{r}(s)\right)_{s, r}$.

Some basic properties of P

Recall that v_{r} is the row sum of A_{r}. We also define the multiplicities, m_{0}, \ldots, m_{d} of the scheme by letting m_{r} be the rank of E_{r}.

Some basic properties of P

Recall that v_{r} is the row sum of A_{r}. We also define the multiplicities, m_{0}, \ldots, m_{d} of the scheme by letting m_{r} be the rank of E_{r}.

Fact 1

$$
\operatorname{det}\left(P^{*} P\right)=n^{d+1} \prod_{r=0}^{d} \frac{v_{r}}{m_{r}}
$$

Some basic properties of P

Recall that v_{r} is the row sum of A_{r}. We also define the multiplicities, m_{0}, \ldots, m_{d} of the scheme by letting m_{r} be the rank of E_{r}.

Fact 1

$$
\operatorname{det}\left(P^{*} P\right)=n^{d+1} \prod_{r=0}^{d} \frac{v_{r}}{m_{r}}
$$

Fact 2

If \mathcal{A} is an association scheme with matrix of eigenvalues $P_{\mathcal{A}}$ and \mathcal{B} is a subscheme with matrix of eigenvalues $P_{\mathcal{B}}$, then $\operatorname{det}\left(P_{\mathcal{B}}\right) \mid \operatorname{det}\left(P_{\mathcal{A}}\right)$.

Some basic properties of P

Recall that v_{r} is the row sum of A_{r}. We also define the multiplicities, m_{0}, \ldots, m_{d} of the scheme by letting m_{r} be the rank of E_{r}.

Fact 1

$$
\operatorname{det}\left(P^{*} P\right)=n^{d+1} \prod_{r=0}^{d} \frac{v_{r}}{m_{r}}
$$

Fact 2

If \mathcal{A} is an association scheme with matrix of eigenvalues $P_{\mathcal{A}}$ and \mathcal{B} is a subscheme with matrix of eigenvalues $P_{\mathcal{B}}$, then $\operatorname{det}\left(P_{\mathcal{B}}\right) \mid \operatorname{det}\left(P_{\mathcal{A}}\right)$.

Fact 3

If X is a graph in a scheme with matrix of eigenvalues P, then there is a 01 -vector x such that the eigenvalues of X are the entries of $P x$.

Outline

(1) Cayley graphs
(2) Association schemes

Preliminaries
Matrix of eigenvalues
(3) Group schemes

The conjugacy class scheme
The integral conjugacy class scheme
A picture of my cat
(4) Theorem

Proof

The conjugacy class scheme

Let G be a group of order n with conjugacy classes C_{0}, \ldots, C_{d} (where $\left.C_{0}=\{e\}\right)$.

The conjugacy class scheme

Let G be a group of order n with conjugacy classes C_{0}, \ldots, C_{d} (where $\left.C_{0}=\{e\}\right)$.

Define the $n \times n$ matrices, A_{0}, \ldots, A_{d} by letting

$$
\left(A_{r}\right)_{g h}= \begin{cases}1 & \text { if } h g^{-1} \in C_{r} \\ 0 & \text { otherwise }\end{cases}
$$

The conjugacy class scheme

Let G be a group of order n with conjugacy classes C_{0}, \ldots, C_{d} (where $\left.C_{0}=\{e\}\right)$.
Define the $n \times n$ matrices, A_{0}, \ldots, A_{d} by letting

$$
\left(A_{r}\right)_{g h}= \begin{cases}1 & \text { if } h g^{-1} \in C_{r} \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathcal{A}:=\left\{A_{0}, \ldots, A_{d}\right\}$ is an association scheme.

Definition

This is the conjugacy class scheme of G.

The conjugacy class scheme

Let G be a group of order n with conjugacy classes C_{0}, \ldots, C_{d} (where $\left.C_{0}=\{e\}\right)$.
Define the $n \times n$ matrices, A_{0}, \ldots, A_{d} by letting

$$
\left(A_{r}\right)_{g h}= \begin{cases}1 & \text { if } h g^{-1} \in C_{r} \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathcal{A}:=\left\{A_{0}, \ldots, A_{d}\right\}$ is an association scheme.

Definition

This is the conjugacy class scheme of G.

Definition

A normal Cayley graph of G is a graph in its conjugacy class scheme.

Outline

(1) Cayley graphs
(2) Association schemes

Preliminaries
Matrix of eigenvalues
(3) Group schemes

The conjugacy class scheme
The integral conjugacy class scheme
A picture of my cat
(4) Theorem

Proof

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.
We say that conjugacy classes C_{1}, C_{2} of G are power-equivalent if for all $g_{1} \in C_{1}$ and $g_{2} \in C_{2}$, the subgroups $\left\langle g_{1}\right\rangle$ and $\left\langle g_{2}\right\rangle$ are conjugate.

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.
We say that conjugacy classes C_{1}, C_{2} of G are power-equivalent if for all $g_{1} \in C_{1}$ and $g_{2} \in C_{2}$, the subgroups $\left\langle g_{1}\right\rangle$ and $\left\langle g_{2}\right\rangle$ are conjugate.
This relation defines a subscheme of the conjugacy class scheme.

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.
We say that conjugacy classes C_{1}, C_{2} of G are power-equivalent if for all $g_{1} \in C_{1}$ and $g_{2} \in C_{2}$, the subgroups $\left\langle g_{1}\right\rangle$ and $\left\langle g_{2}\right\rangle$ are conjugate.
This relation defines a subscheme of the conjugacy class scheme.
It turns out that the graphs of this subscheme have only integer eigenvalues, i.e. they are integral.

The integral conjugacy class scheme

Define a relation on the conjugacy classes of a group G as follows.
We say that conjugacy classes C_{1}, C_{2} of G are power-equivalent if for all $g_{1} \in C_{1}$ and $g_{2} \in C_{2}$, the subgroups $\left\langle g_{1}\right\rangle$ and $\left\langle g_{2}\right\rangle$ are conjugate.

This relation defines a subscheme of the conjugacy class scheme.
It turns out that the graphs of this subscheme have only integer eigenvalues, i.e. they are integral.

Definition

This is the integral conjugacy class scheme of G.

The integral conjugacy class scheme

Theorem 1 (Bridges \& Mena, 1981)
A normal Cayley graph of G is integral if and only if it lies in the integral conjugacy class scheme of G.

Outline

(1) Cayley graphs
(2) Association schemes

Preliminaries
Matrix of eigenvalues
(3) Group schemes

The conjugacy class scheme
The integral conjugacy class scheme
A picture of my cat
(4) Theorem

Proof

Outline

(1) Cayley graphs
(2) Association schemes

Preliminaries
Matrix of eigenvalues
(3) Group schemes

The conjugacy class scheme
The integral conjugacy class scheme
A picture of my cat
(4) Theorem

Proof

Integral normal Cayley graphs

Theorem 2 (Árnadóttir \& Godsil, 2023++)
If G is a group of odd order then any non-empty, integral, normal Cayley graph for G has an odd eigenvalue.

Proof

- Let \mathcal{A} be the conjugacy class scheme of G and \mathcal{B} the integral conjugacy class scheme.

Proof

- Let \mathcal{A} be the conjugacy class scheme of G and \mathcal{B} the integral conjugacy class scheme.
- Let P_{1} and P_{2} be the matrices of eigenvalues of \mathcal{A} and \mathcal{B} respectively.

Proof

- Let \mathcal{A} be the conjugacy class scheme of G and \mathcal{B} the integral conjugacy class scheme.
- Let P_{1} and P_{2} be the matrices of eigenvalues of \mathcal{A} and \mathcal{B} respectively.
- Let X be an integral normal Cayley graph of G. Then it lies in \mathcal{B}.

Proof

Observation

It suffices to show that $\operatorname{det}\left(P_{2}\right)$ is odd.

Proof

Observation

It suffices to show that $\operatorname{det}\left(P_{2}\right)$ is odd.

Proof.

- Let x be a 01 -vector such that the eigenvalues of X are the entries of $P x$.

Proof

Observation

It suffices to show that $\operatorname{det}\left(P_{2}\right)$ is odd.

Proof.

- Let x be a 01-vector such that the eigenvalues of X are the entries of $P x$.
- Assuming $\operatorname{det}(P)$ is odd, P is invertible modulo two.

Proof

Observation

It suffices to show that $\operatorname{det}\left(P_{2}\right)$ is odd.

Proof.

- Let x be a 01-vector such that the eigenvalues of X are the entries of $P x$.
- Assuming $\operatorname{det}(P)$ is odd, P is invertible modulo two.
- If the eigenvalues of X are all even, $P x \equiv 0(\bmod 2)$.

Proof

Observation

It suffices to show that $\operatorname{det}\left(P_{2}\right)$ is odd.

Proof.

- Let x be a 01-vector such that the eigenvalues of X are the entries of $P x$.
- Assuming $\operatorname{det}(P)$ is odd, P is invertible modulo two.
- If the eigenvalues of X are all even, $P x \equiv 0(\bmod 2)$.

Lemma 3
$\operatorname{det}\left(P_{1}^{*} P_{1}\right)$ is an odd integer.

Lemma 3

$\operatorname{det}\left(P_{1}^{*} P_{1}\right)$ is an odd integer.

Proof.

- The entries of P_{1} are algebraic integers, therefore, so are $\operatorname{det}\left(P_{1}^{*}\right), \operatorname{det}\left(P_{1}\right)$ and $\operatorname{det}\left(P_{1}^{*} P_{1}\right)$.

Lemma 3

 $\operatorname{det}\left(P_{1}^{*} P_{1}\right)$ is an odd integer.Proof.

- The entries of P_{1} are algebraic integers, therefore, so are $\operatorname{det}\left(P_{1}^{*}\right), \operatorname{det}\left(P_{1}\right)$ and $\operatorname{det}\left(P_{1}^{*} P_{1}\right)$.
- Recall that

$$
\operatorname{det}\left(P_{1}^{*} P_{1}\right)=n^{d+1} \prod_{r=0}^{d} \frac{v_{r}}{m_{r}}
$$

in particular, it is a rational number.

Lemma 3

$\operatorname{det}\left(P_{1}^{*} P_{1}\right)$ is an odd integer.

Proof.

- The entries of P_{1} are algebraic integers, therefore, so are $\operatorname{det}\left(P_{1}^{*}\right), \operatorname{det}\left(P_{1}\right)$ and $\operatorname{det}\left(P_{1}^{*} P_{1}\right)$.
- Recall that

$$
\operatorname{det}\left(P_{1}^{*} P_{1}\right)=n^{d+1} \prod_{r=0}^{d} \frac{v_{r}}{m_{r}}
$$

in particular, it is a rational number.

- Since G has odd order, its conjugacy classes have odd size, so v_{r} is odd for all $r=0, \ldots, d$.

Lemma 3

$\operatorname{det}\left(P_{1}^{*} P_{1}\right)$ is an odd integer.

Proof.

- The entries of P_{1} are algebraic integers, therefore, so are $\operatorname{det}\left(P_{1}^{*}\right), \operatorname{det}\left(P_{1}\right)$ and $\operatorname{det}\left(P_{1}^{*} P_{1}\right)$.
- Recall that

$$
\operatorname{det}\left(P_{1}^{*} P_{1}\right)=n^{d+1} \prod_{r=0}^{d} \frac{v_{r}}{m_{r}}
$$

in particular, it is a rational number.

- Since G has odd order, its conjugacy classes have odd size, so v_{r} is odd for all $r=0, \ldots, d$.

Finally

- Recall that $\operatorname{det}\left(P_{2}\right) \operatorname{divides} \operatorname{det}\left(P_{1}\right)$, since \mathcal{B} is a subscheme of \mathcal{A}.

Finally

- Recall that $\operatorname{det}\left(P_{2}\right) \operatorname{divides} \operatorname{det}\left(P_{1}\right)$, since \mathcal{B} is a subscheme of \mathcal{A}.
- Then also $\operatorname{det}\left(P_{2}^{*}\right) \mid \operatorname{det}\left(P_{1}^{*}\right)$ and $\operatorname{det}\left(P_{2}^{*} P_{2}\right) \mid \operatorname{det}\left(P_{1}^{*} P_{1}\right)$.

Finally

- Recall that $\operatorname{det}\left(P_{2}\right) \operatorname{divides} \operatorname{det}\left(P_{1}\right)$, since \mathcal{B} is a subscheme of \mathcal{A}.
- Then also $\operatorname{det}\left(P_{2}^{*}\right) \mid \operatorname{det}\left(P_{1}^{*}\right)$ and $\operatorname{det}\left(P_{2}^{*} P_{2}\right) \mid \operatorname{det}\left(P_{1}^{*} P_{1}\right)$.
- Clearly, $\operatorname{det}\left(P_{2}\right)$ is an integer, so

$$
\operatorname{det}\left(P_{2}\right)^{2}=\operatorname{det}\left(P_{2}^{*} P_{2}\right) \mid \operatorname{det}\left(P_{1}^{*} P_{1}\right) .
$$

Finally

- Recall that $\operatorname{det}\left(P_{2}\right) \operatorname{divides} \operatorname{det}\left(P_{1}\right)$, since \mathcal{B} is a subscheme of \mathcal{A}.
- Then also $\operatorname{det}\left(P_{2}^{*}\right) \mid \operatorname{det}\left(P_{1}^{*}\right)$ and $\operatorname{det}\left(P_{2}^{*} P_{2}\right) \mid \operatorname{det}\left(P_{1}^{*} P_{1}\right)$.
- Clearly, $\operatorname{det}\left(P_{2}\right)$ is an integer, so

$$
\operatorname{det}\left(P_{2}\right)^{2}=\operatorname{det}\left(P_{2}^{*} P_{2}\right) \mid \operatorname{det}\left(P_{1}^{*} P_{1}\right) .
$$

- Therefore $\operatorname{det}\left(P_{2}\right)^{2}$ is an odd integer and then so is $\operatorname{det}\left(P_{2}\right)$.

Finally

- Recall that $\operatorname{det}\left(P_{2}\right) \operatorname{divides} \operatorname{det}\left(P_{1}\right)$, since \mathcal{B} is a subscheme of \mathcal{A}.
- Then also $\operatorname{det}\left(P_{2}^{*}\right) \mid \operatorname{det}\left(P_{1}^{*}\right)$ and $\operatorname{det}\left(P_{2}^{*} P_{2}\right) \mid \operatorname{det}\left(P_{1}^{*} P_{1}\right)$.
- Clearly, $\operatorname{det}\left(P_{2}\right)$ is an integer, so

$$
\operatorname{det}\left(P_{2}\right)^{2}=\operatorname{det}\left(P_{2}^{*} P_{2}\right) \mid \operatorname{det}\left(P_{1}^{*} P_{1}\right) .
$$

- Therefore $\operatorname{det}\left(P_{2}\right)^{2}$ is an odd integer and then so is $\operatorname{det}\left(P_{2}\right)$.

This completes the proof.

Thank you

