Strongly cospectral vertices, Cayley graphs and other things

Arnbjörg Soffía Árnadóttir

Faculty of Mathematics University of Waterloo

September, 2020

Outline

- 2 Some facts about Cayley graphs
- 3 Multiplicity bound
- 4 Cubelike graphs

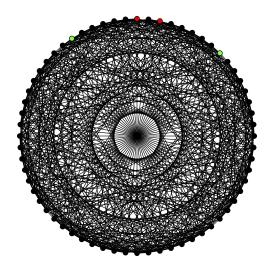


Figure: This is a picture of a graph

Strongly cospectral vertices

Definition

Let *X* be a graph with adjacency matrix *A*. We say that vertices $u, v \in V(X)$ are *strongly cospectral* if for each idempotent, E_r in the spectral decomposition,

$$A = \sum_{r} \theta_r E_r$$

we have $E_r e_u = \pm E_r e_v$.

Cayley graphs

Definition

Let *G* be a group and $C \subseteq G \setminus e$ an inverse-closed subset. The *Cayley graph*, X(G, C), of *G* with respect to *C* has vertex set *G* and

$$g \sim h$$
 if $hg^{-1} \in \mathcal{C}$.

Cayley graphs

Definition

Let *G* be a group and $C \subseteq G \setminus e$ an inverse-closed subset. The *Cayley graph*, X(G, C), of *G* with respect to *C* has vertex set *G* and

$$g \sim h$$
 if $hg^{-1} \in \mathcal{C}$.

Definition

A Cayley graph of an abelian group is called a *translation graph*. Cayley graphs of cyclic groups and elementary abelian 2-groups are called *circulants* and *cubelike graphs*, respectively.

Characters

Definition

Let *G* be an abelian group. A *character*, χ of *G* is a homomorphism $\chi : G \to \mathbb{C}^*$.

Characters

Definition

Let *G* be an abelian group. A *character*, χ of *G* is a homomorphism $\chi : G \to \mathbb{C}^*$.

The characters of an abelian group G, form a group under pointwise multiplication. This group is isomorphic to G.

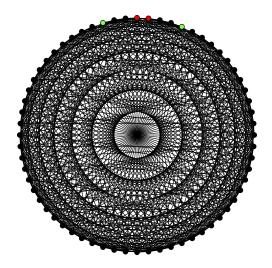


Figure: *Here is another graph*

Spectra of translation graphs

Let X := X(G, C) be a translation graph with adjacency matrix A and let χ be a character of G. Then χ is an eigenvector of A and the corresponding eigenvalue is given by

$$\chi(\mathcal{C}) := \sum_{x \in \mathcal{C}} \chi(x).$$

Strongly cospectral vertices in translation graphs

Lemma 1 (Coutinho & Godsil)

Let X = X(G, C) be a translation graph. A vertex g is strongly cospectral to zero if and only if both of the following hold:

- g has order at most two in G
- If ψ, φ are characters of G that have the same eigenvalue, then ψ(g) = φ(g).

Some immediate consequences

• A translation graph for a group of odd order has no strongly cospectral vertices.

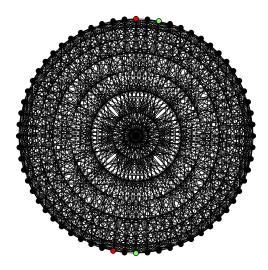
Some immediate consequences

- A translation graph for a group of odd order has no strongly cospectral vertices.
- A circulant has at most one vertex (other than zero) that is strongly cospectral to zero. So does any translation graph of a group with a cyclic Sylow-2-subgroup.

Some immediate consequences

- A translation graph for a group of odd order has no strongly cospectral vertices.
- A circulant has at most one vertex (other than zero) that is strongly cospectral to zero. So does any translation graph of a group with a cyclic Sylow-2-subgroup.
- In a translation graph, the set of vertices that are strongly cospectral to zero form a subgroup of *G* and it is an elementary abelian 2-group.

Questions?



Cubelike graphs

In an elementary abelian 2-group, every non-zero element has order two.

Cubelike graphs

In an elementary abelian 2-group, every non-zero element has order two.

Does this mean that all the vertices in a cubelike graph could be pairwise strongly cospectral?

Cubelike graphs

In an elementary abelian 2-group, every non-zero element has order two.

Does this mean that all the vertices in a cubelike graph could be pairwise strongly cospectral?

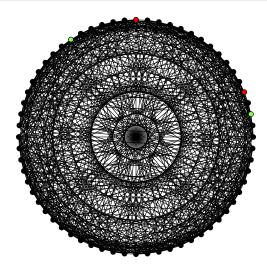
Spoiler: no.

Multiplicity bound

Lemma 2

Let X = X(G, C) be a translation graph, let $H \leq G$ consist of the elements that are strongly cospectral to zero in X, and let ℓ be the index of H in G. If X has an eigenvalue with multiplicity m, then $m \leq \ell$.

Questions?



Spectrum of a cubelike graph

• Recall that the eigenvalues of a translation graph *X*(*G*, *C*) are of the form

where χ is a character of *G*.

Spectrum of a cubelike graph

• Recall that the eigenvalues of a translation graph *X*(*G*, *C*) are of the form

where χ is a character of *G*.

• Since every non-zero element of \mathbb{Z}_2^d has order two, its characters take only values ± 1 .

Spectrum of a cubelike graph

• Recall that the eigenvalues of a translation graph *X*(*G*, *C*) are of the form

where χ is a character of *G*.

- Since every non-zero element of \mathbb{Z}_2^d has order two, its characters take only values ± 1 .
- It follows that the eigenvalues of a cubelike graph of degree *n* are integers with the same parity as *n*.

Cubelike graphs

Claim

The spectrum of a cubelike graph sort of looks normally distributed.

Multiplicity bound

Lemma 3

Let $X = X(\mathbb{Z}_2^d, \mathcal{C})$ be a cubelike graph where $d \ge 3$ and let k := d/2. Then X has an eigenvalue with multiplicity larger than 2^k .

Cubelike graphs

Theorem 4

A cubelike graph on 2^d vertices, where $d \ge 3$, has at most

 $2^{\lceil d/2\rceil-1}$

pairwise strongly cospectral vertices.

Cubelike graphs

Theorem 4

A cubelike graph on 2^d vertices, where $d \ge 3$, has at most

 $2^{\lceil d/2\rceil-1}$

pairwise strongly cospectral vertices.

Remark

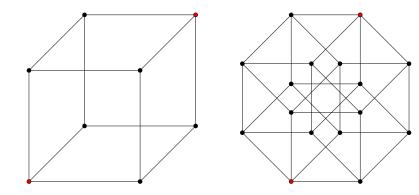
The theorem does not hold for d = 1, 2: K_2 and C_4 both have a pair of strongly cospectral vertices.

Is the bound tight?

For d = 3, 4:

Is the bound tight?

For d = 3, 4: yes.

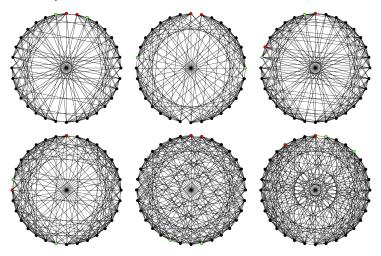


Is the bound tight?

For d = 5:

Is the bound tight?

For d = 5: yes.

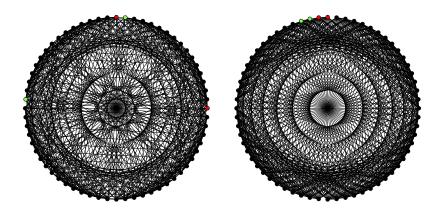


Is the bound tight?

For d = 6:

Is the bound tight?

For d = 6: yes.



Is the bound tight?

For $d\geq 7$

Is the bound tight?

For $d\geq 7$

?

Thank you

