TERMINATION FOR HYBRID TABLEAUS

THOMAS BOLANDER AND PATRICK BLACKBURN

ABSTRACT. This article extends and improves work on tableau-based decision methods for hy-
brid logic by Bolander and Bratiner [5]. Their paper gives tableau-based decision procedures for
basic hybrid logic (with unary modalities) and the basic logic extended with the global modality.
All their proof procedures make use of loop-checks to ensure termination.

Here we take a closer look at termination for hybrid tableaus. We cover both types of system
used in hybrid logic: prefixed tableaus and internalised tableaus. We first treat prefixed tableaus.
We prove a termination result for the basic language (with m-ary operators) that does not
involve loop-checks. We then successively add the global modality and n-ary inverse modalities,
show why various different types of loop-check are required in these cases, and then re-prove
termination. Following this we consider internalised tableaus. At first sight, such systems
seem to be more complex. However we define a internalised system which terminates without
loop-checks. It is simpler than previously known internalised systems (all of which require loop-
checks to terminate) and simpler than our prefix systems (no non-local side conditions on rules
are required).

Keywords: Hybrid logic, modal logic, tableau systems, decision procedures, loop-checks.

1. INTRODUCTION

The first tableau system for hybrid logic was presented by Tzakova [8]. It is a prefixed tableau
calculus, and covers a number of different hybrid logics (including some undecidable ones). How-
ever the termination proof given for the case of basic hybrid logic (which is decidable) is flawed: the
rules can give rise to non-terminating computations. In Bolander and Braiiner [5], tableau-based
decision procedures for basic hybrid logic (with unary modalities) and the basic logic extended
with the global modality are presented. The calculi are proved to be both terminating and com-
plete, however termination (even for the basic logic) is ensured by using loop-checks. In the present
paper we generalise and simplify these results, and refine the proof methods used. In the first part
of the paper we discuss prefixed calculi. We introduce a modified Tzakova-style calculus that han-
dles basic hybrid logic with n-ary modalities and show that it provides a complete and terminating
calculus for which loop-checks are not needed. We then extend this system to handle the global
modality, and n-ary inverse modalities. As we shall see, both additions make the corresponding
tableau calculi non-terminating in their pure form. To regain termination we apply different types
of loop-check. We motivate the required checks, and re-prove completeness and termination.

In the second part of the paper we turn to internalised systems, as introduced by Blackburn [3],
and show that all results obtained for the prefixed calculi translate easily to this setting. Inter-
nalised calculi are often regarded as more complex than prefixed systems, and of interest mainly
because they are automatically complete (though not necessarily terminating) when enriched with
arbitrary pure axioms. However we provide an internalised tableau which generalises the system
of Blackburn [3] to cover m-ary modalities, and simplifies it in crucial respects. The resulting
calculus is not only simpler than the one provided by Blackburn [3], it is also simpler than its
prefixed cousin: termination is guaranteed without loop-checks, and we do not need non-local side
conditions on the tableau rules (which is not the case for our prefixed calculus).

Hybrid logic is a relatively new branch of modal logic, but already several tableau systems have
been proposed. However there has been little systematic discussion of the available options, no
discussion of n-ary modalities and their inverses, and previous termination proofs have tended
to be either unnecessarily complicated or flawed. Throughout the paper we have attempted to
bring some order to the discussion. We investigate termination (and completeness) of the tableau
system progressively: we start with n-ary modalities, and systematically consider the impact

1

2 THOMAS BOLANDER AND PATRICK BLACKBURN

that nominals, satisfaction statements, the global modality, and n-ary inverse modalities have on
termination. As we shall see, the addition of a global modality can be handled using a relatively
simple loop-check, whereas n-ary inverse modalities require something more sophisticated. We
prove our completeness and termination results using the same cluster of concepts: the most
important of these is the notion of an urfather.

2. THE BASICS OF HYBRID LOGIC

We shall in many cases adopt the terminology of [4] and [1]. The hybrid logic we consider is
obtained by adding a second sort of propositional symbols, called nominals, to ordinary modal
logic. We assume that a set Prop of ordinary propositional symbols and a countably infinite set
Nom of nominals are given. The sets are taken to be disjoint. The metavariables p,q,r, ..., and
so on, range over ordinary propositional symbols and a,b, ¢, ..., and so on, range over nominals.
The semantic difference between ordinary propositional symbols and nominals is that nominals are
required to be true at exactly one world; that is, a nominal “points to a unique world”. A nominal
can also play the role of an operator, that is, for any nominal a and any formula ¢, the expression
a¢ is a wellformed formula. The formula a¢ is intended to express that the formula ¢ is true at the
world pointed to by a. Such a formula is usually called a satisfaction statement in hybrid logic,
and it is most often written @, ¢ or a : ¢ instead of simply a¢. However the simplified notation
a¢ will turn out to have some advantages in this paper when we compare prefixed tableaus with
internalised tableaus.

We will consider multi-modal languages with modal operators of arbitrary arity. In the following

we will assume that we have fixed n modal operators (diamonds) named ¢g, 01, ..., On—1, and that
for all i = 0,1,...,n — 1 the expression p(i) denotes the arity of ¢;. We also include the inverses
of modal operators. A modal operator ¢; has p(i) inverses which we denote 0;1, 0;2, cee O;p(i).

As a special case a modal operator ¢; of arity 1 has exactly one inverse ¢ ;1» as usual. Finally, we
have the global modality (or universal modality) which is a special unary modal operator denoted
E. There is no need to include an inverse of the global modality; it is its own inverse.

The language of our hybrid logic will be called L. It is defined by the following grammar:

(L) ¢ um=plal-¢|o1Ada|Qild1, 0p)) | 07 (D1, Ppw)) | ad | E@

where p is an ordinary propositional symbol, a is anominal, i € {0,...,n—1},and j € {1,...,p(i)}.
In what follows, the metavariables ¢, 1, x, ...range over formulas. As mentioned above, formulas
of the form a¢ are called satisfaction statements. The dual modal operators U;, L; ; and the
propositional connectives not taken as primitive are defined as usual. We now define models.

Definition 2.1. A model for L is a tuple (W, (R;)i<n, V) where
(1) W is a non-empty set.
(2) Foralli=0,...,n—1 the set R; is a relation on W of arity p(i) + 1.
(3) For each proposition symbol or nominal s, V(s) is a subset of W. If s is a nominal then
V(s) is a singleton set.

The elements of W are called worlds, and for all i the relation R; is called the accessibility
relation of the modal operator ;. The relation M,w = ¢ is defined inductively, where M =
(W, (R;)i<n, V) is a model, w is an element of W, and ¢ is a formula of our hybrid logic.

MywEs it we V(s), where s is either a propositional symbol or a nominal
M,wlE—¢ iff not M,w ¢
MuwlEoAy if MiwE¢and M,wE Y
M,w E Qi(¢1,...,¢py) iff for some vi, ..., v, € W, (w,v1,...,0,04)) € R; and
Mo, |E o forall k=1,...,p(4)
Mow O (b1, bp(y) if for some vi, ..., vp6) € Wi (V1,000 05, W, 0541, - -+, Up(s)) € Ry and
Mg = ¢y forall k =1,..., p(3)
MwkEap iff M,v = ¢, where V(a) = {v}
M,w = E¢ iff for somev e W, M,vE=¢

TERMINATION FOR HYBRID TABLEAUS 3

<>1(¢7 ¢)

al 1 b_2 b_l

¢ G

FIGURE 1. Illustration of chop.

By convention M = ¢ means M,w = ¢ for every element w of W. A formula ¢ is valid if and
only if M |= ¢ for any model M.

The semantics given for the inverse modalities ¢;; was motivated by the following kind of
example. However other options are possible (for example, we could have made use of the versatile
semantics defined in [9]).

Example 2.2 (Inverse modalities). Interval Temporal Logic (ITL) [7] is a modal logic in which
the worlds W are intervals on the real line. For simplicity, we will here let W be the set of proper,
closed intervals, that is:
W = {[a,b] | a,b € R and a < b}.

ITL is equipped with a binary modal operator called chop, which we will here denote by 1. The
accessibility relation R; of this operator is given by

Rl = {[al,bl], [ag,bg], [a3,b3} S W3 | as =ai; N\ bz =agz N\ b3 = bl}
Given formulas ¢, ¢ and an interval [a1, b1] we thus get

M7 [alﬂ bl}): <>1(¢7 1/’)
< for some [ag, ba], [as, bs] € W, ([a1, b1], [az, ba], [as, b3]) € Ry and M, [az, bo] = ¢ and M, [as, bs] = ¢
< for some by € R, M, [a1,b2] E ¢ and M, [ba,b1] E 9.
Thus, a formula ¢1(¢, 1) holds on an interval if and only if this interval can be “chopped” into
two subintervals such that ¢ holds on the left of these, and 1 holds on the right. This is illustrated
in Figure 1. Now consider the two inverse modalities <>1—,1 and 0;2 of 1. Let T denote any

propositional tautology in ITL (e.g. pV —p), let [a1,b1] be in W and let ¢ denote any formula.
Then we get:

M7 [alabl]): <>1_71<Ta (;b)
< for some [0@,[)2]7 [ag,bg] S W, ([ag,bg], [al,bl], [ag,bg]) € Ry and M, [ag,bg] ': T and ./\/l, [CL3J)3] ': ¢
< for some b3 > by, M, [b1,b3] E &.

Similarly, for 07, we get:

M7 [ah bl] ‘: 0;2(Ta (b)
& for some [ag, ba], [as, bs] € W, ([ag, ba], [as, bs], [a1,b1]) € R1 and M, [ag,be] =T and M, [as,bs] = ¢
& for some az < a1, M, [as, a1] = ¢.

Thus the formula Q; 1 (T, ¢) holds on an interval if and only if ¢ holds on a right neighbourhood of
that interval. Similarly, ¢; (T, ¢) holds on an interval if and only if ¢ holds on a left neighbourhood
of that interval. Thus the two standard modalities of Neighbourhood Logic (NL) [10] can in a
simple way be encoded in the two inverse modalities of the chop operator.

3. A PREFIXED TABLEAU CALCULUS

We will now present a prefixed tableau calculus for the hybrid language L. That the tableau
calculus is prefized means that the formulas occurring in the tableau rules are prefized formulas on
the form ¢, where ¢ is a formula of L and ¢ belongs to some fixed countably infinite set of symbols
called prefizes. The set of prefixes will be denoted Pref, and we require that Nom N Pref = (). The
intended interpretation of a prefixed formula o¢ is that o denotes a world at which ¢ holds.

4 THOMAS BOLANDER AND PATRICK BLACKBURN

AR o
TG =) o)
w908 @re)
o6 —
o

020i(¢1,- -+, Pp(i))

U<>i(0'1;-~-70'p(i))

Qi(@1,- -, Dpiy)

(0)? (=0)
0—<>i(0—17~~-,0p(i)) o17¢1 | o272 | -+ | Tp(i) " Poi)
o161
Tp(i) Pl
Uﬁo;j((blv v 7¢p(z))
0-<>i_'(¢1""’¢ z) _ 0—1<>i(0-27~--70-‘70—70-‘ 1y-++40 ’L) _
j p(i) (©)2 J Jj+ p(3) (ﬁo)
Ul<>i(027 <3 05,0,0541;5 - 7Up(i)) 01_'¢1 | 0—2_'¢2 | to | O—p(i)_‘qsp(i)
o101
Tp(i) Po(i)
oa o-a
? () ? (-ay
Ta77'¢ Ta, Tﬁ(b
oF ok
? ? (-py
TO Y
oo, 0a,Ta
o¢,0a,7a d)
TO

L The prefix 7 is new to the tableau.
2 The prefixes o1, . .. ,0p(i) are all new to the tableau.
3 The prefix « is already on the branch.

FIGURE 2. Prefixed tableau calculus for the hybrid language L.

In addition to prefixed formulas, the tableau rules contain accessibility formulas on the form
oQi(01,...,0,)) where o and ay,...,0,;) are prefixes and i € {0,...,n — 1}. The intended
interpretation of 0Q;(01, ..., 0,¢;) is that the tuple of worlds denoted by (01, . .., 0,;)) is accessible
from the world denoted by o by the accessibility relation R;. In the following we will use the
term formula to denote either a formula of L, a prefixed formula, or an accessibility formula.
The tableau rules of the calculus are given in Figure 2. A tableau in this calculus is simply a
wellfounded, finitely branching tree in which each node is labeled by a formula, and the edges
represent applications of tableau rules in the usual way.

Example 3.1 (A simple tableau). A simple example of a tableau is given in Figure 3. In this
tableau there is only one modal operator, so we allow ourselves to drop the index i on {. The
modal operator ¢ is unary. The tableau consists of a single branch.

TERMINATION FOR HYBRID TABLEAUS 5

oola A Ola A —0a))

(A) rule
opa

ao(a A —0a)
(¢) rule

00001
o1(a A —=0a)

(A) rule

g1a
o1—0a

(Id) rule on o1-¢a, opa, o1a

0'0_|<>a

(=9) rule on o9g—0a, ocoCo1

g17a

FIGURE 3. A simple tableau.

The rules (—), (0), (07), (@), (—@), and (F) are called prefiz generating rules. Whenever one
of these rules is applied on a branch, at least one new prefix will be introduced to the branch. We
impose two general constraints on the construction of tableaus:

e A prefix generating rule is never applied twice to the same premise on the same branch.
e A formula is never added to a tableau branch where it already occurs.

A saturated tableau is a tableau in which no more rules can be applied that satisfy the constraints.
A saturated branch is a branch of a saturated tableau. A branch of a tableau is called closed if it
contains formulas g¢ and o—¢ for some o and ¢. Otherwise the branch is called open. A closed
tableau is one in which all branches are closed, and an open tableau is one in which at least one
branch is open. Below we will consider several subsystems of the calculus of Figure 2 where only a
subset of the rules are allowed to be applied. In such subsystems, a saturated tableau is of course
simply a tableau in which none of the rules in the subset can be applied.

Definition 3.2. When a prefized formula o¢ occurs in a tableau branch © we will write c¢ € O,
and say that ¢ is true at o on © or that o makes ¢ true on ©.

Given a tableau branch © and a prefix o the set of true formulas at o on ©, written T° (o),
then becomes

T9(0) ={¢|o¢ € O}.

In the following when we say tableau we will always mean a tableau constructed from (some subset
of) the rules of Figure 2. A formula ¢ is said to be a quasi-subformula of a formula 1) if one of the
following holds:

e ¢ is a subformula of 1.
e ¢ has the form —y, where y is a subformula of .

Lemma 3.3 (Quasi-subformula Property). Let T be a tableau with the prefized formula oodg
as root. For any prefived formula o¢ occurring on T, ¢ is a quasi-subformula of ¢q.

Proof. This is easily seen by going through each of the tableau rules of Figure 2. O

Lemma 3.4. Let © be a branch of a tableau, and let o be any prefix occurring on ©. The set
T®(0) is finite.

6 THOMAS BOLANDER AND PATRICK BLACKBURN

Proof. Let og¢g denote the first formula on ©, that is, the root of the tableau. From the Quasi-
subformula Property, Lemma 3.3, we get that

T®(c) C {¢ | ¢ is a subformula of ¢} U {—¢ | ¢ is a subformula of ¢g}.
Since ¢g has only got finitely many subformulas this proves T (o) to be finite. O

When given a tableau calculus for a language with a given semantics, one usually wants to
prove soundness and completeness of the calculus with respect to the semantics. Furthermore, if
the tableau calculus is supposed to give a decision procedure for the logic, one will have to prove
termination of the calculus, that is, show that there is a terminating algorithm for applying the
tableau rules that preserves completeness. In some cases, more detailed analysis of the algorithm
may give rise to information about the complexity of the logic.

In the following, we will prove the three properties soundness, completeness, and termination for
the prefixed tableau calculus of L. We will do this in steps. First we prove that the three properties
hold for a simple fragment of the calculus, and then we step by step add more tableau rules and at
each step show that the properties still hold. As we add more and more tableau rules we will need
more and more complex tableau construction algorithms in order to ensure termination—but the
tableau construction algorithm used at each step will always be a rather simple extension of the
algorithm used at the previous step. For the simpler modal and hybrid languages we consider,
the tableau algorithms we define are not optimal from a complexity theoretic perspective. In our
approach, open tableau branches are complete descriptions of satisfying models, hence branches
may be exponential in the length of the input formula. However basic modal logic and basic hybrid
logic are both known to be PSPACE-complete (see [4]) so more space-efficient algorithms exist. But
while it would be of some interest to define such algorithms, the tableau systems defined below
have the advantage that they extend relatively straightforwardly to systems for richer languages
containing the universal modality and inverse modalities. For such logics, exponential branches
are unavoidable, as these logics are known to be EXPTIME-complete. For more on the complexity
of hybrid logic, see [1] and [2].

4. TERMINATION WITHOUT LOOP-CHECKS

4.1. Propositional logic. We start out with the simplest thing imaginable: a tableau system for
ordinary propositional logic. This is obtained by restricting the calculus for L to the language L
given by the following grammar:

(L1) ¢ == pl gl o1 Aoy
The calculus for this language only consists of the rules (=—), (A), and (=A) of Figure 2.
(Ll rules) (_‘_‘)a (/\)7 (_'/\)

Soundness and completeness for this fragment are simple and well-known results. Termination is
almost immediate: whenever a rule is applied, the formula lengths of the conclusions are strictly
smaller than the formula length of the premise. Thus when we move down through a branch of a
tableau the formula lengths will be strictly decreasing. Therefore a tableau branch cannot be of
infinite length, and thus a tableau cannot be infinite either, since it is only finitely branching.

4.2. Adding modal operators. The first step from L; towards hybrid logic is to add modal
operators, that is, to consider the language Lo given by the following grammar:

(L2) ¢ = pl b | o1 Ada | Qi(dr,. ., dpiiy)

The tableau calculus for this language consists of the rules for L; extended with the rules (¢) and
(=0)-

(L rules) ()5 (), (=), (0), (=0)

Soundness and completeness with respect to the given semantics are still simple and well-known
properties, but now termination requires a little more work. The conclusion of rules still all have

strictly smaller length than the premises, but the rule (—¢) can applied to the same prefixed
formula 0=0;(#1,...,d,)) on the same branch many times during the course of constructing a

TERMINATION FOR HYBRID TABLEAUS 7

tableau, so we can not be sure that formula lengths will be strictly monotonically decreasing when
moving down through the branch. Therefore we need a slightly more elaborate argument in order
to prove termination. However, the fundamental underlying idea is still to ensure termination
by showing that the length of formulas will be decreasing through the course of constructing a
tableau. This is actually the underlying idea in all of our termination proofs presented in this
article.

Definition 4.1. Let © be a branch of a tableau. If a prefiz T has been introduced to the branch
by applying one of the prefix generating rules to a premise o¢ then we say that T is generated by
o on O, and we write 0 <o 7. We use <§ to denote the transitive and reflexive closure of the
relation <o.

Lemma 4.2. Let © be a branch of a tableau. The graph G = (N©, <), where N® is the set of
prefizes occurring on O, is a wellfounded, finitely branching tree.

Proof. That G is wellfounded follows from the observation that if ¢ <g 7, then the first occurrence
of o on © is before the first occurrence of 7. That the graph is a tree follows from the fact that each
prefix in N® can be generated by at most one other prefix, and that all prefixes in N© must have
the prefix of the root formula as an ancestor. That G is finitely branching follows from the fact
that for any given prefix o the set T° (o) is finite (Lemma 3.4), and for each of formula ¢ € T° (o)
at most max{p(i) | 0 < i < n} new prefixes can have been generated from o (by applying one of
the prefix generating rules to o¢). Thus G is a wellfounded, finitely branching tree. O

Lemma 4.3. Let © be a branch of a tableau. Then © is infinite if and only if there exists an
infinite chain of prefizes

01 <@ 02 <9 03 <@ ' .

Proof. The ‘if’ direction is trivial. To prove the ‘only if’ direction, let ©® be any infinite tableau
branch. Let G = (N®,<g) be defined as in Lemma 4.2 above. According to the lemma, G is
a wellfounded, finitely branching tree. We will furthermore prove that G is infinite. Note that
according to our tableau conventions all prefixed formulas occurring on the infinite branch © are
distinct. Since for each prefix ¢ there can only be finitely many distinct formulas ¢ occurring on
O (Lemma 3.4), this implies that infinitely many distinct prefixes occur on ©. Thus G must be
infinite. Since we now know that G is an infinite, wellfounded, finitely branching tree, we also know
that it must contain an infinite path (Konig’s Lemma), that is, a path 01 <g 02 <@ 03 <o ---. O

The above lemma will be applied a number of times in the following. First we will apply it to
prove termination of the tableau calculus of Ls.

Definition 4.4. Let © be a branch of a tableau, and let o be a prefix occurring on ©. We define
me (o) by

me (o) = max{|¢| | ¢ € O},
where |p| is the length of the formula ¢.

Thus for all branches © and all prefixes o occurring on ©, the number mg (o) is the maximal
length of formulas true at o on ©.

Lemma 4.5 (Decreasing length). Let O be a branch of a tableau, and let o and T be prefizes
occurring on © such that each formula true at T has been introduced by applying one of the rules
Of Lj: (_‘_‘); (/\)7 (_‘/\)) (<>)7 or (_'<>) IfO' <eT then m@(a) > m@(T)'

Proof. Assume o0 <g 7. Let ¢ be a formula of maximal length true at 7 on ©. We need to
prove meg(o) > |¢|. By assumption, the prefixed formula 7¢ must have been introduced on © by
applying one of the rules (——), (A), (=A), (), or (=0). It can however not have been introduced
by applying any of the rules (——), (A) or (=A), since this contradicts the maximality of ¢. Thus
7¢ must have been introduced by an application of either (¢) or (=¢). In the case of (O), T¢
must be introduced by applying the (¢) rule to a premise of the form oQ;(...,¢,...) since 7 is

8 THOMAS BOLANDER AND PATRICK BLACKBURN

generated by o. In the case of (=0), 7¢ must be on the form 7 and introduced by applying the
(=¢) rule to a pair of premises on the form

o' =0 by), O T).

Since 0’Qi(...,7,...) occurs on O, 7 must be generated by o’ (the rule (¢) is the only one
producing accessibility formulas). Therefore ¢/ = o. In both cases we see that 7¢ is introduced
by applying a rule to a formula ox where x has greater length than ¢. Thus we get

me(o) > |x| > |4],
as needed. O

Termination of the tableau calculus of Ly now follows immediately from Lemma 4.3 and 4.5,
as shown below.

Theorem 4.6 (Termination of Ly). Any tableau in the calculus of Lo is finite.

Proof. Assume there exists an infinite tableau of Ly. Then it must have an infinite branch ©. By
Lemma 4.3, there exists an infinite chain

01 =@ 02 <9 03 <@ " .
Now by Lemma 4.5 we have
me(o1) > me(oz) > me(os) > -
which is a contradiction, since meg(o) is a non-negative number for any prefix o. O

Since we already know the calculus of Ly to be sound and complete, the theorem shows that
the calculus gives a decision procedure for the logic. Note how the proof above is related to the
termination proof of the calculus for L. The idea is still to show that formula lengths are strictly
decreasing down through a path (and that the path therefore cannot be infinite), but now the
path is not the tableau branch © itself but rather a path in the graph G = (N®, <g). Thus the
basic idea underlying the termination proof in the case of Lo is the same as in the simple case of
L.

4.3. Adding nominals. Now consider extending Lo to include the most basic element of hybrid
logics: the nominals. This gives us a language L3 defined by the following grammar:

(L3) ¢ = plal=¢| o Ad2| Ci(d1,. .., b))

Syntactically this extension of Ly simply amounts to introducing a second sort of propositional
symbols which we have chosen to call nominals. The tableau calculus of Lo—that is, the rules
(=), (A), (=A), (), and (—0)—does not give a complete proof theory for Ls. The reason is
simply that according to the semantics the nominals should be treated in a special way—they
should be true at one and only one world—but we have not yet added any rules that will treat the
nominals differently from all the other propositional symbols. To deal with the special treatment
of the nominals we add the rules (=) and (Id) of Figure 2 to form a calculus for Lz. It is easy
to see that this extension is sound with respect to the semantics. It is also possible to show that
the calculus is complete, but we will not do that here, since unfortunately the calculus turns out
not to be terminating. The reason is that when we extend with the rule (Id) then Lemma 4.5 no
longer holds. This is shown by the following simple example.

Example 4.7 (Non-termination). Consider the hybrid formula a A Qa, where a is a nominal and
¢ is a unary modal operator. The formula belongs to the language L3. It is possible to make
an infinite tableau branch © in the calculus of L3 with this formula as root. This is shown in
Figure 4. From the figure we see that

00 =@ 01 <9 02 <@ - .
However, at the same time we have
|0a] = me(o1) =me(oz) =--- .

Thus the infinite branch © is a counter-example to Lemma 4.5 holding when the (Id) rule is

TERMINATION FOR HYBRID TABLEAUS 9

oola N Qa)

(A) rule
ooa
ooda

(¢) rule

0001
g1a

(Id) rule on o¢¢a, ooa, c1a

010a

() rule

01002
o2a

(Id) rule on o1¢a, o1a, o2a

02<>a

() rule

02003
g3a

(Id) rule on o2¢a, o2a, oza

03<>a

FIGURE 4. An infinite tableau using the (Id) rule.

added to the calculus.

The example shows that we do not have termination when we add the rule (Id). Let us try to
analyse the problem a bit further. First a new definition.

Definition 4.8. Let © be a branch of a tableau. Define a binary relation ~g on the prefizes
occurring on © by

o ~e T iff there exists a nominal a such that both oca and Ta occur on ©.

In other words, we define o ~g T to hold whenever there exists a nominal that both o and T make
true on ©. The reflexive closure of ~g will be denoted ~g. Thus o ~g T holds if either o = T or
there is a nominal that they both make true.

Let © be a branch of a tableau, and assume o ~g 7. By definition, 0 ~g 7 means that there
is a nominal a that o and 7 both make true on ©. This implies that ¢ and 7 must denote the
same world in the intended model, since according to the semantics, nominals are true at a unique
world. If some formula o¢ occurs on O, then by the (Id) rule we can extend the branch with 7¢.
In other words, any formula true at 0 on © can be made true at 7 by a suitable extension of the
branch. This shows what the problem with the (Id) rule is. It is a rule that allows us to “copy
information between worlds”: if o and 7 are prefixes with o ~g 7 then any formula true at ¢ can
be copied to 7. This breaks down the argument of decreasing lengths of formulas used to prove
termination of the calculus of Ly: we can not make sure that the maximal lengths of formulas will
be strictly decreasing down through a chain 01 <g 02 <@ 03 <@ - - since if for instance o1 ~g 03
then any formula true at o; can be copied to 3.

To obtain a terminating proof procedure for L3 we will try to restrict the rule (Id) in a way
that will allow the decreasing length argument to go through. The general idea is that if o; and

10 THOMAS BOLANDER AND PATRICK BLACKBURN

045 are ~g-related prefixes on a chain
01 =9 02=0 " =00; <0 " =0 0itj <0 "

then we should allow formulas to be copied from o;1; to o; but not from o; to o;4;. In other
words, copying with the (Id) rule should respect the ordering of the prefixes by the relation <g.
We define the new restricted (Id) rule, (vId), by:

op,0a,Ta T is the earliest introduced

(vId)

T prefix making a true

In addition to this rule, we need to allow nominals to be copied arbitrarily between equivalent
prefixes. This is taken care of by adding the following rule:

ob,oa,Ta
—— (Nom)
Tbh

Note that both (vId) and (Nom) are simply restrictions of the (Id) rule. If the rule (Id) is replaced
by (vId) and (Nom) it is easy to see that we can no longer make an infinite tableau with root
o(a A Qa) as we did in Example 4.7. We will prove termination of the calculus of L3 with the
(vId) and (Nom) rules. In the following we will use the expression the calculus of L3 to refer to
the calculus consisting of the following rules:

(LS rules) (_')7 (_‘_')a (/\), (_'/\>7 (<>)7 (_‘O)a (VId)v (Nom)

First we prove a strengthening of Lemma 4.5.

Lemma 4.9 (Decreasing length). Let O be a branch of a tableau, and let o and T be prefizes
occurring on © such that each formula true at T has been introduced by applying one of the rules
(=), (=), (A), (=A), (0), (=0), or (Nom). If o0 < T then mo(c) > me(T).

Proof. Assume o <g 7. Let ¢ be a formula of maximal length true at 7 on ©. We need to prove
me(o) > |p|. The cases where 7¢ has been introduced by an application of a rule other than (—)
and (Nom) have already been dealt with in the proof of Lemma 4.5. Thus assume that 7¢ has
been introduced by an application of either (=) or (Nom). In both cases ¢ must have length 1.
Since the prefix ¢ has generated the prefix 7, ¢ must make at least one formula of length > 1
true (no prefix generating rules apply to formulas of length 1). Thus we have mg(o) > 1 = |¢|,
as needed. (]

Theorem 4.10 (Termination of the calculus of L3). Any tableau in the calculus of Ls is
finite.

Proof. Assume to obtain a contradiction that there exists an infinite tableau 7 in the calculus of
L3. Let © be an infinite branch of 7. Then, by Lemma 4.3, there must exist an infinite chain of
prefixes

(1) 01 < 02 <@ 03 <@ """ .

Note that 7 contains only finitely many nominals: none of the considered tableau rules are
generating new nominals, so the number of nominals on 7 must be the number of nominals
occurring in the root formula. For each nominal ¢ on 7 let 7, denote the earliest introduced prefix
on 7 making a true. Whenever the rule (vId) is applied on © it produces a conclusion of the form
To,¢ for some nominal a. Since the number of nominals is finite, the number of such prefixes 7,
must also be finite. Thus there exists an infinite subchain

0; <0 0i+1 <0 0i+2 =@ """

of (1) containing none of the prefixes of the form 7,. Thus none of the formulas true at o;, 011, . ..
have been introduced using the (v1d) rule. We can therefore apply Lemma 4.9 to conclude that

me(o;) > me(oit1) > me(oip2) > -

This is a contradiction. O

TERMINATION FOR HYBRID TABLEAUS 11

We will now prove that the calculus of L3 is also complete. To do this we need a few new
notions.

Definition 4.11. Let © be a branch of a tableau, and let o be a prefiz occurring on ©. The
nominal urfather of o on ©, written sg(o), is defined to be the earliest introduced prefix T on ©
for which T ~g o. In other words, sg(c) is defined by

(1) If no nominals are true at o on O, then sg(c) =o.
(2) Otherwise sg(o) is the earliest introduced prefiz on © which makes some nominal true
that o also makes true.

A prefiz o is called a nominal urfather on © if o = sg(7) for some prefix 7.

Lemma 4.12 (Urfather Closure). Let © be a saturated branch in a calculus containing at least
(vId). If o¢ occurs on © then sg(o)¢ also occurs on ©.

Proof. Assume o¢ € ©. If sg(0) = o then there is nothing to prove. So assume sg(o) # 0. In
that case the definition of sg(c) gives us the existence of a nominal a true at both ¢ and sg(0),
where sg (o) is the earliest introduced prefix making a true. Since © is saturated we have closure
under the (vId) rule. Since © contains all of o¢, oca and se(0)a, closure under the (vId) gives us
Se (U)¢ € 0. (]

Lemma 4.13. Let O be a saturated branch in a calculus containing at least (Nom), and let o and
T be mominals occurring on ©. o ~g T if and only if o and T make the same non-empty set of
nominals true on ©.

Proof. The ‘if’ direction follows immediately from the definition of ~g. We thus turn to the ‘only
if” direction. If o ~g 7 then there is a nominal a that both o and 7 make true on ©. Let b be
any nominal true at o. Since © is closed under the (Nom) rule and it contains all of ob, ca and
Ta it must also contain 7b. This proves that every nominal true at o is also true at 7. The other
direction is by symmetry. O

Lemma 4.14 (Urfather Equality). Let © be a saturated branch in a calculus containing at least
(Nom). If o ~o 7 then sg(o) = se(T).

Proof. Assume o ~g 7. Then there is a nominal a such that oa, 7a € ©. By definition, sg(o) is the
earliest introduced prefix that makes some nominal true which o also makes true. Correspondingly,
se(7) is the earliest introduced prefix making some nominal true which 7 also makes true. Since
by Lemma 4.13, 0 and 7 make the same set of nominals true, the two prefixes sg (o) and sg(7)
must be identical.]

The two last lemmata above are important. The former, Lemma 4.13, shows that ~g must be
an equivalence relation whenever © is closed under all applications of the (Nom) rule (Lemma 4.13
shows that the relation ~g must be symmetric and transitive, and taking the reflexive closure of
this relation we then get an equivalence relation). The latter, Lemma 4.14, shows that for each
equivalence class under this relation there is a unique nominal urfather. This urfather is of course
itself a member of the equivalence class. So urfathers are a kind of ‘privileged members’ of the
equivalence classes under ~g: for each equivalence class we can choose the urfather of that class
as a representative. This will allow us, as we will see later, to construct a model from an open
saturated branch using the set of urfathers as the set of worlds of that model. As we noted
above, when two prefixes are ~g-related they denote identical worlds in the intended model, so
it is important that we only make one world out of each equivalence class—the ‘urfather world’.
Alternatively, one could make a model out of the equivalence classes themselves, but that will not
make things any simpler.

Let © be a tableau branch with root og¢g. Note that then we have sg(0p) = 09, implying
that o¢ is a nominal urfather on ©. Thus the root prefix of a tableau branch is always a nominal
urfather on that branch. More generally, any prefix o for which sg(c) = o will be a nominal
urfather on ©. It also holds the other way around, as the following lemma shows:

12 THOMAS BOLANDER AND PATRICK BLACKBURN

Lemma 4.15 (Urfather Characterisation). Let O be a saturated branch in a calculus contain-
ing at least (Nom). Then o is a nominal urfather on © if and only if se(o) = 0.

Proof. The ‘if’ direction immediately follows from the definition of a nominal urfather. So let us
consider the ‘only if’ direction. If ¢ is a nominal urfather then sg(7) = o for some prefix 7. If
7 = ¢ then the proof is complete. Otherwise ¢ ~g 7, by definition of sg. Urfather Equality,
Lemma 4.14, then implies sg (o) = so(7). Since we also have sg(7) = o, we thus get sg(0) = o,
as required. O

Given an open, saturated branch © with root gg¢g, we now define a model M® by

MO = (WO (R®)icn,V®), where
W® = {o|o is a prefix occurring on O}
R = {(0,56(01),...,50(0,3))) | 00i(01,...,0,)) occurs on O}
VO(p) = {o|opoccurson O}

Vo) = {{Uo} if there is no o for which oa € O.

{se(0)} ifoac€®.

In this definition, p is any ordinary propositional symbol and a is any nominal. That V®(a) is
uniquely defined for any nominal a follows directly from Urfather Equality (Lemma 4.14). We are
now ready for the completeness proof.

Theorem 4.16 (Completeness of the calculus of L3). Let © be an open, saturated branch in
the calculus of Lz. For any formula a¢ on © where o is a nominal urfather we have M®, o |= ¢.
In particular, we have M® oy = ¢o where ooy is the root of the branch.

Proof. The proof is by induction on the syntactic structure of ¢. The base cases are ¢ = p and
¢ = —p for propositional symbols p and ¢ = a and ¢ = —a for nominals a. Assume first ¢ = p and
assume op € © where ¢ is a nominal urfather. Then o € V©(p), by definition. This immediately
implies M®, 0 |= p. Assume now ¢ = —p and assume o—p € © where ¢ is a nominal urfather.
Then we cannot have op € © since © is an open branch. Thus we have o ¢ V©(p) which implies
M® o = —p. Assume now ¢ = a and assume ca € © where ¢ is a nominal urfather. Then
we get V©(a) = {se(0)} = {0}, using Urfather Characterisation (Lemma 4.15). From this it
immediately follows that M®, o |= a. Assume finally ¢ = —a and assume o—a € © where o is a
nominal urfather. Since © is saturated it must also contain a formula 7a, by closure under the ()
rule. Thus we have V(a) = {se(7)}. By Urfather Closure (Lemma 4.12) we have sg(7)a € ©.
Since © is thus an open branch containing both c—a and sg(7)a we get 0 # se(7). Thus we
have o ¢ V©(a) which implies M, o = —a. This concludes the base cases. We now turn to the
induction step. The cases where ¢ is on the form ——), 1) Ay or —=(¢) A x) are trivial. Consider the
case where ¢ is of the form Q;(é1,...,¢pz)). Assume 0Q;i(¢1,. .., ¢,)) occurs on © where o is a
nominal urfather. Then since © is closed under applications of the (¢) rule, ® must also contain
formulas of the form:

O'<>i(0'1,. .. >Up(i))
T101,0202, -+, Tp(5) Pp(i) -

By Urfather Closure (Lemma 4.12) this implies that © contains all of the following formulas as
well:

50(01)01,. .+, 50(0p(1))Pp(i)-
The induction hypothesis now gives us
(2) MO se(01) E @1, .., M® 50(0,0)) E bpiiy-

Since 0Qi(01,. .., 0p(;)) occurs on O, we furthermore get

(3) (0,50(01),50(02),...,50(0,31))) € R?.

TERMINATION FOR HYBRID TABLEAUS 13

Combining (2) and (3) immediately gives us M®, o = Qi(P1,---,9p0)), as required. Consider,
finally, the case where ¢ is on the form —0;(¢1,...,¢,@)). Assume 0-Q;(¢1,. .., ¢ya)) occurs on
© where ¢ is a nominal urfather. We need to prove M®, o = =0;(¢1,. .. s @p(i))- If there are no
worlds o1, ...,0,@) such that (o,01,...,0,)) € R then this holds trivially. Otherwise, let such
01,---,0p) be chosen arbitrarily. By definition of RP there must be prefixes 7y, ... s Tp(s) such
that o; = sg(7;) for all j = 1,...,p(i) and such that © contains oQ;(71,...,7,@)). Since © is
saturated it must contain 7;—¢; for some j € {1,...,p(7)} (closure under the (—¢) rule). Urfather
Closure now gives o;—¢; € © which by induction hypothesis implies MO, oj = —¢;. From this it
follows that M®, o = =0;(¢1,. .., Bo(i))- O

The conclusion is that when we replace the rule (Id) by (vId) and (Nom) we get a calculus for
the language L3 which is both sound, complete and terminating.

4.4. Adding satisfaction statements. Now consider adding satisfaction statements to the lan-
guage L3, that is, define a language L4 by the following grammar:

(L) ¢ n=plal-=¢| 1 A2 | Cildr,...0p) | ad

We will define the calculus of L4 to consist of the rules of the calculus of Lz extended with (@)
and (—Q@).

(L4 rules) (_‘)a (_'_‘)a (/\)’ (_'/\)’ (<>)a (_'<>)a (de)v (Nom)a (@)a (_'@)

We will prove soundness, completeness, and termination of this calculus. Soundness is again
simple to prove. Termination is also simple, given that we already now the calculus of L3 to be
terminating. To prove termination we first need a strengthening of Lemma 4.9.

Lemma 4.17 (Decreasing length). Let © be a branch of a tableau in the calculus of Ly not
containing any applications of the (vId) rule. If o <o T then mg(c) > me(7).

Proof. Assume o <g 7. Let ¢ be a formula of maximal syntactic complexity true at 7 on ©. We
need to prove mg(c) > |¢|. The cases where 7¢ has been introduced by an application of a rule
other than (@) and (—@) have already been dealt with in the proof of Lemma 4.9. Thus assume
that 7¢ has been introduced by an application of (@). Then 7¢ must have been introduced together
with a formula 7a by applying (@) to a premise of the form ca¢. Thus we get meg(o) > |ad| > |¢|,
as needed. The case where the rule applied is (—@) is treated exactly the same way. 0

Theorem 4.18 (Termination of the calculus of L,). Any tableau in the calculus of Ly is
finite.

Proof. The proof is the same as the proof of Theorem 4.10 with the only difference that the
reference to Lemma 4.9 should be replaced by a reference to the strengthened Lemma 4.17. O

Completeness of the calculus of L, is also a simple extension of the corresponding result for Ls.
Theorem 4.19 (Completeness of the calculus of Ly). The calculus of Ly is complete.

Proof. The only thing we need to do is to extend the proof of Theorem 4.16 with two cases:
the case where ¢ has the form ai and the case where it has the form —ai. The two cases are
similar, so we will only consider the case of a®. So assume that caiy occurs on the saturated
tableau branch © where o is a nominal urfather. By closure under the rule (@), the branch
must also contain formulas 7a and 7 for some prefix 7. Urfather Closure (Lemma 4.12) we get
se(T)y € ©. Using the induction hypothesis this gives us M®,sg(7) = 1. Since 7a € © we
further get V' (a) = {se(7)}. Thus we have M® o = a1, as needed. O

We have now proven soundness, completeness and termination of the calculus of Ly. The
termination proof is simple in the sense that tableaus in the calculus are bound to be finite. We
do not need a loop-checking procedure in order to ensure termination. However, when we extend
the calculus with more of the rules of Figure 2 then termination can no longer be ensured without
loop-checks. This is the subject of the following section.

14 THOMAS BOLANDER AND PATRICK BLACKBURN

a0 AOp

(~E) and (=) rule
aoQp

(0) rule

00001
o1p
(=E) and (——) rule on 0 AOp

o10p

(¢) rule

01002
o2p
(=E) and (——) rule on 09 AOp

O’2<>p

() rule

02003
03p

FIGURE 5. An infinite tableau using the (—F) rule.

5. TERMINATION WITH LOOP-CHECKS

5.1. Adding the global modality. We now extend L, with the global modality to obtain the
following language Ls:

(Ls) ¢ m=plal=¢| o1 Ad2 | Ci(dr,..., b)) | ad | E
To obtain a complete calculus for Ly we need to add the tableau rules (F) and (—F). Unfortunately,

adding (—F) to the calculus creates the same kind of problems as the addition of (Id) did. This
is shown by the following example:

Example 5.1 (Non-termination). Consider the Ls formula AQp, where ¢ is a unary modal
operator. Here we use A as an abbreviation for ~F—. Thus a formula A¢ is true at a particular
world if and only ¢ is true at all worlds. In the calculus consisting of the rules of L, extended
with the rule (—F) we can then make an infinite tableau with root o9 AQp, as shown in Figure 5.

The problem shown in the example above is somewhat more serious than the problem of Ex-
ample 4.7. Let us try to explain why. Call two prefixes ¢ and 7 in a tableau branch identical
worlds if they make the same set of formulas true on that branch. In order to ensure that tableau
construction processes always terminate we need to make sure that identical worlds are either
impossible or that we can at least recognise them and take the appropriate actions. Otherwise
we might ‘reinvent’ the same world over and over again in the course of constructing a tableau,
and the tableau construction will thus never terminate. In the calculi for L; and Lo one can
never construct more than a finite number of identical worlds because of the decreasing length
of formulas. In the calculus for L3 containing the (Id) rule, one can use this rule to construct
infinitely many identical worlds as shown in Example 4.7. However, we always have a ‘witness’
to when two worlds are made identical by the (Id) rule: there is a nominal that the two worlds
both make true. Thus we can keep track of identical worlds through the nominals, and this is
what allows us to ensure termination by just a simple restriction on the (Id) rule. In the case of
the calculus of L5 containing the (—E) rule we can make identical worlds in a similar way as with

TERMINATION FOR HYBRID TABLEAUS 15

the (Id) rule, but we no longer have any witnesses: in order to realise that o1, 09,... are identical
worlds we need to compare the entire sets of true formulas at those prefixes. This unfortunately
means that we need a more heavy-handed method of ensuring ourselves against reinventing the
same world over and over again in the course of constructing a tableau—we need loop-checks. We
will now show how loop-checks can be applied to ensure termination. We will need a stronger
notion of urfather that looks at the entire set of true formulas at every prefix.

Definition 5.2. Let © be a branch of a tableau. We define the inclusion urfather of a prefiz o
on ©, written ue (), to be the earliest introduced prefiz T for which T® (o) C T®(1). A prefiz o
is called an inclusion urfather on O if o = ug(7) for some prefix 7.

Note the similarities between this definition and the definition of nominal urfathers, Defini-
tion 4.11. The two notions of urfathers are actually closely related, as the following lemma shows:

Lemma 5.3. Let © be a saturated branch in a calculus containing at least (vId). If o is a prefix
making at least one nominal true on © then the nominal urfather and the inclusion urfather of o
coincide.

Proof. Assume ca occurs on ©. We need to prove sg(c) = ug(c). The nominal urfather of o is
the earliest introduced prefix making some nominal b true that o also makes true. Since we then
have ob, sg(0)b € O, and since sg (o) is the earliest prefix making b true, closure under the (vId)
rule gives us that all formulas true at o must also be true at sg(c). To prove that sg(co) is the
inclusion urfather of o we then only have to prove that it is the earliest introduced prefix with this
property. So assume to obtain a contradiction that there exists a prefix 7 introduced earlier than
se(o) making all formulas true that o makes true. Then in particular we get 7b, contradicting
that sg(o) is the earliest introduced prefix making b true. O

For the nominal urfathers we proved three basic properties in Section 4: Urfather Closure
(Lemma 4.12), Urfather Equality (Lemma 4.14), and Urfather Characterisation (Lemma 4.15). By
the lemma above these three properties also hold for the new notion of an inclusion urfather, that
is, the lemmata still hold when we replace sg by ug and replace ‘nominal urfather’ by ‘inclusion
urfather’. Given the assumption of Lemma 5.3, apparently this is only true when considering
prefixes making at least one nominal true. However, if a prefix ¢ is making no nominals true on a
branch ©, then sg(0) = o, so both Urfather Closure and Urfather Characterisation become trivial
in this case. Urfather Equality also becomes trivial, since if ¢ makes no nominals true on O, then
there doesn’t exist any prefixes 7 with o ~g 7.

Let the calculus of Ls be defined to consist of the following rules:

(L5 rules) (_‘)7 (_'_')7 (/\)’ (_‘/\)a (<>)7 (_'<>)7 (Id)v (@)7 (_'@)v (E)’ (_‘E)

Note that we have included the unrestricted (Id) rule again. This is because we are now going
to ensure termination by a loop-check, and this loop-check will take care of the (Id) rule as well.
Our loop-check is formulated as a condition on the construction of tableaus in the calculus of Ls.
The condition is as follows:

(R) A prefix generating rule is only allowed to be applied to a formula o¢ on a branch if o is
an inclusion urfather on that branch.

We will first prove that with this restriction in place, termination is again ensured.

Theorem 5.4 (Termination of the calculus of Ls). Any tableau in the calculus of Ls con-
structed under restriction (R) s finite.

Proof. Assume to obtain a contradiction that there exists a tableau in the calculus containing an
infinite branch ©. Using Lemma 4.3 there must then exist an infinite chain of prefixes

01 <@ 02 <@ 03 <@ "

For each ¢ > 0 we now define ©; to be the initial segment of ® up to, but not including, the first
occurrence of o;41. Consider the following sets of formulas:

Tel (0’1),T@2(02),T@3(03), N

16 THOMAS BOLANDER AND PATRICK BLACKBURN

By the Quasi-subformula Property, Lemma 3.3, these sets are all subsets of the finite set of quasi-
subformulas of the root of ©. Thus there can only be finitely many distinct sets among them, that
is, we must have 79 (0;) = T4 (0;) for some 4,5. We can choose 4, such that i < j. Then the
first occurrence of 0,41 on © will be earlier than the first occurrence of o;;. Thus ©; is an initial
segment of ©;. Therefore we get T (0;) C T9i(0;), and since T (0;) = T (0;) we thus have

Tej (O’j) g Te)j (Ui)-
Since o; is introduced earlier on ©; than o;, this immediately implies that o; can not be an
inclusion urfather on ©;. Now consider the first formula on © containing an occurrence of o;41.
By definition this is the first formula not on ©;, and since ; <g 041 it must have been introduced
by applying one of the prefix generating rules to one of the formulas ¢;¢ occurring on ©;. This is
however in contradiction with restriction (R) since o, is not an inclusion urfather on ©;. O

The next thing to prove is, as above, completeness. Most of what we need for completeness we
have already got. We define for every open, saturated branch © a model M® similar to the one
for the calculus of Ls:

MO = (WO (R®)icp,V®), where
W® = {o|ois an inclusion urfather on ©}
R® = {(o,ue(0o1),..., ue (0oi))) | 00Qi(a1, ..., 0,)) occurs on © and o is an incl. urfather}
VO(p) = {0 € W®|opoccurs on O}

Vo (a) {{00} if there is no ¢ for which oa € ©.

{ue(o)} if oa € 6.

Comparing to the model defined for the calculus of Lz, we have done two things: we have replaced
all occurrences of sg by ug and we have restricted the set of worlds to the set of inclusion urfathers
on O©. The first change is simply because we now consider inclusion urfathers instead of nominal
urfathers. The second change is needed to ensure completeness when the (—F) rule is added, as
shown in the proof of completeness below. Note that V©(a) is still uniquely defined for all nominals
a, since as mentioned above we still have the Urfather Equality property (and © is closed under
applications of (Id) which subsumes (Nom)).

Theorem 5.5 (Completeness of the calculus of Ls). The calculus of Ls with restriction (R)
is complete.

Proof. Let © be an open, saturated branch in the calculus of L5 with restriction (R). To prove
completeness we will, in similarity with Theorem 4.16, prove the following: for any formula o¢ on
O where ¢ is an inclusion urfather we have M®, o |= ¢. The proof is by induction on the syntactic
structure of ¢. The following cases of ¢ were considered in the proof of Theorem 4.16:

b, _‘p7a7_‘a7_‘_‘¢’w AX, Oi(¢17 s a¢p(i))7_‘<>i(¢l7 i 7¢p(z))

and the cases aiy and —at were considered in Theorem 4.19. The proofs for these cases can all be
reused when simply replacing ‘nominal urfather’ by ‘inclusion urfather’ and sg by ug. As noted
the properties Urfather Closure and Urfather Characterisation used in the proofs still hold when
we use the new inclusion urfathers instead of the nominal urfathers. The general point is that
whenever we consider a formula o¢ occurring on a saturated branch © where ¢ is an inclusion
urfather, then all rules of the calculus have been allowed to be applied to c¢—even the prefix
generating ones. The only thing left is thus to consider the cases where ¢ has the form Ev or
—E1. Assume ¢ has the form Ev and that © contains o E1v where o is an inclusion urfather.
Closure under the (E) rule at urfather prefixes then implies that © must also contain a formula
79 for some prefix 7 (since o is an inclusion urfather, application of (E) has not been blocked
by restriction R). By Urfather Closure, ug ()t € ©. The induction hypothesis then gives us
M® ug () = ¢ which proves that M®, ¢ = Ev. Assume now that ¢ has the form —E+ and that
O contains 0~ FE1) where o is an inclusion urfather. We need to prove M®, o = ~E4, that is, for

TERMINATION FOR HYBRID TABLEAUS 17

oo(p AN A(Op AO~0"—p))

(A) rule

oop
o0A(Op AO~"O"—p)

(=E) and (——) rule
oo(Op AO~0O" —p)
(A) rule

oolp
oo~ 0O —p

(0) rule

00001
o1p
(=E) and (—=) rule on o A(OpAO~0O™ —p)

o1(Op AO~0O" —p)

(A) rule

a10p
o "0 —p
(=07) and (=) rule

Uomi_'p

FIGURE 6. A saturated tableau in the calculus of L with restriction (R).

all 7 € WO, M® 7 |=). Let therefore an arbitrary element 7 in W® be chosen. Then 7 is an
inclusion urfather on ©. By closure under the (—FE) rule we must have that 7= occurs on O.
Since 7 is an inclusion urfather, the induction hypothesis gives us M®, 7 = =1, as required. [

5.2. Adding the inverse modalities. The final prefixed calculus we are going to consider is
obtained by extending the calculus of Ls with the inverse modalities ¢; ;. This brings us back to
the calculus of L containing all of the rules of Figure 2. The inverse modalities pose a problem for
our present way of doing things. Let us consider an example.

Example 5.6 (Inverse modalities). Consider the L formula p A A(Op A OO~ —p) where ¢ is
a unary modality. Here we use A as an abbreviation for mE—- and [0~ as an abbreviation for
=0~ = (note that since ¢ is unary it only has a single inverse modality ¢). Under restriction
(R) introduced above a saturated tableau with this formula as root will look as in Figure 6. The
(0) rule can not be applied to o1 Op since o is the inclusion urfather of o1 on the branch, which
means that oy is itself not an inclusion urfather and thus the prefix generating rules are blocked
at o1. However, if we did not have restriction (R) then we could actually make the tableau close
by continuing the branch as shown in Figure 7. The extended branch closes since it contains both
oop and op—p.

The example shows that we will not get completeness with restriction (R) when we add the in-
verse modalities. Thus we somehow have to invent a new restriction that will give us completeness
without sacrificing termination. We will do this through a third concept of an urfather.

Definition 5.7. Let © be a branch of a tableau. If two prefites o and T make the same set
of formulas true on © we will call them twins on © (that is, what we previously called identical
worlds). A quasi-urfather on © is a prefiz o for which there are no pair of distinct twins 7, 7" <& o.

18 THOMAS BOLANDER AND PATRICK BLACKBURN

() rule on o1 0p
01002
02p
(=E) and (=) rule on oo A(OpAO~" 0™ —p)

o2(Op AO™0"-p)
(A) rule

o20p
o0 =p
(=¢7) and (——) rule

od"—p

(=07) and (—=—) rule

opp

FIGURE 7. Continuation of the tableau of Figure 6 without restriction (R).

Note that if o is a quasi-urfather on © and ¢’ <§ o then o’ is necessarily also a quasi-urfather.
We now define the new restriction on the construction of tableaus, restriction (D), as we defined
restriction (R), but with ‘inclusion urfather’ replaced by ‘quasi-urfather’:

(D) A prefix generating rule is only allowed to be applied to a formula o¢ on a branch if o is
a quasi-urfather on that branch.

We will now prove termination and completeness of the calculus of L with restriction (D).

Theorem 5.8 (Termination of the calculus of L). Any tableau in the calculus of L constructed
under restriction (D) is finite.

Proof. First note that if there exists an infinite tableau with an infinite branch ©, then by
Lemma 4.3 there exists an infinite chain of prefixes

01 <@ 02 <9 03 <@ """ .

Let @ be the set of quasi-subformulas of the root formula of ©, and let n be the cardinality of Q.
Let ©' be the initial segment of © up to, but not including, the first occurrence of oon . oon o is
then a prefix introduced to © by applying a prefix generating rule to a formula of the form oon1¢
on ©’. Because of restriction (D), ozny1 must then be a quasi-urfather on ©’. However, since all
the sets

T (01), T (02),...,T% (53n41)

are subsets of @), and since @ has cardinality n, at least two of these sets must be identical. This
contradicts oon 1 being a quasi-urfather on ©'. O

In proving completeness of the calculus of L things are going to become a bit more complicated
than in the previous two cases. In the previous cases we used the urfathers as worlds in the
constructed model, and by the definition of urfather there could never be two urfathers making
the same nominals true. This does unfortunately not hold for quasi-urfathers, as the following
example shows:

Example 5.9 (Quasi-urfathers). Consider the saturated tableau in the calculus of L presented
in Figure 8. It consists of a single branch ©. The branch contains two prefixes o1 and ¢} which
both make a true. However, the two prefixes are also both quasi-urfathers. The <g relation looks

TERMINATION FOR HYBRID TABLEAUS 19

o0Q(aAp) ANO(aNq)
(A) rule

ao0(a A p)
ao(a A q)

(¢) rule on oo (a A p)
o0Qo1

oi(aAp)

(A) rule

o1a
o1p

(¢) rule on ogO(a A q)

000
oi(anq)

(A) rule

ola

19

(Id) rule on o’ (ang),01a,01a
o1(a N q)

(") rule

019

(Id) rule on o1 (aAp),o1a,01a
o1(anp)

(") rule

!
o1p

FIGURE 8. A saturated tableau in the calculus of L with restriction (D).

like this:
o0
<y \<®
o1 ol
Since o7 and of are not related by <g, they both become quasi-urfathers on © even though they

make the same nominals true. Since they make the same nominals true, they must denote the
same world.

The example shows that it is possible for two distinct quasi-urfathers to make the same set of
nominals true. This was not the case with the two previous concepts of urfathers, as Urfather
Equality showed (Lemma 4.14). Since in the model constructed from an open tableau branch we
need each nominal to be true in exactly one world, we can not as in the previous cases simply
let the worlds of the model be the urfathers. One way to get around this problem would be to
build models with equivalence classes of quasi-urfathers as worlds. We will however take another
approach which is slightly simpler to present and more in line with the previous completeness
proofs: we will define yet another notion of urfather.

Definition 5.10. Let © be a branch of a tableau, and let o be a prefiz occurring on ©. The
identity urfather of o on ©, written ve(o), is the earliest introduced prefiz T satisfying:

20 THOMAS BOLANDER AND PATRICK BLACKBURN

(1) 7 is a twin of 0.

(2) 7 is a quasi-urfather.
If such a prefix does not exist we let vg(o) be undefined. Thus ve is only a partially defined
mapping. A prefiz o is called an identity urfather on © if o0 = vo(r) for some prefiz T.

Example 5.11 (Identity Urfathers). Consider again the branch © presented in Figure 8. As
noted in Example 5.9, both ¢; and o} are quasi-urfathers. We also see that T° (o) = T®(a}), so
o1 and o] must be twins. Since o7 is introduced earlier to © than o}, o7 is the identity urfather
of o7. Thus the only identity urfathers on © are o; and the root prefix og. We can of course build
a model of the root formula of © by using these two prefixes as the set of worlds.

Note that if o is a quasi-urfather on a branch © then vg(o) is necessarily defined. Note also
that the root prefix of a branch © will always be an identity urfather on that branch. We will
use standard notation and express that vg(c) is defined by writing ¢ € dom(ve). We have the
following result:

Lemma 5.12. Let © be a branch of a tableau, and let o be a quasi-urfather on ©. If 0 <o T then
7 € dom(ve).

Proof. Assume o <o 7 where o is a quasi-urfather on ©. We need to prove 7 € dom(vg). If T
is a quasi-urfather on © then this is trivial. So assume conversely that 7 is not a quasi-urfather.
Then there must exist a pair of distinct twins v,+" with v <§ v’ <§ 7. Since o is a quasi-urfather
we can not have both v <§ o and v/ <§ 0. Since 0 <o 7 this implies 7/ = 7, using Lemma 4.2.
Thus 7 has v as a twin, and since necessarily v <§ o we get that v is a quasi-urfather. Since T
thus has a quasi-urfather twin, vg(7) must necessarily be defined.]

As in the two previous cases we also have Urfather Closure, Urfather Equality, and Urfather
Characterisation results.

Lemma 5.13 (Urfather Closure). Let © be a branch of a tableau in any calculus. If o¢ occurs
on © and o € dom(vg) then ve (o) also occurs on ©.

Proof. Since vg(o) by definition is a twin of o, the two prefixes make the same formulas true on
O. That is, if o¢ occurs on O then so does vg (o). O

Lemma 5.14 (Urfather Equality). Let © be a saturated branch in the calculus of L. If o and
T are two elements of dom(ve) both making some nominal a true on O, then ve (o) = ve(T).

Proof. Assume 0,7 € dom(ve) and oa,Ta € ©. Since O is saturated, closure under the (Id) rule
implies that o and 7 must make the same set of formulas true. Thus they are twins. The definition
of ve then immediately implies vg (o) = vo(T). O

Lemma 5.15 (Urfather Characterisation). Let © be a branch of a tableau in any calculus.
Then o is an identity urfather if and only if ve (o) = 0.

Proof. Both the ‘if” and ‘only if’ direction immediately follows from the definitions of vg and
‘identity urfather’. O

We are now ready for the model construction. Given an open, saturated branch © with root
oodp in the calculus of L, we define a model M® by

MO = (WO (R®)icpn,V®), where
W® = {o|o is an identity urfather on ©}
R? = {(ve(o),ve(o1),... 00 (0,3))) | 00i(0o1,. .., 0,0:)) occurs on © and
0,01,...,0,) € dom(ve)}
VO(p) = {o€W®|opoccurs on O}

Vo(a) — {{Uo} if there is no o € dom(ve) for which oa € ©.

{ve(o)} if oa € © where o € dom(vg).

TERMINATION FOR HYBRID TABLEAUS 21

That V®(a) is uniquely defined for any nominal a follows directly from Urfather Equality (Lemma 5.14).
We are now finally ready for the completeness proof of L with restriction (D).

Theorem 5.16 (Completeness of the calculus of L). Let © be an open, saturated branch in
the calculus of L with restriction (D). For any formula o¢ € © where o is an identity urfather
we have M® o |= ¢. In particular, we have M® oy |= ¢ where aopy is the root of the tableau.

Proof. As in the previous completeness proofs, the proof is by induction on the syntactic structure
of ¢. In the cases where ¢ has one of the forms p, —p, a, ==, ¥ A x, =(¥ A x), =Qi(P1,. .., Ppai))
or ~FE1 we can directly reuse the previously given proofs by simply replacing references to sg
and ug by vg and replacing references to ‘nominal urfather’ and ‘inclusion urfather’ by ‘identity
urfather’. This is because we still have the basic properties Urfather Closure (Lemma 5.13) and
Urfather Characterisation (Lemma 5.15). If ¢ has one of the forms —a, 0i(¢1,. .., 9,x)), ay, ~ar)
or E then we can also reuse the previously given proofs, but in all cases we need to add the
following small piece of argumentation: when a prefix generating rule is applied to a premise o)
to produce a conclusion 7y, and when furthermore o is an identity urfather, then 7 € dom(vg).
This is a direct consequence of Lemma 5.12. This piece of argumentation is needed since now
the urfather mapping vg is only partially defined, and we need to ensure that we only apply it to
prefixes for which it is defined. The only remaining cases of ¢ to consider are <>i_, j (A1, -+, bp(i)) and
ﬂ<>i_7j(¢1, <oy Bp(i))- First assume © contains a<>i_)j(¢1, -+, p(i)) where o is an identity urfather.
Then by closure under the rule (¢~) at identity urfather prefixes we get that for some prefixes

O1,y. 05000, © contains 010;(02,...,04,0,041,...,0,)) as well as op¢y for all k = 1,..., p(i).
The prefixes o1,...,0,; are generated by this particular rule application, so we have o <g o
for all k =1,...,p(4). Since o is an identity urfather, Lemma 5.12 gives us o} € dom(veg) for all

k=1,...,p(i). Thus by definition of R, we get

(ve(01),v6(02), - .-, ve(0;),v6(0), v6(0)t1), - - - ve () € RY

which, by Urfather Characterisation, is equivalent to

(4) (ve(01),v6(02), - .., ve(0;),0,v6(0j41), -, ve(0,m)) € RY

By Urfather Closure, © contains vg (o) for all k = 1,...,p(i). The induction hypothesis then
gives M® vg(or) | ¢y for all k =1,..., p(i). Combining this with (4) finally gives us M®, o =
Oi (@15, 0p(i)), as needed. Consider the case where ¢ has the form =0, (¢1, ..., ¢,;)). Assume
© contains 00, (1, ..., Py(i)) where o is an identity urfather. We need to prove M® o =
ﬂogj(qﬁl, ceey (bp(i)). If there do not exist worlds o1, ...,0,@;) such that

(C]
(0'1,...,0j,0,0’j+1,...,0'p(i)) S Rz

then this holds trivially. Otherwise, let such o1,...,0,¢;) be chosen arbitrarily. We then need to

prove the existence of an [€ {1,...,p(i)} such that M® o; = —¢;. By definition of RP there
must exist prefixes o7,...,0], ;) such that o = ve(o}) for all k = 1,...,p(i) and © contains
010i(0Y, -+, 0%,0,0% 4,0, a’p(i)). Since O is saturated, it must then also contain o}—¢; for some
le{1,...,p(i)} (closure under the (=0 ~) rule). Urfather Closure then gives vg(o])—¢; € O, that
is, 0y-¢; € ©. Since oy is an identity urfather, the induction hypothesis gives M®, o, = =¢y, as
required. O

We can extend the language L further to include the down-arrow binder and/or quantifiers
over nominals. However, the corresponding logics are known to be undecidable [2], so we have
no way of making terminating tableau calculi for these extended logics. However, we can still
prove completeness. It is simple to extend the tableau calculus of L to a complete calculus for the
language including both the down-arrow binder and quantifiers over nominals; for details, see [8]
or [3].

22 THOMAS BOLANDER AND PATRICK BLACKBURN

6. INTERNALISED TABLEAU CALCULI

So far we have only considered prefixed tableau calculi. But it is also possible to give fully
internalised tableau calculi; that is, calculi in which all tableau formulas belong to the object
language. Such tableaus are of theoretical interest because when they are extended with pure
axioms (that is, axioms whose only atoms are nominals) they are automatically complete with
respect to the class of frames the axioms define. Nonetheless, they seem more complex than pre-
fixed systems, and at present the computational significance of pure axioms is not well understood
(adding pure axioms can easily lead to non-terminating behaviour, as we discuss at the end of the
paper), so prefixed systems seem to be regarded as the more down-to-earth option. Somewhat to
our surprise, however, it turns out that it is possible to define an internalised tableau system that
terminates without loop-checks and without the need for non-local side conditions on the rules.
That is, the tableau system we are about to discuss, although internalised, is the simplest one we
know of for hybrid logic.

In a prefixed tableau systems, each formula is either a prefixed formula of the form o¢ or
an accessibility formula of the form 00;(o1,...,0,3)). Both prefixed formulas and accessibility
formulas are meta-formulas: they contain prefixes, which are meta-linguistic symbols. In an
internalised tableau calculus all formulas in a tableau need to be pure object language formulas,
that is, not containing any meta-linguistic symbols like prefixes. In the case of hybrid logic it is
not difficult to turn a prefixed tableau calculus into an internalised one. We simply perform the
following trick: we turn the prefixes into nominals, that is, we replace the requirement PrefMNom =
() by the requirement Pref C Nom. Then all the formulas occurring in the tableau rules of Figure 2
become object language formulas, in fact they all become satisfaction statements in hybrid logic.
Thus the calculus becomes internalised.

Since the only thing we have done to internalise the prefixed calculus is to count the prefixes
among the nominals, it is not hard to prove that all the previous tableau-based decidability results
carry over to the internalised framework—we simply reuse all the previously given proofs. That is,
we automatically get internalised calculi for all of the considered languages L1, Lo, ..., L5 and L—
and in addition we get termination results for them for free. However, a little caution is needed. If
we want to reuse the previous proofs, then we also need to retain an explicit distinction between
the nominals that belong to Pref and those which doesn’t. The nominals in Pref are those which
are denoted o, 7, ... in the tableau rules, and the nominals in (Nom — Pref) are those which are
denoted a, b, ... in the tableau rules. Distinguishing explicitly between two sorts of nominals in
ones tableau rules is of course not particularly elegant. Fortunately, it is possible to do away with
this and retain the tableau-based decision algorithms in only slightly modified form. However, it
appears that even if we have only one sort of nominals in the tableau rules, we still need some
distinction between the nominals that ‘act as prefixes’ and the nominals that don’t. Consider for
instance the internalised version of the (¢) rule, which we denote [¢],

a/<>i<¢17 RN ¢p(2))

aQila, ..., ap(i))
a1 P1

[©]

Up(i) Pp(i)

Consider the first conclusion of this rule, a{;(a1,...,a,@)). This is obviously a formula corre-
sponding to an accessibility formula in the prefixed calculus. So the nominals ay,...,a,) act as
prefixes. In order to ensure a terminating tableau procedure it is necessary to be able to distinguish
between occurrences of formulas of the form a{;(a1,...,a,)) where the a; act as prefixes and
occurrences where they do not. This can be done by introducing the following simple definition.
A formula of the form a{;(a1,...,a,x;)) occurring in an tableau is called an accessibility formula
if it is the first conclusion of an application of [0]. As we will see below, it is sufficient to be able
to distinguish between accessibility formulas and other formulas.

TERMINATION FOR HYBRID TABLEAUS 23

The internalisation obtained by simply letting Pref € Nom does not in itself give us much new.
The real advantage of the internalisation is the fact that we can now simplify the rules of Figure 2
to obtain an internalised calculus which is simpler than what we have been able to obtain in the
prefixed case. If one looks for simplifications in the internalised version of the rules of Figure 2,
it is immediate that (@) and (—@Q) are more complicated than they need to be. In (@), we don’t
really need a new nominal 7 to witness the fact that a and ¢ hold at the same world. We can
simply replace the rule by the following one:

abo

@

Similarly, we can simplify (—@) to:

a—bgp [
b—¢
Finally, and most importantly, we can simplify the (Id) rule. It can be replaced by the following;:

al

ag, ab
be

At first, this might not appear to be a significant simplification. But it is: with this [Id] rule
instead of the original prefixed one we can give a termination proof of an internalised calculus
for L4 in which neither loop-checks nor non-local side conditions on the tableau rules are needed.
Compare this with the prefixed calculus of L4, where we had to ensure termination by replacing
the original (Id) rule by the two rules, (Nom) and (vId), where (vId) had a non-trivial and non-
local side condition (a side condition in which the entire branch had to be taken into account). In
the internalised system, on the other hand, the only side condition we need to ensure termination
of the internalised calculus is that [Id] is not applied to accessibility formulas. Before we show
how termination is obtained, let us present the entire internalised calculus for the language Ly.
Recall that L, is the language given by the following grammar.

(L) ¢ n=plal=¢|d1 A2 | Cildr,.. . 0p) | ad

The internalised calculus for L, is presented in Figure 9. Our goal in the following is to show
that the calculus of Figure 9 is both terminating and complete—using no loop-checks. Thus it
gives rise to a much nicer decision procedure than the prefixed one for L,. Furthermore, the
calculus of Figure 9 also provides us with a simplification of the original internalised calculus of
Blackburn [3]. Blackburn’s system contains rules corresponding to all of the rules of Figure 9, but
it also contains some additional ones: [Ref], [Sym], and [Bridge]. These additional rules actually
make the calculus non-terminating, so a loop-check is needed to ensure termination (this is how
termination is ensured in the tableau-based decision procedure for Blackburn’s system given in
[5]). However, in our simplified calculus, termination is ensured without any loop-checks, as shown
below. So not only are the rules [Ref], [Sym], and [Bridge] not needed for completeness, by leaving
them out we can actually make a much simpler decision method for the logic.

In the following we will refer to the calculus consisting of the rules of Figure 9 as the internalised
calculus. Tableaus in this calculus are defined using the same conventions as for the prefixed
calculus. Most important, a tableau branch is said to be closed if it contains a pair of formulas
a¢ and a—¢, where a is a nominal and ¢ is any formula. Otherwise it is called open. A tableau in
the internalised calculus will be called an internalised tableau. Let 7 be an internalised tableau.
If a is a nominal occurring in the root formula of the tableau then a is called a root nominal of
7. Other nominals occurring on 7 are called non-root nominals of 7. Let © be a branch of an
internalised tableau. If a rule application on © has a formula a¢ as one of its conclusions, then
a¢ is said to be produced by that rule on ©. For convenience, the notion of quasi-subformulas is
redefined in the following way. We say that a formula a¢ is a quasi-subformula of a formula by if
either ¢ is a subformula of 1) or ¢ has the form —y, where x is a subformula of .

[1d]

24 THOMAS BOLANDER AND PATRICK BLACKBURN

a—|b a—|—\¢)

w [-] ” —]
a(p A1) a=(¢ A Y)
— (Al —— [/

ag a=¢ | ap

a

a_‘<>i(¢17 cey ¢p(i))

aQi(P1,- -\ Pp(s)) aQi(a1, ..., am0))

(0112 [=0]
aQi(ai, ..., a,)) a1=¢1 | az—da | -+ | api) " pi
a1 ¢y
(i) Po(i)
abo a—bo
— Q) -Q]
bp b—¢
ag, ab
e [Ld]”
bo
! The nominals ay, ..., a,(;) are all new to the tableau.

2 None of the premises are accessibility formulas.

FIGURE 9. Internalised calculus for the hybrid language Ly.

6.1. Termination of the internalised calculus. In proving termination of the internalised
calculus, we will follow the termination proofs given for the prefixed calculi very closely. First we
have a quasi-subformula property corresponding to Lemma 3.3.

Lemma 6.1 (Quasi-subformula Property). Let 7 be an internalised tableau. For any formula
a¢ occurring on T, one of the following holds:

e a¢ is a quasi-subformula of the root formula of T .

e a¢ is an accessibility formula of T .

Proof. As for Lemma 3.3, this is easily proven by going through each of the rules of the tableau
calculus. 0

Let © be a branch of an internalised tableau. For each nominal a occurring on © we define a
set of formulas T (a) by

T9(a) = {¢ | ap € © and a¢ is a quasi-subformula of the root formula}.
We now have the following result, corresponding to Lemma 3.4.

Lemma 6.2. Let © be a branch of an internalised tableau, and let a be any nominal occurring on
©. The set T®(a) is finite.

Proof. Trivial from the definition of 7°(a). O

Note that in the internalised calculus the only rule that can introduce new nominals to a tableau
is the [Q] rule. The following definition corresponds to Definition 4.1.

Definition 6.3. Let © be a branch of an internalised tableau. If a nominal b has been introduced to
the branch by applying the rule [O] to a premise aQi(d1, ..., ¢pa)) then we say that b is generated
by a on O, and we write a <g b.

TERMINATION FOR HYBRID TABLEAUS 25

Note that when a nominal b has been introduced to a branch by an application of [¢] to a
premise aQ;(¢1,...,¢,x;)) then the first conclusion of that rule application will be an accessibility
formula of the form a{;(...,b,...). Thus a nominal b is generated by a nominal a on a branch if
and only if that branch contains an accessibility formula of the form a{;(...,b,...).

We now have the following lemma, corresponding to Lemma 4.2.

Lemma 6.4. Let © be a branch of an internalised tableau. The graph G = (N®, <g), where N©
is the set of nominals occurring on ©, is a finite set of wellfounded, finitely branching trees.

Proof. That G is wellfounded and finitely branching is proved exactly as in Lemma 4.2, except
that reference to Lemma 3.4 is replaced by reference to the variant for the internalised calculus,
Lemma 6.2. What is left is to prove that G is a finite set of trees. This follows from the fact
that each nominal in N© can be generated by at most one other nominal, and the fact that each
nominal in N© must have one of the finitely many root nominals as an ancestor. O

Lemma 6.5. Let © be a branch of an internalised tableau. Then © is infinite if and only if there
exists an infinite chain of nominals

a1 <@ a2 <@ az <@ - .

Proof. The proof is similar to the proof of Lemma 4.3. The ‘if’ direction is trivial. To prove the
‘only if” direction, let ® be any infinite tableau branch. ©® must contain infinitely many distinct
nominals, since it follows immediately from Lemma 6.1 that a tableau with finitely many nominals
can only contain finitely many distinct formulas. This implies that the graph G = (N©, <g)
defined as in Lemma 6.4 must be infinite. Since by Lemma 6.4, G is a finite set of wellfounded,
finitely branching trees, G must then contain an infinite path (a1, a2,as,...). Thus we get an
infinite chain a1 <@ as <o a3z <e -+ -. O

Definition 6.6. Let © be a branch of an internalised tableau, and let a be a nominal occurring
on ©. We define me(a) by

mo(a) = max{|¢| | a¢ € O},
Corresponding to Lemma 4.17 we now have the following result.

Lemma 6.7 (Decreasing length). Let © be a branch of an internalised tableau. If a <g b then
me(a) > me(b).

Proof. Assume a <g b. Let ¢ be a formula of maximal length true at b on ©. We need to prove
me(a) > |¢|. The formula bp can not have been introduced on © by applying any of the rules
[=], [A] or [=A], since this contradicts the maximality of ¢. Assume b¢ has been introduced by
applying [@] to a premise of the form abp. By Lemma 6.1, ab¢ is a quasi-subformula of the root
formula. Thus b must be a root nominal. However, this is a contradiction, since by assumption b is
generated by a, and can thus not be a root nominal. Thus [@] can not have been the rule producing
bop. A similar argument shows that b¢ can not have been produced by [-@] either. Now assume
that b¢ has been introduced by applying [Id] to premises a¢ and ab. Then by Lemma 6.1, ab is a
quasi-subformula of the root formula, and thus b is again a root nominal, which is a contradiction.
Thus b¢ can not have been produced by [Id] either. Thus b¢ must have been introduced by one
of the rules [-], [0] or [-{]. In the case of [-] we get |¢| = 1. Since a has generated b, there must
be at least one formula v of length > 1 such that ay) € ©. Therefore, mg(a) > |¢|, as needed. In
the case of [Q], the rule instance producing b¢ must have the following form

a’Ol—(...,qﬁ,...)
a'Oi(...\b,...)

bo

26 THOMAS BOLANDER AND PATRICK BLACKBURN

Note that b¢ can never be the first conclusion of this rule instance, since that would contradict the
maximality of ¢. By definition of <o we must now have a’ <g b. Since we have already assumed
a <o b, Lemma 6.4 implies a’ = a. Thus we get

me(a) = me(a’) > [0i(..., ,...) > |¢],

as needed. Now consider the case where b¢ is introduced by an application of [-¢]. In this case
b¢ must be on the form b—) and introduced by applying [-0] to a pair of premises of the form

a/ﬁoi(...,ll),...), a’(}i(...7b,...).

Consider the premise a’Q;(...,b,...). Since b is a non-root nominal, the formula a’'Q;(...,b,...)
can not be a quasi-subformula of the root formula. Thus, by Lemma 6.1, the formula must be an
accessibility formula. This implies ' <@ b, and thus Lemma 6.4 again implies ¢’ = a. Therefore
we get

me(a) =me(a’) > |=0:(...,1¥,...)| > || = 4],

as required. O

We can now finally prove termination of the internalised calculus. We simply use the same
argument as in the proof of termination for the calculus of Ly (Theorem 4.6).

Theorem 6.8 (Termination of the internalised calculus). Any tableau in the internalised
calculus is finite.

Proof. Assume there exists an infinite internalised tableau. Then it must have an infinite branch
O. By Lemma 6.5, there exists an infinite chain

a; <@ a2 <@ a3 <@ " .
Now by Lemma 6.7 we have
me(a1) > me(az) > me(as) > -
which is a contradiction, since mg(a) is a non-negative number for any nominal a. t

6.2. Completeness of the internalised calculus. We will now prove completeness of the in-
ternalised calculus. The completeness proof closely follows the lines of the previously given com-
pleteness proofs for the prefixed calculi. Let © be a branch of an internalised tableau, and let a be
a nominal occurring on O. a is called a right nominal on © if there exists a nominal b such that
the formula ba occurs on ©. Note that by Lemma 6.1, all right nominals must be root nominals.

Definition 6.9. Let © be a branch of an internalised tableau. We define a binary relation ~g on
the right nominals of © by
a~ob iff abeO.

Lemma 6.10. Let © be a saturated branch of an internalised tableau. The relation ~g is an
equivalence relation.

Proof. We need to prove that ~g is reflexive, symmetric, and transitive. To prove reflexivity, let
a be any right nominal of ©. Then, by definition, there must be a nominal b such that ba occurs
on O. Now, if we apply [/d] with the premise ba in both positions then we get the conclusion
aa. Since © is saturated it is in particular closed under all possible applications of [Id], and thus
aa must occur on ©. This proves reflexivity. To prove symmetry, assume ab € ©, where a and
b are right nominals. We need to prove ba € 0. By reflexivity, we have aa € ©. Applying [Id]
to premises aa and ab gives the conclusion ba. Since © is saturated this implies ba € ©, proving
symmetry. To prove transitivity, assume ab,bc € © where a, b and ¢ are right nominals. By
symmetry we have ba € ©. Applying [Id] with premises bc and ba gives the conclusion ac, as
needed.]

Definition 6.11. Let © be a saturated branch of an internalised tableau, and let a be a right
nominal of ©. The equivalence class of a with respect to ~g is denoted [alg.

TERMINATION FOR HYBRID TABLEAUS 27

We can assume that the set of nominals Nom is totally ordered, for instance by simply letting
Nom = N, and use the standard ordering on N. Given such a fixed total order on the nominals, we
will for any finite set of nominals A use min(A) to denote the smallest member of A with respect
to that ordering.

Definition 6.12 (Urfathers). Let O be a saturated branch of an internalised tableau, and let a
be any nominal occurring on ©. The urfather of a on ©, denoted ug(a), is defined by

ue(a) = {min([ble) ifab € ©

a otherwise.

We need to ensure that ug is uniquely defined by the above cases. It suffices to prove that if
ab and ac both occur on O then [blo = [cle. So assume ab,ac € O. Since [Id] can be applied to
these two premises to give the conclusion ¢b, we must have ¢b € ©, since © is saturated. This then
implies ¢ ~g b and thus [c]e = [b]e, as needed. We have the following simple result concerning
urfathers.

Lemma 6.13. Let © be a saturated branch of an internalised tableau. If a is a right nominal of
© then ug(a) = min([ale).

Proof. If a is a right nominal then by Lemma 6.10, aa € ©. Using the definition of ug this
immediately implies ug(a) = min([a]e). O

For completeness, we are going to need one of our old friends, Urfather Closure.

Lemma 6.14 (Urfather Closure). Let © be a saturated branch of an internalised tableau. If
ap € © and a¢ is not an accessibility formula then ug(a)p € O.

Proof. Assume a¢ € O, where a¢ is not an accessibility formula. If ug(a) = a then there is
nothing to prove. So assume ug(a) = min([blo) where ab € ©. Applying [Id] to premises a¢, ab
gives the conclusion b¢. Since ug(a) = min([b]e) we must have b ~¢ ug(a) and thus bug(a) € ©.
Applying [Id] to premises bo, bug(a) gives the conclusion ug(a)¢. Since © is saturated, it is in
particular closed under all possible applications of [Id] where the premises are not accessibility
formulas, and thus we must have ug(a)$ € ©, as needed. O

Given an open, saturated branch © of an internalised tableau, we now define a model M® by

MO = (WO (R®)icn,V®), where
W® = {a|ais anominal occurring on O}
RP = {(a,ue(ai),...,uelaym)) | adi(as, ..., ay)) occurs on O}
VO(p) = {a|ap occurs on O}
VO(a) = {ue(a)}.

Note that we have a simpler definition of V© than for the prefixed calculus. We are now ready to
prove completeness.

Theorem 6.15 (Completeness). Let © be an open, saturated branch of an internalised tableau,
and let ap be a formula occurring on © which is not an accessibility formula. Then M® ug(a) =

o.

Proof. The proof is, as in the previous cases, by induction on the syntactic structure of ¢. Assume
first ap € ©, where p is an ordinary propositional symbol. We need to prove M®, ug(a) = p.
By Urfather Closure (Lemma 6.14) we have ug(a)p € © and thus by definition of V© we get
ue(a) € VO(p), proving M, ueg(a) = p. Assume now a—p € ©. Then ug(a)-p € O, and since ©
is open, ug(a)p ¢ ©. This implies ug(a) ¢ VO(p), and thus M® ug(a) = —p. Assume ab € O,
where b is a nominal. Then b is a right nominal. Thus, by Lemma 6.13, ug(b) = min([b]g). Since
ab € © we also have ug(a) = min([b]g), and thus ug(b) = ug(a). This implies VO (b) = {ug(a)}
and thus M® ug(a) = b, as needed. Now assume a—b € O, where b is a nominal. Closure

28 THOMAS BOLANDER AND PATRICK BLACKBURN

under the [] rule then gives bb € ©. Thus b is a right nominal, and ug(b) = min([b]e), by
Lemma 6.13. Therefore ug(b) ~eo b, and by definition of ~g this implies ug(b)b € ©. Since
a—b € ©, Urfather Closure gives ug(a)-b € ©. We now have that © contains both ug(b)b and
ue(a)-b. Since O is open this implies ug(b) # ug(a). By definition of V© we have VO(b) =
{ue(b)}, and we thus get VO (b) # {ue(a)}. This immediately implies M®, ug(a) = —b. Assume
now aQi(¢1,...,Pp)) € O, where the formula is not an accessibility formula. Then by Urfather
Closure, we have ug(a)0i(¢1,...,¢pi)) € ©. Closure under the [¢] rule now gives that there
exists nominals ay, ..., a,) such that

(5) ue(a)i(at, ..., ayzi) € O

(6) a191,a202, .., Ay Pp(i) € O-
Using (5) and the definition of RY gives us

(7) (ue(a),ue(a1),...,ue(ayym))) € R?.

Using (6) and the induction hypothesis gives us

M(—),U,@(al) ': ¢1
M@,u@(QQ) ': ¢2
(8) .

MO ue(api) [dpu)-
Combining (7) and (8) then immediately gives

M@,UQ(G) ': <>i(¢17 SERE) ¢p(z))a
as required. Now assume a—0;(¢1,...,¢,)) € ©. Then ug(a)=0i(¢1,...,¢pi)) € © by Urfather
Closure. We need to prove M® ug(a) = =0i(é1, ..., Gp(i))- If there are no nominals ay, ..., a,q)
such that (ue(a),a1,...,a,z)) € RP, then this holds trivially. Otherwise, let such ay, ... s Qi
be chosen arbitrarily. By definition of RZQ there must be prefixes bi1,...,b,;) such that a; =
ug(b;) for all j = 1,...,p(i) and such that © contains ue(a)Qi(b1,...,b,)). Closure under
[~0] now gives that © must contain b;j—¢; for some j € {1,...,p(?)}. Induction hypothesis
implies M®, ug(b;) = —¢;, and since ug(b;) = a; this gives M®,a; = —¢;. Since the nominals
ai, ..., a,;) were chosen arbitrarily with the property (ue(a),a1,...,a,u)) € RP, we can now
conclude M® ug(a) | —0i(¢1,.. .y ®p(i)), as required. Assume now aby € ©. We need to
prove M® ug(a) = by, that is, M® ug(b) = 1. However, this is trivial, as an application of
[@] to aby gives by and from this the induction hypothesis implies M® ug(b) = 9. Finally,
assume a—byy € O. Then closure under [-@Q] gives b—) € ©. By induction hypothesis this
implies M®, ug(b) = —. Since VO (b) = {ue(b)} we can conclude M®, ug(a) = b—), and thus
MO ug(a) = —bip, as required. O

7. CONCLUSION

In this paper we have systematically considered termination in hybrid tableaus for both prefixed
and internalised systems. Our tableau calculi both generalise and simplify earlier work on hybrid
tableau systems, and our termination and completeness proofs make the impact of each component
of the hybrid language clear. To close this paper, however, we would like to draw attention to
some issues that require further attention.

First, an obvious extension of the results above would be to try to add various pure axioms to
the calculus of L and see if we could still retain termination and completeness. Now, the urfather
method can not be used for extensions with pure axioms in general. The urfather method always
produces a finite model, but with pure extensions we can easily make logics that do not have the
finite model property. For example, suppose we added a pure axiom for transitivity (¢0j A jOk —
iQk) and one for irreflexivity (¢—07). Then the formula AQp introduced in Example 5.1 is satisfiable
in the extended logic, but any model for it will be infinite. We hope to invent a more complex
urfather method which will work with certain restricted classes of pure axioms and logics without
the finite model property, but this lies beyond the scope of the present paper.

TERMINATION FOR HYBRID TABLEAUS 29

We’d also like to point out another interesting extension that our approach does not seem to
cover, namely hybrid logic enriched with the difference operator (see [6]). The difference modality
is a modality D such that M,w = D¢ iff there is some world v # w such that M,v | ¢. It is a
powerful modality: it can define the global modality (E¢ is just ¢ V D¢) but the global modality
cannot define D. Now, it is easy to devise tableau rules for D. Consider, for example, the following
rules (which we give in prefix notation):

ocD¢ D] c-D¢ oca Ta

[-D]

oa T
Toa

T

In the [D] rule, 7 and a are new to the tableau. But if we add these rules to the (prefixed) tableau
system, then we don’t believe that the resulting system is complete. Here’s the intuition. Consider
a formula of the form o(=D¢ A bb). A saturated tableau with this formula as root will look like
this

(D¢ A bb)

[A] rule
oc~D¢
obb
‘ [@] rule

Tb

We can not apply the [-D] rule to obtain 7—¢ as the tableau branch doesn’t contain oc and
7-c for any nominal ¢. This shows that the present calculus containing [D] and [-D] cannot be
complete, since the model constructed from the open, saturated branch above will contain the two
distinct worlds o and 7 where = D¢ will be true in o but —¢ won’t be true in 7. But maybe there
is a simple fix. Can’t we just add a rule which allows us to add formulas of the form oc and 7-¢
to an open, saturated branch in which there is no nominal that both ¢ and 7 make true? Let us
see what would happen. In that case we could extend the tableau above in the following way

(=D A bb)
[A] rule
o-D¢

obb
[@] rule

)

applying the new rule
oc
T—C

[=D] rule on 0—=D¢, oc, e

¢

That looks good, but what if ¢ is the formula 6?7 Then the leaf of the tableau above is the formula
7-b, and thus the tableau closes! So now it’s soundness that fails. Either way, we apparently
cannot get both soundness and completeness.

What’s going wrong? Well, the problem is that during the course of constructing a tableau
branch, we will obtain more and more pairs of formulas of the form oc, ¢, expressing that the
prefixes o and 7 must denote the same world. Thus, during the construction of a tableau branch,
the number of worlds that get identified must be monotonically increasing. Thus in general there
is no point during this construction where we can make sure that two prefixes ¢ and 7 aren’t
going to denote the same world, and therefore, in general we can’t apply [~D] in a way which
is guaranteed to be sound. In short: since worlds are gradually being identified during tableau

30

THOMAS BOLANDER AND PATRICK BLACKBURN

constructions, there seems to be no simple way to extend the tableau systems considered here to
cover the difference operator.

ACKNOWLEDGEMENTS

Thanks to Torben Braiiner for valuable comments and suggestions. Also thanks to two anony-
mous referees for detailed comments. The work of Thomas Bolander is partially supported by the
Danish Natural Science Research Council in connection with the HyLoMOL project.

[1]

REFERENCES

C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization, interpolation and complexity. Journal
of Symbolic Logic, 66:977-1010, 2001.

Carlos Areces, Patrick Blackburn, and Maarten Marx. A road-map on complexity for hybrid logics. In CSL,
pages 307-321, 1999.

P. Blackburn. Internalizing labelled deduction. Journal of Logic and Computation, 10:137-168, 2000.

P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge, UK, 2001.

Thomas Bolander and Torben Braiiner. Tableau-based decision procedures for hybrid logic. Journal of Logic
and Computation, 16:737-763, 2006.

Maarten de Rijke. The modal logic of inequality. Journal of Symbolic Logic, 57(2):566-584, 1992.

J. Halpern, B. Moskowski, and Z. Manna. A hardware semantics based on temporal intervals. In ICALP’83,
volume 154 of Lecture Notes in Computer Science, pages 278-291. Springer-Verlag, 1983.

M. Tzakova. Tableau calculi for hybrid logics. Lecture Notes in Computer Science, 1617:278-292, 1999.

Yde Venema. Derivation rules as anti-axioms in modal logic. Journal of Symbolic Logic, 58(3):1003-1034, 1993.
Chaochen Zhou and Michael R. Hansen. Duration Calculus: A Formal Approach to Real-Time Systems.
Monographs in Theoretical Computer Science. Springer, 2004.

