
Learning to Act: Qualitative Learning of

Deterministic Action Models

Thomas Bolander Nina Gierasimczuk

October 8, 2017

Abstract

In this paper we study learnability of fully observable, universally ap-
plicable action models of dynamic epistemic logic. We introduce a frame-
work for actions seen as sets of transitions between propositional states
and we relate them to their dynamic epistemic logic representations as
action models. We introduce and discuss a wide range of properties of
actions and action models and relate them via correspondence results.
We check two basic learnability criteria for action models: finite identifi-
ability (conclusively inferring the appropriate action model in finite time)
and identifiability in the limit (inconclusive convergence to the right ac-
tion model). We show that deterministic actions are finitely identifiable,
while arbitrary (non-deterministic) actions require more learning power—
they are identifiable in the limit. We then move on to a particular learn-
ing method, i.e., learning via update, which proceeds via restriction of
a space of events within a learning-specific action model. We show how
this method can be adapted to learn conditional and unconditional deter-
ministic action models. We propose update learning mechanisms for the
afore-mentioned classes of actions and analyse their computational com-
plexity. Finally, we study a parametrised learning method which makes
use of the upper bound on the number of propositions relevant for a given
learning scenario. We conclude with describing related work and numer-
ous directions of further work.

1 Introduction

Dynamic epistemic logic (DEL) allows analyzing knowledge change in a system-
atic way. The static component of a situation is represented by an epistemic
model, while the structure of the dynamic component is encoded in an action
model. An action model can be applied to the epistemic model via the so-called
product update operation, resulting in a new up-to-date epistemic model of the
situation, after the action has been executed. This setting is particularly useful
for modeling the process of epistemic planning (see [9, 1]): one can ask which
sequence of actions should be executed in order for a given epistemic formula
to hold in the resulting epistemic model. A planning agent might not know the

1

effects of her actions, so she will initially not be able to plan to achieve any
goals. However, if she can learn the relevant action models through observing
the effect of the actions (either by executing the actions herself, or by observing
other agents), she will eventually learn how to plan. Our ultimate goal is to
integrate learning of actions into (epistemic) planning agents.

In this paper, we seek to lay the foundations for this goal by studying learn-
ability of action models from streams of observations. We investigate possible
learning mechanisms involved in discovering the ‘internal structure’ of actions
on the basis of their executions. In other words, we are concerned with qualita-
tive learning of action models on the basis of observations of pairs of the form
(initial state, resulting state). We contrast the extensional view of actions (as
sets of transitions observed by the learning agent) with their more concise repre-
sentations as action models (which can serve as learner’s hypothesis language).

The structure of the paper is as follows. Firstly, we recall the standard no-
tions of epistemic logic, then we move to discuss actions as sets of transitions
between propositional states. We relate this general setting to that of action
models in dynamic epistemic logic via correspondence theorems. While doing
that we also give ways to simplify action models without giving up their power.
In Section 2 we study general learnability properties of action models, drawing
from the existing work on the concepts of formal learning theory applied to dy-
namic epistemic logic (see, e.g., [15, 17, 16]). We show that deterministic action
models are conclusively learnable (finitely identifiable), while arbitrary (includ-
ing non-deterministic) actions are not. We then show that the latter class is
identifiable in the limit. In the rest of the paper we study learning deterministic
actions by update, i.e., by removing components of action models which are
inconsistent with the incoming information. In Section 3 we propose an update
learner which finitely identifies unconditional deterministic action models, we
analyse the learner’s complexity, and discuss possibilities for improvements. In
Section 4 we do the same for conditional deterministic action models. Finally,
we introduce and study the concept of parametrised learning, which makes use
of the upper bound on the number of propositions relevant for a given learning
scenario. In the last section we conclude and discuss directions of further work.

This paper is an extension of [10]. The additions are substantial and include
the conceptual separation between actions and action models, improved defini-
tions of a variety of properties of actions, improved update learning methods, a
new notion of effect learning, computational complexity results, a strengthened
parametrised learning result, and full proofs of all results.

1.1 Epistemic language and states

Following the conventions of automated planning, we take the set of atomic
propositions and the set of actions to be finite. In the following, P will always
refer to a given finite set of atomic propositions (atoms). To keep the exposition
simple, we will generally not mention the dependency on P when defining our
languages, states, and actions.

2

We define the epistemic language Lepis in the following way:

φ ::= > | p | ¬φ | φ ∧ φ | Kφ,

where p ∈ P . The language Lprop is the propositional sublanguage without the
Kφ clause. By means of the standard abbreviations we introduce the additional
symbols →, ∨, ↔, and ⊥. A literal is either >, a proposition p ∈ P , or the
negation of a proposition, ¬p.

Definition 1 (Epistemic models and states). An epistemic model is m =
(W,R, V), where W is a finite set of worlds, R ⊆W×W is an equivalence rela-
tion, called the indistinguishability relation, and V : P → P(W) is a valuation
function. An epistemic state is a pointed epistemic model (m,w) consisting of
an epistemic model m = (W,R, V) and a distinguished world w ∈W , called the
actual world.

A propositional state (or simply state) s is a set of atomic propositions,
s ⊆ P . One can just as well think of a propositional state in terms of a propo-
sitional valuation νs : P → {0, 1}. We identify propositional states and single-
ton epistemic models via the following canonical isomorphism. A propositional
state s ⊆ P is isomorphic to the epistemic model m = ({w}, {(w,w)}, V) where
V (p) = {w} if p ∈ s and V (p) = ∅ otherwise. Truth for Lepis in epistemic
states (and hence propositional states) (m,w) with m = (W,R, V) is defined as
follows:

(m,w) |= p iff w ∈ V (p)
(m,w) |= ¬φ iff m,w 6|= φ
(m,w) |= φ ∧ ψ iff m,w |= φ and m,w |= ψ
(m,w) |= Kφ iff for all v ∈W , if wRv then m, v |= φ

We write |= φ to mean that (m,w) |= φ for all epistemic states (m,w). When
φ ∈ Lprop, |= φ simply means that φ is propositionally valid. We write φ |= ψ
to mean that for all epistemic states (m,w), if (m,w) |= φ then (m,w) |= ψ.

1.2 Actions

Actions can be thought of as state-transition functions, i.e., mappings that
transform propositional states. Equivalently, an action can be taken extension-
ally, as the set of pairs (s, s′), where s′ is a state that can be reached by executing
the action in state s. We make use of this extensional representation below by
defining the general notion of an action in terms of the possible state transitions
it induces.

Definition 2. An action α is a subset of 2P × 2P . The action is deterministic
if for every s ∈ 2P , there exists at most one s′ ∈ 2P with (s, s′) ∈ α. The action
is universally applicable if for every s ∈ 2P , there is at least one s′ ∈ 2P with
(s, s′) ∈ α.

3

Determinism means that an action cannot yield two different effects in one
propositional state. Universal applicability means that the action always yields
an outcome. In this paper we will almost exclusively be concerned with univer-
sally applicable actions. To understand the reason for this restriction consider
the example of an action open door. One might say that the action is only
applicable if the door is currently closed and unlocked. When the door is ei-
ther already open or is locked the action will not yield the desired results. We
are then faced with a modelling choice, we can either say that the transition
function is partial, i.e., sometimes undefined, or prescribe that in such circum-
stances simply ‘nothing happens’, i.e., the function returns the same state. In
this paper we will keep to the latter option, for two reasons. Firstly, if an agent
is learning the results of an action, she should in any possible state be able to
attempt executing the action, and hence the action should specify an outcome of
this attempt. Secondly, it will slightly simplify our later definitions and results.

Let us now turn to conditionality of actions. As an intuitive example of a
conditional action we can consider a push button that turns a lamp on if the
lamp is off and vice versa. The outcome of the action of pushing the button
depends on the initial state of the lamp, i.e., it is conditional on the precondition
of the lamp being on. In order to define the notion of conditionality in full
generality we need to go through a number of relevant concepts. Let us start
with defining what it mean for an action to be uniform in a set of propositions.
In the definition below, we use 	 to denote the symmetric difference between
two sets.

Definition 3. A deterministic, universally applicable action α is said to be
uniform in a set of atomic propositions S ⊆ P if the following condition holds:

• For all s ∈ 2P there exist disjoint sets P+ and P− such that for all s′ ∈ 2P

with s′ 	 s ⊆ S, (s′, (s′ − P−) ∪ P+) ∈ α.

Intuitively, an action α is uniform in the set of propositions S if the behaviour
of α does not change as long as the initial states only vary on the propositions
in S.

Proposition 1. For any deterministic, universally applicable action α there is
a largest set S that α is uniform in.

Proof. It suffices to prove that if α is uniform in both S0 and S1 then it is
uniform in S0 ∪ S1. Let s ∈ 2P be given. We need to find disjoint sets P+ and
P− such that for all s′ ∈ 2P with s′ 	 s ⊆ S0 ∪ S1, (s′, (s′ − P−) ∪ P+) ∈ α.
By uniformity in S0, there exists disjoint sets P+

0,s and P−0,s such that for all t

with t 	 s ⊆ S0, (t, (t − P−0,s) ∪ P
+
0,s) ∈ α. By uniformity in S1, for each such

t there exists disjoint sets P+
1,t and P−1,t such that for all s′ with s′ 	 t ⊆ S1,

(s′, (s′ − P−1,t) ∪ P
+
1,t) ∈ α.

Claim 1. For all t with s	t ⊆ S0, we have (P+
1,t	P

+
1,s)∩S1 = (P−1,t	P

−
1,s)∩S1 =

∅.

4

Proof of claim. We only show (P+
1,t 	 P+

1,s) ∩ S1 = ∅, the other case being
symmetric. Let s̄ = s − S1 and t̄ = t − S1. Then s 	 s̄ ⊆ S1, t 	 t̄ ⊆ S1, and
s̄	 t̄ ⊆ s	 t ⊆ S0. From s	 s̄ ⊆ S1, t	 t̄ ⊆ S1 and choice of P+

1,s, P
−
1,s, P

+
1,t and

P−1,t, we get

(s̄, (s̄− P−1,s) ∪ P
+
1,s) ∈ α (1)

(t̄, (t̄− P−1,t) ∪ P
+
1,t) ∈ α (2)

By uniformity in S0 there exists disjoint sets P+
0,s̄ and P−0,s̄ such that for all u

with u	 s̄ ⊆ S0 we have (u, (u−P−0,s̄)∪P
+
0,s̄) ∈ α. Using s̄	 t̄ ⊆ S0 we then get

(s̄, (s̄− P−0,s̄) ∪ P
+
0,s̄) ∈ α (3)

(t̄, (t̄− P−0,s̄) ∪ P
+
0,s̄) ∈ α (4)

Since α is deterministic, (1)–(4) gives us

(s̄− P−1,s) ∪ P
+
1,s = (s̄− P−0,s̄) ∪ P

+
0,s̄ (5)

(t̄− P−1,t) ∪ P
+
1,t = (t̄− P−0,s̄) ∪ P

+
0,s̄ (6)

From (5)–(6) we can conclude

P+
1,s 	 P

+
0,s̄ ⊆ s̄ (7)

P+
1,t 	 P

+
0,s̄ ⊆ t̄ (8)

Since s̄ ∩ S1 = t̄ ∩ S1 = ∅, we can from (7)–(8) immediately conclude

(P+
1,s 	 P

+
0,s̄) ∩ S1 = ∅ (9)

(P+
1,t 	 P

+
0,s̄) ∩ S1 = ∅ (10)

From this we get (P+
1,s	P

+
1,t)∩S1 = ∅ as required. This completes the proof of

the claim.
We now define P+ and P− as follows

P+ = (P+
0,s − S1) ∪ (P+

1,s ∩ S1)

P− = (P−0,s − S1) ∪ (P−1,s ∩ S1)

Let s′ 	 s ⊆ S0 ∪ S1. We need to prove (s′, (s′ − P−) ∪ P+) ∈ α. Since
s′ 	 s ⊆ S0 ∪ S1, there exists t with s	 t ⊆ S0 and t	 s′ ⊆ S1. We then have
(s′, (s′ − P−1,t) ∪ P

+
1,t) ∈ α. It hence suffices to show that (s′ − P−1,t) ∪ P

+
1,t =

(s′−P−)∪P+. We prove this by demonstrating that ((s′−P−1,t)∪P
+
1,t)∩S1 =

((s′−P−)∪P+)∩S1 and ((s′−P−1,t)∪P
+
1,t)∩(P−S1) = ((s′−P−)∪P+)∩(P−S1).

((s′ − P−1,t) ∪ P
+
1,t) ∩ S1

= ((s′ − P−1,s) ∪ P
+
1,s) ∩ S1 using Claim 1

= ((s′ − P−) ∪ P+) ∩ S1 by def. of P+, P−

5

Now note that since s 	 t ⊆ S0 we have (t, (t − P−0,s) ∪ P
+
0,s) ∈ α. We also

have (t, (t− P−1,t) ∪ P
+
1,t) ∈ α. Thus, since α is deterministic, (t− P−0,s) ∪ P

+
0,s =

(t− P−1,t) ∪ P 0
1,t. We now get

((s′ − P−1,t) ∪ P
+
1,t) ∩ (P − S1)

= ((t− P−1,t) ∪ P
+
1,t) ∩ (P − S1) since s′ 	 t ⊆ S1

= ((t− P−0,s) ∪ P
+
0,s) ∩ (P − S1)

= ((t− P−) ∪ P+) ∩ (P − S1) by def. of P+, P−

= ((s′ − P−) ∪ P+) ∩ (P − S1) since s′ 	 t ⊆ S1

The proposition above guarantees that the following notion is well-defined.

Definition 4. The set of preconditions of a deterministic, universally applica-
ble action α is the smallest set pre(α) such that α is uniform in P − pre(α).

An action with pre(α) = ∅ is called unconditional (otherwise it is called
conditional).

Intuitively, the set of preconditions is the smallest set pre(α) such that when-
ever α can affect a subset of propositions in a certain way in a state s, it can
affect those propositions in the exact same way in any other state s′ that does
not differ from s on any elements of pre(α). The special case of an unconditional
action α can be intuitively described as follows: Whenever α can affect a subset
of propositions in a certain way in a state s, it can affect those propositions in
the exact same way in any other state s′.

Example 1. Let us get back to the simple example of the conditional action
of a push button that turns a lamp on if the lamp is off and vice versa (see also
[12]). Letting P = {p} where p stands for ‘the lamp is on’, this action can be
described as α = {({p}, ∅), (∅, {p})}. This action is not uniform in {p}: if it
were, it would have to affect the proposition p in the same way in the two states
∅ and {p}. Hence, the smallest set pre(α) for which α is uniform in P − pre(α)
is pre(α) = {p}. In other words, the precondition of the lamp action is p: the
outcome of the action depends on whether the lamp is currently on or not.

Definition 5. The set of postconditions of a deterministic, universally appli-
cable action α is post(α) = {p ∈ P | for some (s, t) ∈ α, p ∈ s	 t}.

In other words, the set of postconditions of an action α is the set of propo-
sitions whose truth value can change as a result of the execution of α.

Instead of describing actions explicitly and extensionally by a set of possible
transitions, they can be also described implicitly, and usually more compactly, in
a formal action-description language. Examples of such languages are STRIPS
and PDDL in the domain of automated planning [11], action languages like
mA+ in knowledge representation and reasoning [7], and action models in dy-
namic epistemic logic [6]. The latter representation is the one we will use quite
extensively below.

6

1.3 Action models

Dynamic epistemic logic (DEL) introduces the concept of an action model for
representing the changes to states brought about by the execution of an action
[6]. We here use a variant that includes postconditions [24].

Definition 6 (Action model). An action model is a = (E,Q, pre, post), where

• E is a finite set of events;

• Q ⊆ E × E is an equivalence relation called the indistinguishability rela-
tion;

• pre : E → Lepis assigns to each event a precondition;

• post : E → (P → Lepis) assigns to each event a postcondition. Postcondi-
tions are mappings from atomic propositions to formulas of the epistemic
language.

We use dom(a) = E to denote the domain of a. The set of all action models is
denoted ActionModels.

In an event e, pre(e) specifies what conditions have to be satisfied for it
to take effect, and post(e) specifies its outcome. The outcome is specified in
terms of which propositions become true/false after the event has occurred. An
atomic proposition p is true after e has occurred if the formula post(e)(p) was
true before e occurred. The details of how a state s is updated with the events
of an action model a are given below.

Definition 7 (Product update). Let m = (W,R, V) and a = (E,Q, pre, post)
be an epistemic model and action model, respectively. The product update of
m with a is the epistemic model m⊗ a = (W ′, R′, V ′), where

• W ′ = {(w, e) ∈W × E | (m,w) |= pre(e)};

• R′ = {((w, e), (v, f)) ∈W ′ ×W ′ | wRv and eQf};

• V ′(p) = {(w, e) ∈W ′ | (m,w) |= post(e)(p)}.

The product update m⊗ a represents the result of executing the action a in
the state represented by m.

Example 2. Consider the action of tossing a coin. It can be represented by
the following action model (h means that the coin is facing heads up):

a = e1 : 〈> ; h 7→>〉 e2 : 〈> ; h 7→⊥〉

We label each event e by a semicolon separated pair 〈pre(e) ; post(e)〉, whose
first element is the precondition of the event, while the second is its post-
condition. For representing postconditions, we use the following convention.

7

Assume post(e) is defined by post(e)(pi) = φi for each i ∈ {1, . . . , n} and
post(e)(p) = p for all p /∈ {p1, . . . , pn}. Then we represent post(e) by the
sequence p1 7→φ1, . . . , pn 7→φn.

Hence, formally for the action model above we have a = (E,Q, pre, post)
with E = {e1, e2}, Q is the identity on E (reflexive edges are systemati-
cally omitted in this paper), pre(e1) = pre(e2) = >, post(e1)(h) = > and
post(e2)(h) = ⊥. The action model encodes that tossing the coin will either
make h true (e1) or h false (e2).

Consider an agent seeing a coin lying heads up, i.e., the singleton epistemic
state m = ({w}, {(w,w)}, V) with V (h) = {w}. Let us now calculate the result
of executing the coin toss in this model.

m′ = m⊗ a = (w, e1) : h (w, e2) :

In the figure above each world is labelled by the propositions it makes true.

1.4 Action model types

Let us now define a number of action model types whose learnability we will
investigate later in this paper.

Definition 8 (Action model types). An action model a = (E,Q, pre, post) is:

• atomic if |E| = 1.

• globally deterministic if event preconditions are mutually inconsistent,
that is |= (pre(e) ∧ pre(f))→ ⊥ for all distinct events e, f ∈ E.

• fully observable if Q is the identity relation on E. Otherwise it is partially
observable.

• precondition-free if pre(e) = > for all e ∈ E.

• propositional if pre(e) ∈ Lprop and post(e)(p) ∈ Lprop for all e ∈ E and
p ∈ P .

• basic if: 1) all pre(e) are conjunctions of literals; 2) all post(e)(p) are
either >, ⊥ or p; 3) for all e ∈ E and p ∈ P , if pre(e) |= p then
post(e)(p) 6= >, and if pre(e) |= ¬p then post(e)(p) 6= ⊥.

• universally applicable if |=
∨
e∈E pre(e).

The set of preconditions of a basic action model a is pre(a) = {p ∈ P |
p occurs in pre(e) for some e ∈ E}, and its set of postconditions is post(a) =
{p ∈ P | post(e)(p) = ⊥ or post(e)(p) = > for some e ∈ E}.

8

Note that any basic action model is also propositional. In this paper, we are
only going to be concerned with applying action models in propositional states.

Let s denote a propositional state, and let a = (E,Q, pre, post) be any action
model. Using the definition of product update and the canonical isomorphism
between propositional states and singleton epistemic states, we get that s⊗ a is
isomorphic to the epistemic model (W ′, R′, V ′), where:

• W ′ = {e ∈ E | s |= pre(e)},

• R′ = {(e, f) ∈W ′ ×W ′ | eQf},

• V ′(p) = {e ∈W ′ | s |= post(e)(p)}.

In s⊗ a, each world e ∈W ′ should be identified with the corresponding propo-
sitional state {p ∈ P | s |= post(e)(p)} (the propositional state that satis-
fies the same atomic propositions as the world e). Assume a is fully observ-
able. Then the indistinguishability relation of s ⊗ a is the identity relation.
We can hence think of s ⊗ a as the set of propositional states of the form
{p ∈ P | s |= post(e)(p)} for each e ∈ E with s |= pre(e). More precisely, in this
case we have, up to isomorphism,

s⊗ a = {s⊗ e | e ∈ dom(a) and s |= pre(e)},

where

s⊗ e =

{
{p ∈ P | s |= post(e)(p)} if s |= pre(e);

undefined otherwise.

Above, the action model a consists of events specified by precondition-
postcondition pairs. For each event e whose precondition is satisfied in s, the
product update produces a new propositional state (set of propositions) s ⊗ e
prescribed by the postcondition of e. Note that, using the notation above,
t ∈ s⊗a iff t = s⊗e for some e ∈ dom(a) with s |= pre(e). When a is atomic we
have s⊗a = {t} for some propositional state t. In this case we will simply write
s⊗ a = t. When a is fully observable, we can identify it with the set of events
{〈pre(e) ; post(e)〉 | e ∈ dom(a)}, again since the indistinguishability relation is
the identity. We will use the above notational simplifications and conventions
extensively throughout the paper.

Example 3. Consider the action model a of Example 2 (the coin toss) where
P = {h}. The action model has the following properties (see Definition 8):
it is fully observable, precondition-free, propositional, basic, and universally
applicable (but it is neither atomic nor globally deterministic). Consider an
initial propositional state s = {h}. Then s ⊗ a is the epistemic model m′ of
Example 2. It has two worlds, one in which h is true, and another in which h
is false. Using the notational conventions introduced above, we have

s⊗ a = {s⊗ e1, s⊗ e2} = {s⊗ 〈> ; h 7→>〉, s⊗ 〈> ; h 7→⊥〉} = {{h}, ∅}.

Hence, the outcome of tossing the coin is either the propositional state where h
is true ({h}) or the one where h is false (∅).

9

1.5 Relationships between actions and action models

In this section we study some of the relationships between the actions seen as
sets of transitions and the action models. Establishing correspondences between
the sets of transitions and the models is important when studying learning of
actions, because the input to the learner is a stream of observed state transitions,
whereas the output is an action model. We first define the notion of the action
induced by a fully observable action model. By doing this we indicate how an
action model defines a given set of transitions.

Definition 9. The action induced by a fully observable action model a is the
action act(a) given by

act(a) = {(s, t) | t ∈ s⊗ a}.

We sometimes call act(a) the action represented by or specified by a. Two fully
observable action models a and b are called propositionally equivalent, written
a ≡p b, if act(a) = act(b).1

In the definition above, we have used the earlier introduced convention of
taking s⊗ a to be the set {s⊗ e | e ∈ dom(a) and s |= pre(e)}. So ‘t ∈ s⊗ a’ in
the formula above means ‘t = s⊗ e for some e ∈ dom(a)’.

The following result shows that, conversely, any action induces a fully ob-
servable action model.

Proposition 2. For any action α there exists a fully observable and basic action
model a with act(a) = α.

Proof. Take any action α ⊆ 2P × 2P . We will now construct an action model a
for α. For each pair (s, t) ∈ α we define an event e(s,t), where:

1. pre(e(s,t)) :=
∧
p∈sp ∧

∧
p′∈P−s ¬p′;

2. post(e(s,t))(p) :=

⊥ if p ∈ s and p /∈ t,
> if p /∈ s and p ∈ t.
p otherwise

We define a as the action model consisting of all these events and in which the
indistinguishability relation is the identity. Then, clearly, a is fully observable
and basic. It remains to argue that act(a) = α.

For act(a) ⊆ α. Take any (s, t) ∈ act(a). Then there is an e(s′,t′) in a, such that
s⊗ e(s′,t′) = t. By construction of a, (s′, t′) ∈ α.

1Often equivalence between action models is defined via bisimulation. For instance, a and
b can be defined as equivalent when m ⊗ a↔m ⊗ b for all epistemic models m, where ↔
denotes standard bisimulation on epistemic models [8]. It is not difficult to see that two fully
observable and propositional action models a and b are equivalent in this sense iff they are
equivalent in the sense of act(a) = act(b). For non-propositional action models, however, the
notion of propositional equivalence defined here and the notion of equivalence via bisimulation
are not equivalent.

10

It hence suffices to prove (s, t) = (s′, t′). First we show that s = s′. Since s⊗
e(s′,t′) = t, we have s |= pre(e(s′,t′)). From the construction of the precondition
e(s′,t′), it follows that s and s′ satisfy the same propositions, i.e., s = s′. It
remains to show that t = t′. If p ∈ t, then since s ⊗ e(s′,t′) = t, we have
either post(e(s′,t′))(p) = > or we have p ∈ s and post(e(s′,t′)(p) = p. In the
first case we get p ∈ t′, by definition of post(e(s′,t′))(p). In the second case
we get p ∈ s′ from p ∈ s. But then also p ∈ t′, since otherwise we would have
post(s′,t′)(p) = ⊥, again by definition. This shows t ⊆ t′. Now let p ∈ t′. If p /∈ s′
then post(e(s′,t′))(p) = > and hence p ∈ t. If p ∈ s′ then post(e(s′,t′))(p) = p.
In this case also p ∈ s, and so p ∈ t, since t = e(s′,t′) ⊗ s.
For α ⊆ act(a). Take any pair (s, t) ∈ α. By construction of a, there is an event
e(s,t) in a. Trivially, s |= pre(e(s,t)). From the definition of post(e(s,t)) we then
immediately get s⊗ e(s,t) = t, and hence (s, t) ∈ act(a), as required.

Obviously, the construction given in the proof is not efficient. It generates an
action model with as many events as there are transition pairs. It is important
to realise, however, that there often exists DEL representations of actions that
are at least exponentially more succinct than their induced actions.

Consider for instance the action model a = ({e}, {(e, e)}, pre, post) with
e = 〈pre(e) ; post(e)〉 = 〈> ; ∅〉. Here the postcondition ∅ of e means that
post(e)(p) = p for all p ∈ P (cf. the notational convention introduced in
Example 2). Clearly act(a) = {(s, s) | s ⊆ P}. Thus, the induced action
act(a) of a is of exponential size in |P |, whereas a is of constant size indepen-
dent of |P |. Similarly, an action that flips the truth-values of all propositions
can be represented as an action model of size |P | (the atomic action model
{〈>; {p 7→ ¬p | p ∈ P}〉}), whereas the induced action is again of exponential
size in |P |. The fact that action models can be, and usually are, at least ex-
ponentially smaller than their induced actions, is why we seek to learn action
models rather than their induced actions. We will below even show that the ac-
tion models we learn are of worst-case optimal size, that is, no other formalism
for representing those actions is asymptotically better in the worst case.

Proposition 3. Let a be a fully observable action model.

1. act(a) is universally applicable iff a is.

2. act(a) is deterministic iff some b ≡p a is globally deterministic.

3. act(a) is universally applicable and deterministic iff some b ≡p a is basic,
universally applicable, globally deterministic and has pre(b) = pre(act(a))
and post(b) = post(act(a)).

4. act(a) is unconditional, universally applicable, and deterministic iff some
b ≡p a is precondition-free, basic, and atomic.

Proof. Item 1, left to right. Assume act(a) is universally applicable. We need
to show |=

∨
e∈E pre(e), that is, for each propositional state s there exists at

least one e such that s |= pre(e). Let s be chosen arbitrarily. Since act(a) is

11

universally applicable, there exists a t such that (s, t) ∈ act(a). By definition of
act(a), we must have t = s ⊗ e for some event e in a. But then s |= pre(e), as
required.

Item 1, right to left. Assume a is universally applicable, and let s be a proposi-
tional state. We need to show the existence of a t such that (s, t) ∈ act(a). From
universal applicability of a, we get the existence of an event e with s |= pre(e).
Hence (s, s⊗ e) ∈ act(a), showing the required.

Item 2, left to right. Assume act(a) is deterministic. Let b denote the action
with act(b) = act(a) given by the construction in Proposition 2. We now show
that b is globally deterministic. Let e(s,t) and e(s′,t′) be distinct events of b. We
then need to prove that pre(e(s,t)) and pre(e(s′,t′)) are mutually inconsistent.
Since e(s,t) and e(s′,t′) are distinct events, (s, t) and (s′, t′) are distinct pairs of
act(a), that is, either s 6= s′ or t 6= t′. Since act(a) is deterministic, we have that
if s = s′ then t = t′. It follows that s 6= s′. Hence, at least one proposition p has
distinct truth-values in s and s′. By the definition of the preconditions of the
events of b (see item 1 in the enumerated list of the proof of Proposition 2), we
conclude that pre(e(s,t)) and pre(e(s′,t′)) are mutually inconsistent (they differ
on the required truth-value of p).

Item 2, right to left. Assume b ≡p a is globally deterministic, and let
(s, t), (s, t′) ∈ act(a) = act(b). We need to prove t = t′. From the choice of
s, t and t′ we get t, t′ ∈ s ⊗ b. There must therefore exist events e and e′ in
b such that s ⊗ e = t and s ⊗ e′ = t′. We hence have s |= pre(e) ∧ pre(e′).
Since b is globally deterministic, this immediately implies e = e′ and hence
t = s⊗ e = s⊗ e′ = t′.

Item 3, left to right. Assume act(a) is universally applicable and deterministic.
By Definitions 3 and 4, for each s ∈ 2pre(act(a)) there exists disjoint sets P+

s and
P−s such that for all s′ with s′ ∩ pre(act(a)) = s ∩ pre(act(a)), (s′, (s′ − P−s) ∪
P+
s) ∈ act(a). Let b be the fully observable action model containing for each
s ∈ 2pre(act(a)) an event es with pre(es) =

∧
p∈sp ∧

∧
p′∈pre(act(a))−s ¬p′ and

post(es)(p) =

> if p ∈ P+

s − s;
⊥ if p ∈ P−s ∩ s;
p otherwise.

Clearly, b is basic, universally applicable, globally deterministic and has pre(b) =
pre(act(a)). We now show post(b) = post(act(a)). We first show post(b) ⊆
post(act(a)). Assume p ∈ post(b). Then post(es)(p) = > or post(es)(p) = ⊥ for
some es ∈ dom(b). If post(es)(p) = > then p ∈ P+

s − s and (s, (s−P−s)∪P+
s) ∈

act(a), by definition. Letting t = (s − P−s) ∪ P+
s we thus get (s, t) ∈ act(a)

and p ∈ t − s. This implies p ∈ post(act(a)). A symmetric argument goes for
the case of post(es)(p) = ⊥. We now show post(act(a)) ⊆ post(b). Assume
p ∈ post(act(a)). Then p ∈ (t − s) ∪ (s − t) for some (s, t) ∈ act(a). Assume
p ∈ t − s (the other case being symmetric). Let s′ = s ∩ pre(act(a)). Then
(s, (s− P−s′) ∪ P+

s′) ∈ act(a). Since a is deterministic, t = (s− P−s′) ∪ P+
s′ . Since

12

p ∈ t− s, also p ∈ P+
s′ − s. This implies post(es′)(p) = > and hence p ∈ post(b).

We have now proved post(b) = post(act(a)).
It remains to be shown that b ≡p a, that is, act(b) = act(a). First we show

act(a) ⊆ act(b). Suppose (s, t) ∈ act(a). Let s̄ = s ∩ pre(act(a)). We then have
(s, (s−P−s̄)∪P+

s̄) ∈ act(a), and since act(a) is deterministic, t = (s−P−s̄)∪P+
s̄ .

It follows that t = s ⊗ es̄ (noting that s |= pre(es̄)), and hence (s, t) ∈ act(b).
We now show act(b) ⊆ act(a). Let (s, t) ∈ act(b). Then t = s ⊗ es̄ for some
s̄ ∈ 2pre(act(a)). This implies t = (s − P−s̄) ∪ P+

s̄ , by definition of es̄. Since
s̄∩ pre(act(a)) = s∩ pre(act(a)), we have (s, (s− P−s̄)∪ P+

s̄) ∈ act(a) and thus
(s, t) ∈ act(a).

Item 3, right to left. Assume b ≡p a is basic, universally applicable, globally
deterministic and has pre(b) = pre(act(a)) and post(b) = post(act(a)). Then
it follows directly from items 1 and 2, right to left, that act(a) is universally
applicable and deterministic.

Item 4, left to right. Assume act(a) is unconditional, universally applicable and
deterministic. By definition, we then have pre(act(a)) = ∅. By item 3, left to
right, there then exists some b ≡p a which is basic, globally deterministic and
has pre(b) = ∅. The action b is hence precondition-free. It must also be atomic,
since it is globally deterministic (it has a single event with precondition >).

Item 4, right to left. Assume b ≡p a is precondition-free, basic and atomic.
Then it is also globally deterministic. That act(a) is universally applicable and
deterministic then follows directly from item 3, right to left. So we only need
to prove that act(a) = act(b) is unconditional, that is, has an empty set of
preconditions. Since b is precondition-free, basic and atomic, it must consist of
a single event e with precondition > and each post(e)(p) is either >, ⊥ or p. It
follows that for all states s, (s, (s − {p | post(e)(p) = ⊥}) ∪ {p | post(e)(p) =
>}) ∈ act(b). This shows that act(b) is uniform in P , and hence act(a) = act(b)
must have an empty set of preconditions.

2 Learning action models

In this section we introduce and discuss our general learning setting. Below
we define streams of observations, learning functions, and, finally, we discuss
two learning conditions: finite identifiability and identifiability in the limit. We
establish that while deterministic actions allow finite identifiability, the non-
deterministic actions do not, but are identifiable in the limit. We place those
results in the context of the classical results characterising both types of learning
[18, 2, 21, 20]. This is not the first application of learning-theoretic tools to
dynamic epistemic logic (see [14, 13, 15, 16]) or to the logical theories of belief
revision (see, e.g., [4, 5, 19]). The present work is however pioneering in studying
the learning of the internal structure of actions in dynamic epistemic logic.

Definition 10. A stream E is an infinite (unbounded) sequence of pairs (s, t)
of propositional states, i.e., E ∈ (2P × 2P)ω. The elements (s, t) of E are called
observations. Let n ∈ N and let E be a stream.

13

1. En stands for the n-th observation in E.

2. E [n] stands for the the initial segment of E of length n, i.e., E0, . . . , En−1.

3. set(E) := {(s, t) | (s, t) is an element of E} stands for the set of all obser-
vations in E; we similarly define set(E [n]) for initial segments of streams.

Definition 11. Let E be a stream and let α be an action. The stream E is
sound with respect to α if set(E) ⊆ α. The stream E is complete with respect
to α if α ⊆ set(E). In this paper we always assume the streams to be sound
and complete. For brevity, if E is sound and complete wrt α, we will write ‘E
is for α’. Similarly, an initial segment E [n] is sound for α if set(E [n]) ⊆ α and
complete for α if α ⊆ set(E [n]).

The notions of soundness and completeness extend naturally to action mod-
els in the following way. A stream or initial segment of a stream is sound
(resp. complete) with respect to an action model a if it is sound (resp. com-
plete) with respect to act(a).

Definition 12 (Learning function). A learning function is a computable L :
(2P × 2P)∗ → ActionModels ∪ {↑}.

In other words, a learning function takes a finite sequence of observations
(state transitions) and outputs an action model or a symbol corresponding to
‘undecided’ (↑).

We will study two types of learning: finite identifiability and identifiability
in the limit. First let us focus on finite identifiability. Intuitively, finite identifia-
bility corresponds to conclusive learning: upon observing some finite amount of
action executions the learning function outputs, with certainty, a correct model
for the action in question. This certainty can be expressed in terms of the
function being once-defined: it is allowed to output an action model only once,
there is no chance of correction later on (for a more extensive study of finite
identifiability, see [17]). Formally, we say that a learning function L is (at most)
once defined if for any stream E for an action and n, k ∈ N such that n 6= k, we
have that L(E [n])=↑ or L(E [k])=↑.

Definition 13. Let X be a set of actions and α ∈ X , L be a learning function,
and E be a stream. We say that:

1. L finitely identifies α on E if L is once-defined and there is an n ∈ N s.t.
act(L(E [n])) = α.

2. L finitely identifies α if L finitely identifies α on every stream for α.

3. L finitely identifies X if L finitely identifies every α ∈ X .

4. X is finitely identifiable if there is a function L which finitely identifies X .

The following definition and theorem are adapted from [21, 20, 17].

14

Definition 14. Let X be a set of actions. A set Dα ⊆ 2P × 2P is a definite
finite tell-tale set (DFTT) for α in X if

1. Dα ⊆ α,

2. Dα is finite, and

3. for any β ∈ X , if Dα ⊆ β, then α = β.

Lemma 1. A set of actions X is finitely identifiable iff there is an effective

procedure D : X → 2(2P×2P) that on input a gives a DFTT of α.

Proof. Left to right. Assume that X is finitely identifiable. Then there is a
computable function L that finitely identifies X . We use that function to define
D. Once the learning function L identifies an action α it has to give it as
a definite output, and this will happen for some E [n]. We then set D(α) :=
set(E [n]). It is easy to check that such D(α) is a definite tell-tale set (satisfying
conditions 1-3 above). Right to left. Assume that there is an effective procedure

D : X → 2(2P×2P), that on input α produces a definite finite tell-tale of α. Take
an enumeration α1, α2, . . . of X and take any α ∈ X and any E for α. We
use D to define the learning function. At each step n ∈ N, L compares E [n]
with D(α1), . . . ,D(αn). Once, at some step ` ∈ N, it finds αk, k ≤ `, such that
D(αk) ⊆ set(E [`]), it outputs an action model a with act(a) = αk (using the
construction in Proposition 2). It is easy to verify that then act(a) = α.

In other words, the finite set of observations Dα is consistent with only one
action α in the class. D is a computable function that gives a Dα for any action
α.

Theorem 1. The set of deterministic and universally applicable actions is
finitely identifiable.

Proof. We use Lemma 1, and hence define: D(α) = α. Let us check that indeed
D(α) is a DFTT for α (conditions 1-3 of Definition 14). 1: D(α) ⊆ act(α),
trivially. 2: D(α) is finite, because P is finite. 3: Let us take any deterministic
and universally applicable action β such that D(α) ⊆ β. This means that α ⊆ β.
We need to show α = β, and it hence suffices to prove β ⊆ α. Let (s, t) ∈ β.
We need to prove (s, t) ∈ α. Since α is deterministic and universally applicable,
there exists a unique t′ such that (s, t′) ∈ α. Since α ⊆ β, we then get (s, t′) ∈ β.
We now have (s, t), (s, t′) ∈ β, and since β is deterministic, we get t′ = t. This
proves (s, t) ∈ α, as required. Finally, D is computable because P is finite.

Example 4. Theorem 1 shows that deterministic actions are finitely identifi-
able. We will now demonstrate that this does not carry over to non-deterministic
actions, that is, non-deterministic actions are in general not finitely identifiable.
Consider the action of tossing a coin, given by the action model a in Example 2.
If in fact the coin is fake and it will always land tails (so it only consists of the
event e2), in no finite amount of tosses the agent can exclude that the coin is
fair, and that heads will start appearing in the long run (that e1 will eventually

15

occur). So the agent will never be able to say “stop” and declare the correct
action model to only consist of e2. This argument can be generalised, leading
to the theorem below.

Theorem 2. The set of arbitrary (including non-deterministic) universally ap-
plicable actions is not finitely identifiable.

Proof. Let α be a deterministic, universally applicable action. Take some (s, t) 6∈
α. Such a pair necessarily exists, since α is deterministic. Let β = α ∪ {(s, t)}.
Note that β is not deterministic, since α is universally applicable, and there
will hence be two distinct states t and t′ with (s, t), (s, t′) ∈ β. Assume that
the set of arbitrary universally applicable actions is finitely identifiable. Then
there is a learning function L that finitely identifies it. Among such actions,
as we argued above, we will have two, α and β, such that α ⊂ β. Let us now
construct a stream E on which L fails to finitely identify one of them. Let E
start with enumerating all pairs of propositional states that are sound for the
smaller action, α, and keep repeating this pattern. Since this is a stream for α,
indeed the learning function has to at some point output an action model a with
act(a) = α (otherwise it fails to finitely identify α, which leads to contradiction).
Assume that this happens at some stage n ∈ N. Now, observe that E [n] is
sound with respect to β too, so starting at the stage n + 1 let us make E
enumerate the rest of remaining pairs of propositional states sound for β. That
means that there is a stream E for β on which L does not finitely identify β.
Contradiction.

A weaker condition of learnability, identifiability in the limit, allows widening
the scope of learnable actions, to cover also the case of non-deterministic actions.
Identifiability in the limit requires that the learning function after observing
some finite amount of action executions outputs a correct model for the action
in question and then forever keeps to this answer in all the outputs to follow.
This type of learning can be called ‘inconclusive’, because certainty cannot be
achieved in finite time.

Definition 15. Let X be a set of actions and α ∈ X , L be a learning function,
and E be a stream. We say that:

1. L identifies α on E in the limit if there is k ∈ N such that for all n ≥ k,
L(E [k]) = L(E [n]) and act(L(E [n])) = α.

2. L identifies α in the limit if L identifies α in the limit on every E for α.

3. L identifies X in the limit if L identifies in the limit every α ∈ X .

4. X is identifiable in the limit if there is an L which identifies X in the
limit.

Theorem 3. The set of arbitrary (including non-deterministic and non-
universally applicable) actions is identifiable in the limit.

16

Proof. The argument is similar to the proof of Theorem 1. Analogously to the
concept of definite finite tell-tale set, we define a weaker notion of finite tell-tale
set (FTT). Let X be a set of actions. A set Dα ⊆ 2P × 2P is a finite tell-tale
set (FTT) for α in X if:

1. Dα ⊆ α;

2. Dα is finite, and

3. for any β ∈ X , if Dα ⊆ β, then it is not the case that β ⊂ α.

Similarly to the argument for Lemma 1, one can show that X is identifiable in

the limit iff there is an effective procedure D : X → 2(2P×2P) that on input α
enumerates a finite tell-tale of α. We will omit the proof for the sake of brevity
(the original argument for the case of grammar inference can be found in [2]).

Now it is enough to show that indeed such a function D can be given for the
set of arbitrary actions over P . Define D(α) = α.

Let us check that indeed D(α) is a FTT for α. 1: D(α) is sound for α,
trivially. 2: D(α) is finite, because P is finite. 3: Let us take any action β such
that D(α) ⊆ β, i.e., α ⊆ β. Then it is clearly not the case that β ⊂ α. Finally,
again D is computable because P is finite.

Having established the general facts about finite identifiability and identi-
fiability in the limit of various types of actions, we will now turn to studying
particular learning methods suited for such learning conditions.

2.1 Learning via update

Standard DEL, and in particular public announcement logic [22], models the
process of information flow within epistemic models. If an agent is in a state
described by an epistemic model m and learns from a reliable source that φ is
true, her state will be updated by eliminating all the worlds where φ is false.
That is, the model m will be restricted to the worlds where φ is true. This
can also be expressed in terms of action models, where the learning of φ corre-
sponds to taking the product update of m with the event model 〈φ ; ∅〉 (public
announcement of φ).

Now we turn to learning actions rather than learning facts. Actions are
represented by action models, so to learn an action means to infer the action
model that describes it. Consider again the action model a of Example 2. The
coin toss is non-deterministic and fully observable: either h or ¬h will non-
deterministically be made true and the agent is able to distinguish these two
outcomes (there is no edge between e1 and e2). However, we can also think
of the domain of a as the hypothesis space of a deterministic action. Given
the prior knowledge that the action in question must be deterministic, learning
the action model for it could proceed in a way analogous to that of update in
the usual DEL setting. It could for instance be that the agent knows that the
coin is fake and always lands on the same side, but the agent initially does not
know which. After the agent has executed the action once, she will know. She

17

will observe either h becoming false or h becoming true, and can hence discard
either e1 or e2 from her hypothesis space. She has now learned a correct action
model for the act of tossing the fake coin.

It is a note-worthy analogy: learning of facts means eliminating worlds in
epistemic models, learning of actions means eliminating events in action models.

Learning action models via update (deleting events) has a natural interpre-
tation of learning via gradual increase of the ‘amount of determinism’ within the
action model. Initially, the action is taken to be able to do anything and with
time the learner acquires a more and more specialised interpretation of what it
can do. Of course, the case of non-deterministic actions is more complicated.
In that case, no observed execution of an action can exclude other possibilities.

Definition 16. For any deterministic and fully observable action model a and
any pair of propositional states (s, t), the update of a with (s, t) is defined by

a | (s, t) := {e ∈ a | if s |= pre(e) then s⊗ e = t}.

For a set S of pairs of propositional states, we define

a | S := {e ∈ a | for each (s, t) ∈ S, if s |= pre(e) then s⊗ e = t}.

The update a | (s, t) restricts the action model a to the events that are
consistent with observing t as the result of executing the action in question in
the state s. This is then lifted to sets of pairs (sets of observations) in the
obvious way in the definition of a | S.

3 Learning unconditional deterministic actions

In this section we will consider learning of unconditional deterministic actions.
We will, as everywhere else in this paper, restrict attention to universally appli-
cable propositional actions. The set of atomic propositions P is assumed to be
fixed. From Proposition 3, item 4, we have that any unconditional, deterministic
and universally applicable action can be represented by a precondition-free, basic
and atomic action model (that is, for any such action α, there is a precondition-
free, basic and atomic action model a with act(a) = α). This implies that if we
want to construct a learner that can learn unconditional, deterministic and uni-
versally applicable actions, it suffices to consider learning functions that learn
action models which are precondition-free, basic and atomic.

In basic action models, each post(e)(p) belongs to the set {>,⊥, p}. We
can hence consider post(e) to be a partial mapping from atomic propositions
to {>,⊥}, that is of the form P ↪→ {>,⊥}. The interpretation is then that
when post(e)(p) is undefined we take this to mean post(e)(p) = p. The events
of basic action models can hence be considered to be of the form 〈pre ; f〉,
where f : P ↪→ {>,⊥}. If an action model is furthermore precondition-free, the
events will have the form 〈> ; f〉. Any action model which is precondition-free,
basic and atomic can hence be represented by a single event of the form 〈> ; f〉.

18

p 7→>, q 7→>

p 7→>

∅

q 7→>

p 7→⊥, q 7→>p 7→>, q 7→⊥

q 7→⊥ p 7→⊥

p 7→⊥, q 7→⊥

p 7→>, q 7→>

p 7→>

Figure 1: On the left h0 with P = {p, q}, together with sets corresponding to
possible observations. We have labelled each event e by post(e). On the right
the state of learning with L0 after observing E0 = ({q}, {p, q}).

This implies that when learning unconditional, deterministic and universally
applicable actions, we only have to look for the right event of the form 〈> ; f〉
to represent that action. This leads to define our hypothesis space for learning
such actions in the following way.

Definition 17. The hypothesis space for unconditional actions is the action
model h0 given by

h0 = {〈> ; f〉 | f : P ↪→ {>,⊥}}.

The hypothesis space h0 will serve as the starting point of the learning
process. The learner will proceed with learning by gradually eliminating the
elements inconsistent with the incoming information (this process is known as
update learning).

Definition 18. The update learning function for unconditional actions is the
learning function L0 defined by

L0(E [n]) = h0 | set(E [n]).

In Figure 1 we show a generic example of such update learning for P = {p, q}.
If the stream of observations is consistent with one of the events in the space, as
this is what we assume within this framework, this event will never be eliminated
from the space.

We will define a learning function which makes use of L0, but outputs an
answer when there is only one event left.

Theorem 4. The set of universally applicable, unconditional and deterministic
actions is finitely identifiable by the update learning function Lupdate0 , defined in

19

the following way:

Lupdate0 (E [n]) =

L0(E [n]) if |L0(E [n])| = 1

and for all k < n, Lupdate0 (E [k]) = ↑;
↑ otherwise.

Proof. Note that Lupdate0 is defined in terms of L0, which by Definition 18 is
given by L0(E [n]) = h0 | set(E [n]), where h0 is the hypothesis space. Let us
take an unconditional deterministic action α and take E to be a stream for
α. By Proposition 3, item 4, there must exist a precondition-free, basic and
atomic action model representing α. Hence, for some e ∈ h0, we must have
act({e}) = α. We show that Lupdate0 finitely identifies α on E . Since E is a
stream for α, e ∈ L0(E [n]) for any n (i.e., e will never be eliminated). It remains
to be shown that for some n ∈ N, |L0(E [n])| = 1. Let us consider the smallest k
such that α ⊆ set(E [k]). Then there is only one element, e, in L0(E [k]). It is so
because for all e′ ∈ h0 with e′ 6= e there is an observation (s, t) ∈ 2P × 2P such
that (s, t) ∈ act({e}) but (s, t) /∈ act({e′}) (in this case we will say that (s, t)
separates e from e′). Upon receiving this information the learner will remove e′

from h0. In Figure 1 this general fact is clearly visible. For any pair of points
(events), an ellipse (observation) can be found that separates them (one event
is consistent with it and the other is not). To see how those observations can
be constructively obtained take any e ∈ h0. Then for each e′ ∈ h0 with e′ 6= e,
it can easily be checked that at least one of the following observations separates
e from e′: (P, P ⊗ e) or (∅, ∅ ⊗ e).

3.1 Time and space complexity

Note that Lupdate0 is defined in terms of the update learning function L0, which
in turn is defined in terms of the hypothesis space h0. The hypothesis space
h0 is clearly exponential in |P | (it contains one event per possible postcondi-

tion over P), so a straightforward implementation of Lupdate0 will have a space
requirement which is exponential in |P |. This kind of learning is clearly very
memory-inefficient. Below we will look into how this can be improved. We will
first introduce the relevant notions of computational complexity of learning in
our setting, and then investigate the computational complexity of learning un-
conditional deterministic actions. First we consider time complexity and then
space complexity. In terms of time complexity, there are two relevant questions.
Firstly, how many observations are needed before an action can be identified?
Secondly, how many computation steps does the implemented learning function
need as a function of the number of observations?

In terms of space complexity, there are also two relevant questions. Firstly,
what is the size of the action model provided as output of the learning algo-
rithm? Secondly, how much memory does the learning algorithm use? We will
most often measure complexities in terms of the number of atomic propositions
underlying the set of actions to be learned.

20

Time complexity Assume given a learning function L that finitely identifies
a set of actions X over a set of atomic propositions P . First note that a stream E
for an action α ∈ X can have any number of repetitions, and hence in general we
can not give an upper bound on the length of the initial segment of E required
for L to identify α. We can however look at the number of distinct observations
required to learn α, that is, we either ignore repetitions in the stream or we only
consider finite streams where all pairs are distinct.

In any case, even for the simplest type of actions, unconditional deterministic
actions, any learning function will in the worst case require 1+2|P |−1 distinct ob-
servations before being able to identify the action. To see this, consider the un-
conditional deterministic action α that makes all propositions in P uncondition-
ally true. It can be represented by an action model a = {〈> ; {p 7→ > | p ∈ P}〉}.
Pick a proposition p′ in P . Then there are 2|P |−1 propositional states over P
where p′ is true. Assume the stream X first provides an observation of (s, P)
for each such propositional state s. Then after these 2|P |−1 observations, the
action can still not be uniquely identified, because the stream is both sound for
α and for the action β which is as α except it does not affect the truth-value of
p′ (that is, it is represented by an action model {〈> ; {p 7→ > | p ∈ P −{p′}}〉}).
Hence α can at earliest be identified when the (1+2|P |−1)th distinct observation
is made (and actually will be identified by that observation as is easily seen).

Since the argument above was independent of the choice of L, it shows that
all learning functions for unconditional deterministic actions will have the same
worst-case behaviour in terms of the required number of distinct observations.
The worst-case required number of distinct observations is hence not a relevant
complexity measure in this case. We can however look at proactive learning
of an action α: Learning where the learner gets to choose in which state s
the action α is applied, and the environment then replies with a t for which
(s, t) ∈ α. In the case of unconditional deterministic actions this makes a
significant difference. The time complexity measured in number of distinct
observations goes down from O(2|P |) to O(1). Here is the argument. First the
learner asks about the effect of applying the action in the state ∅. This gives
the learner an observation of the form (∅, P1). Then the learner asks about the
effect of applying the action in the state P . This gives an observation (P, P2).
Since the action is assumed to be unconditional, the learner now knows that
it unconditionally sets all the propositions in P1 true, and all the propositions
in P − P2 false. Hence it must be represented by the atomic action model
{〈> ; {p 7→ > | p ∈ P1} ∪ {p 7→ ⊥ | p ∈ P − P2}〉}. The learner has now learned
the action in only two observations.

However, when moving to learning of conditional actions, even proactive
learning is not helpful. This can be seen by realising that in the case of a
universally applicable, conditional and deterministic action α, even the best-
case number of distinct observations required to identify α is Θ(2|P |). To see
this, let E be any stream for α. We will show that no learner can identify α
from the initial segment E [2|P |−1]. Since E [2|P |−1] consists of at most 2|P |−1
distinct observations, there must exist a propositional state s such that there
is no t with (s, t) ∈ set(E [2|P | − 1]). Let t be the propositional state such that

21

(s, t) ∈ α (α is deterministic and universally applicable). Let t′ 6= t. Now let
β = (α−{(s, t)})∪{(s, t′)}. The action β is clearly also conditional, deterministic
and universally applicable. The initial segment E [2|P | − 1] is by construction
also sound for β, so α can not be uniquely identified from E [2|P | − 1]. This
shows that any learning function identifying the set X of universally applicable,
conditional and deterministic actions will always require Ω(2|P |) observations.

The discussion above shows that for finite identifiability, the time complexity
measured in the number of required distinct observations is in most cases not a
useful measure to compare efficiency of learning functions. It could still be rele-
vant to look at the number of computation steps needed by a learning function
L to compute L(E [n]) as a function of n. This will however depend crucially on
details of how the learning function is implemented, including details about the
choice of data structures.

Space complexity As mentioned earlier, we also have two relevant space
measures: the total space required by an algorithm implementing the learning
function and the size of the action model provided as output. We provide the
space complexity measures for the learning function Lupdate0 in the following
proposition.

Proposition 4. Lupdate0 can be implemented using O(|P | · 3|P |) space. If

Lupdate0 (E [n]) = a for some action model a then a has size O(|P |).

Proof. Lupdate0 is initialised with the hypothesis space h0 of Definition 17. The
action model h0 contains O(3|P |) events: one for each partial mapping of P into
{>,⊥} (so each p ∈ P is mapped into one of 3 values: >, ⊥ or ‘undefined’).
Each event is of size O(|P |) (the length of the postcondition mapping), so the
total size of h0 is O(|P |·3|P |). This is the total space requirement of the learning
algorithm, since it now proceeds by only eliminating events from h0. The size
of the resulting action model, the one eventually returned by Lupdate0 , is O(|P |),
since it contains a single event.

3.2 Improved learning of unconditional deterministic ac-
tions

We can improve the space complexity of learning unconditional deterministic
actions. Instead of updating a hypothesis space, we can keep track of the ob-
served positive and negative effects of the transitions in the stream, and build
the action model from those. We call this effect learning. Let (s, t) be a pair of
propositional states. We define the observed positive effects of (s, t) to be the
set P+

(s,t) = {p ∈ P | s |= ¬p and t |= p}. Symmetrically, we define the observed

negative effects to be P−(s,t) = {p ∈ P | s |= p and t |= ¬p}. Given an action

α, we then define the observed positive effects of α as P+
α =

⋃
(s,t)∈α P

+
(s,t).

Symmetrically for the observed negative effects. For any pair of disjoint sets
P+, P− ⊆ P , we let post(P+, P−) = {p 7→ > | p ∈ P+} ∪ {p 7→ ⊥ | p ∈ P−}.
We now get the following result.

22

Theorem 5. The set of universally applicable, unconditional and deterministic
actions is finitely identifiable by the learning function Leffects

0 , defined in the
following way:

Leffects
0 (E [n]) =

{〈> ; post(P+

set(E[n]), P
−
set(E[n]))〉}

if for all literals l there is (s, t) ∈ set(E [n]) s.t. s |= l or t |= l;

and for all k < n, Leffects
0 (E [k]) = ↑

↑ otherwise.

Leffects
0 can be implemented using O(|P |) space. If Leffects

0 (E [n]) = a for some
action model a then a has size O(|P |).

Proof. Let α be a universally applicable, unconditional and deterministic action
and let E be a stream for α. We need to show that Leffects

0 finitely identifies
α on E . Since α is universally applicable and E is for α, for every literal l, E
must contain at least one pair (s, t), where s |= l. This shows that there must

exist an n such that Leffects
0 (E [n]) = {〈> ; post(P+

set(E[n]), P
−
set(E[n]))〉} and such

that for all literals l there is (s, t) ∈ set(E [n]) with s |= l or t |= l. Let e denote

the event of Leffects
0 (E [n]). It now remains to be shown that act({e}) = α.

Choose e′ ∈ h0, such that act({e′}) = α (such an event must necessarily exist,
cf. the proof of Theorem 4). It suffices to prove e′ = e, that is, post(e′)(p) =
post(e)(p) for all p ∈ P . First suppose post(e)(p) = >. Then, by definition,
for some (s, t) ∈ set(E [n]) we have s |= ¬p and t |= p. Since set(E [n]) ⊆ α and
act({e′}) = α, this immediately implies post(e′)(p) = >. A symmetric argument
holds for the case of post(e)(p) = ⊥. Now conversely assume post(e′)(p) = >.
By choice of n, set(E [n]) contains at least one pair (s, t) where either s |= ¬p or
t |= ¬p. Since post(e′)(p) = >, act({e′}) = α and E is for α, there can be no
pair (s, t) ∈ set(E [n]) with t |= ¬p. Hence, set(E [n]) must contain a pair (s, t)
with s |= ¬p and t |= p. This implies p ∈ P+

set(E[n]) and hence post(e)(p) = >. A

symmetric argument holds for the case of post(e′)(p) = ⊥. We have now shown
that post(e′)(p) = post(e)(p) for all p ∈ P , as required.

We now turn to the space complexity. The learning function can be im-
plemented by the following algorithm. The algorithm keeps a set P+ of the
observed positive effects, a set P− of the observed negative effects and a set L
of literals. All sets are initially empty. For each (s, t) ∈ set(E [n]), the algorithm
then adds the elements of P+

(s,t) to P+, the elements of P−(s,t) to P−, and any

literal l such that s |= l or t |= l is added to L. The algorithm then has to check
the ‘stopping condition’: whether for all literals l there is (s, t) ∈ set(E [n]) such
that s |= l or t |= l. This is simply a question of checking whether L contains
all literals.

If the stopping condition is satisfied after receiving the last observation (and
not earlier), the algorithm will return the action model {〈> ; post(P+, P−)〉}. It
is easy to check that if this action model is returned after the nth observation,
then P+ = P+

set(E[n]) and P− = P−set(E[n]). The space requirement is clearly

O(|P |) as P+, P− and I are all of size O(|P |). If Leffects
0 (E [n]) returns an

23

action model it will clearly have size O(|P |), since it is a single event where the
postcondition is of length O(|P |).

One of the crucial points about making the output of our learning func-
tions be action models is, as earlier mentioned, that they tend to be much more
succinct than the actions (state-transition functions) they represent. Any un-
conditional deterministic action will have size Θ(2|P |), since it contains exactly
one pair (s, t) for each propositional state s. Proposition 3, item 4, shows that
such actions can be represented using only O(|P |) space (by atomic action mod-
els). The result above shows that it is even possible to learn such actions using
only O(|P |) space in total.

In fact, the O(|P |) asymptotic upper bound on the size of the produced
model guaranteed by the learning function above is worst-case optimal among
any learning function independent of the representation chosen (whether it is
the state-transition functions themselves, action models or a completely differ-
ent formalism). To see this, note that all 3|P | events of h0 represent distinct
unconditional deterministic actions. So any learning function for learning un-
conditional, deterministic actions will be able to produce at least 3|P | different
outputs. The space required to be able to represent 3|P | different values is
log(3|P |) = |P | log 3 = Θ(|P |).

4 Learning conditional deterministic actions

Above we were concerned with learning unconditional deterministic actions.
These are particularly simple as they can be represented by basic and atomic
action models. We will now create a learning method for arbitrary universally
applicable and deterministic actions, that is, actions that might be conditional,
but are still deterministic. No such conditional action can be represented by
an atomic and basic action model, which can be seen as follows. Suppose α is
a universally applicable and deterministic action, and a is an atomic and basic
action model with act(a) = α. Since α is universally applicable and act(a) =
α, also a is universally applicable, by Proposition 3, item 1. Since a is then
universally applicable, atomic and basic, it must necessarily be precondition-
free. By Proposition 3, item 4, it follows that act(a) must be unconditional.
Hence if a represents α, either α is unconditional or a is not both basic and
atomic. This implies that we need a more complex learning method to learn
conditional actions.

We first study learning by update, following the same structure as for learn-
ing unconditional actions: we define a hypothesis space containing all the rele-
vant events and then define the learning function via update on that hypothesis
space.

As in the previous section, we assume P to be fixed. For each s ∈ 2P we
define φs =

∧
p∈s p ∧

∧
p∈P−s ¬p.

24

Definition 19. The hypothesis space for deterministic actions is the action
model h1 given by

h1 = {〈φs ; f〉 | s ∈ 2P and f : P ↪→ {>,⊥}
where f(p) 6= > if φ |= p and f(p) 6= ⊥ if φ |= ¬p}.

The last condition of the definition saying that “f(p) 6= > if φ |= p and
f(p) 6= ⊥ if φ |= ¬p” simply ensures that h1 satisfies condition 3 of being basic.

Definition 20. The update learning function for deterministic actions is the
learning function L1 defined by

L1(E [n]) = h1 | set(E [n]).

Theorem 6. The set of universally applicable and deterministic actions is
finitely identifiable by the update learning function Lupdate1 , defined in the fol-
lowing way

Lupdate1 (E [n]) =

L1(E [n]) if L1(E [n]) is globally deterministic

and for all k < n, Lupdate1 (E [k]) = ↑;
↑ otherwise.

Lupdate1 can be implemented using O(|P | · 4|P |) space. If Lupdate1 (E [n]) = a for
some action model a then a has size O(|P | · 2|P |).

Proof. Let us take such an action α as prescribed in the theorem and let E be a
stream for α. We need to prove that for some n, act(Lupdate1 (E [n])) = α. Take n
to be the smallest such that α ⊆ set(E [n]). We will first prove α = act(L1(E [n])).

For α ⊆ act(L1(E [n])). Assume (s, t) ∈ α. The hypothesis space h1 contains
the event 〈φs ; f〉 with f(p) = > for all p ∈ t − s and f(p) = ⊥ for all p ∈
s − t. Clearly, s ⊗ 〈φs ; f〉 = t. Hence (s, t) ∈ act(h1). We need to show
that (s, t) ∈ act(L1(E [n])), that is, that the event 〈φs ; f〉 is not eliminated by
the stream of observations E [n]. Note that the precondition of 〈φs ; f〉 is φs,
so only observations of the form (s, t′) can eliminate the event. Furthermore,
since s ⊗ 〈φs ; f〉 = t, only observations of the form (s, t′) with t′ 6= t can
eliminate the event. However, since α is deterministic and E is for a, if (s, t′) ∈
E then t′ = t. For act(L1(E [n])) ⊆ α. Assume (s, t) /∈ α. We then need

to prove (s, t) /∈ act(L1(E [n])). Let 〈φs ; f〉 be an arbitrary event of h1 with
t = s ⊗ 〈φs ; f〉. It suffices to prove that this event is eliminated in L1(E [n]).
Since α is universally applicable there must be a t′ 6= t such that (s, t′) ∈ α.
Since α ⊆ set(E [n]), (s, t′) ∈ set(E [n]). We now have s |= φs but s⊗〈φs ; f〉 6= t′,
so 〈φs ; f〉 /∈ h1 | (s, t′), and hence 〈φs ; f〉 /∈ h1 | set(E [n]). This shows that the
required event is eliminated in L1(E [n]).

We have now proven α = act(L1(E [n])). Since α is deterministic and α =
act(L1(E [n])), L1(E [n]) can not contain two distinct events of h1 with identical
preconditions. This implies that L1(E [n]) is globally deterministic. The only

25

thing left to prove is hence that the n chosen above is the smallest number for
which L1(E [n]) is globally deterministic. Consider any m < n.

Then α− set(E [m]) 6= ∅, by choice of n. Choose (s, t) ∈ α− set(E [m]). Since
E is sound for a and a is deterministic, there can be no pair of the form (s, t′) in
E [m]. Hence, L1(E [n]) will contain all events from h1 of the form 〈φs ; f〉 and
hence will not be globally deterministic (h1 contains at least two such events
for all non-empty P).

We now turn to the space complexity results. Lupdate1 is initialised with the

hypothesis space h1 of Definition 19. As for Lupdate0 , the total space require-
ment of the learning algorithm is the space requirement of the initial hypothesis
space. Each proposition p ∈ P can either occur positively or negatively in the
precondition φs of an event 〈φs ; f〉 of h1. If it occurs positively, then either
f(p) = ⊥ or f(p) is undefined, by definition of h1. Symmetrically, if p occurs
negatively in φs, then either f(p) = > or f(p) is undefined. In other words,
each proposition p can occur in 4 different configurations in the events of h1.
This implies that the number of events in h1 is O(4|P |). Since each event is of
length O(|P |), h1 has size O(|P | · 4|P |), which is the total space consumption of

the algorithm. If Lupdate1 (E [n]) = a for some action model a, then a is a globally

deterministic submodel of h1, by definition of Lupdate1 . Such a model can only
have 1 event per possible precondition φs with s ∈ 2P , hence in total O(2|P |)
events. Each event still has length O(|P |), so the total size of the action model
is O(|P | · 2|P |).

The learning method Lupdate1 proposed in Theorem 6 is yet another exam-
ple of how learning deterministic action models can be seen as the process of
gradually increasing the ‘amount of determinism’ in an action model. We have
already made a note of it in Section 2.1. This time, however, this feature of
learning becomes more pronounced, as it is explicitly present in the halting con-
dition of the learning function Lupdate1 . Each time upon performing an update
the learner checks whether the resulting restriction of the original model is glob-
ally deterministic. Once this check yields a positive result learning is concluded.
Let us now present some concrete examples of the performance of Lupdate1 .

Example 5. Consider a simple scenario with a pushbutton and a light bulb.
Assume there is only one proposition p: ‘the light is on’, and only one action:
pushing the button. We assume an agent wants to learn the functioning of the
pushbutton. The learner starts with the action model h1, which in the case of
P = {p} is:

h1 = {〈p ; ∅〉, 〈¬p ; ∅〉, 〈p ; p 7→⊥〉, 〈¬p ; p 7→>〉}

Assume the first two observations the learner receives (the first elements of
a stream E) are (∅, {p}) and ({p}, ∅). This corresponds to a pushbutton that
turns the light on if it is currently off, and vice versa. The learner revises her
model in the following way:

26

〈p ; ∅〉 〈¬p ; ∅〉 〈p ; p 7→⊥〉 〈¬p ; p 7→>〉

〈p ; ∅〉����〈¬p ; ∅〉 〈p ; p 7→⊥〉 〈¬p ; p 7→>〉

���〈p ; ∅〉����〈¬p ; ∅〉 〈p ; p 7→⊥〉 〈¬p ; p 7→>〉

observation E0 : (∅, {p})

observation E1 : ({p}, ∅)

Now the agent has reached a globally deterministic action model, and can hence
report it to be the correct model of the action. Note that the two observations
correspond to first pushing the button when the light is off (E0), and after-
wards pushing the button again after the light has come on (E1). These two
observations are sufficient to learn the type of the pushbutton.

Consider now another stream E ′, for a different action where the first two
elements are (∅, {p}) and ({p}, {p}). This time the pushbutton unconditionally
turns on the light. The learner reaches a globally deterministic action model
in two steps, this time an atomic one (which is possible since the action is
unconditional).

〈p ; ∅〉 〈¬p ; ∅〉 〈p ; p 7→⊥〉 〈¬p ; p 7→>〉

〈p ; ∅〉����〈¬p ; ∅〉 〈p ; p 7→⊥〉 〈¬p ; p 7→>〉

���〈p ; ∅〉����〈¬p ; ∅〉�����〈p ; p 7→⊥〉 〈¬p ; p 7→>〉

observation E0 : (∅, {p})

observation E1 : ({p}, {p})

4.1 Improved learning of conditional deterministic actions

As for unconditional actions, we can improve the space complexity by keeping
track of observed positive and negative effects rather than doing simple update
learning. However, since actions are potentially conditional, we need to keep
track of the possibility of distinct effects in distinct states.

In the result below, recall that we have defined post(P+, P−) = {p 7→ > |
p ∈ P+} ∪ {p 7→ ⊥ | p ∈ P−}.

Theorem 7. The set of universally applicable and deterministic actions is

27

finitely identifiable by the learning function Leffects
1 , defined in the following way:

Leffects
1 (E [n]) =

{〈φs ; post(P+

(s,t), P
−
(s,t))〉 | (s, t) ∈ set(E [n])}

if for all states s ∈ 2P there is (s, t) ∈ set(E [n]);

and for all k < n, Leffects
1 (E [k]) = ↑

↑ otherwise.

Leffects
1 can be implemented using O(|P | · 2|P |) space. If Leffects

1 (E [n]) = α for
some action model a then a has size O(|P | · 2|P |).

Proof. Let α be as prescribed and let E be a stream for α. Since α is de-
terministic and universally applicable, set(E) will contain exactly one pair
of the form (s, t) for each s ∈ 2P . Choose the smallest n so that also
set(E [n]) has this property. Then we must have α = set(E [n]) due to de-
terminism of α. By definition of the learning function we then also have
Leffects

1 (E [n]) = {〈φs ; post(P+
(s,t), P

−
(s,t))〉 | (s, t) ∈ α}. We need to prove

α = act(Leffects
1 (E [n])). To prove α ⊆ act(Leffects

1 (E [n])) it suffices to show that
for all (s, t) ∈ α, t = s ⊗ 〈φs ; post(P+

(s,t), P
−
(s,t))〉. This is trivial given the defi-

nitions of P+
(s,t) and P−(s,t). For act(Leffects

1 (E [n])) ⊆ α, we have to prove that if

t′ = s′⊗〈φs ; post(P+
(s,t), P

−
(s,t))〉 for some pair (s′, t′) and some choice of (s, t) ∈ α

then (s′, t′) ∈ α. From t′ = s′ ⊗ 〈φs ; post(P+
(s,t), P

−
(s,t))〉 we immediately get

s′ = s. We now have t = (s − P−(s,t)) ∪ P
+
(s,t) = s ⊗ 〈φs ; post(P+

(s,t), P
−
(s,t))〉 =

s′ ⊗ 〈φs ; post(P+
(s,t), P

−
(s,t))〉 = t′. This shows (s′, t′) = (s, t) ∈ α.

We now turn to the complexity results. The learning function can be im-
plemented by the following algorithm. For each s ∈ 2P , we store a boolean
value bs, and two sets P+

s , P
−
s ⊆ P . Initially bs = 0 and P+

s = P−s = ∅ for all
s. For each observation (s, t), the algorithm then does the following: if bs = 0
then we assign bs := 1, P+

s := P+
(s,t), P

−
s := P−(s,t). After each observation,

the algorithm checks whether bs = 1 for all s ∈ 2P . If so, the action model
{〈φs ; post(P+

s , P
−
s)〉 | s ∈ 2P } is returned. It is easy to check that this indeed

implements Leffects
1 . Since the algorithm for each s ∈ 2P stores a boolean and

two subsets of P , the space requirement is O(|P | · 2|P |). The action model re-
turned contains for each s ∈ 2P an event of length O(|P |), so it also has size
O(|P | · 2|P |).

As for learning unconditional actions, we can prove that the size of the
produced model of the learning function above is worst-case optimal, again
independent of the action representation chosen. First we note that any
deterministic, universally applicable action α determines a unique mapping
fα : 2P → 2P satisfying (s, t) ∈ α iff fα(s) = t. Conversely, any such map-
ping determines a unique deterministic, universally applicable action. Hence
the number of deterministic, universally applicable actions is equal to the num-

ber of such mappings, which is (2|P |)(2|P |). Thus any learning function for

learning such actions will be able to produce (2|P |)(2|P |) different outputs.

28

The space requirement to be able to represent (2|P |)(2|P |) different values is

log((2|P |)(2|P |)) = 2|P | · log(2|P |) = 2|P | · |P | log 2 = 2|P | · |P |, which is the space
requirement guaranteed by the learning function above.

4.2 Parametrised learning of conditional deterministic ac-
tions

The above results study worst-case space complexities in terms of the number
of atomic propositions. In some environments, the set of atomic propositions
might be quite high, for instance the environment of a domestic robot. Still,
most individual actions α in such environments only depend on relatively few
propositions (have a small pre(α)). For instance, the action α of pushing a
particular light switch might have pre(α) = {p}, where p represents the current
state of the switch/light. Of course, there could be more preconditions in pre(α)
encoding whether the bulb is broken, whether the fuse is blown, etc., but the
size of pre(α) would still be very low compared to potentially 100s or 1000s or
atomic propositions in the domain. We will now present an improved learning
function that takes this into account. The learning function is parametrised by
an upper bound j on the size of pre(α) (that is, the number of preconditions is
at most j). In many domains, it is reasonable to assume a fixed upper bound on
the number of preconditions for all actions in the domain (the outcome of any
action can only depend on the truth value of a given number of propositions).

Given an action α and a propositional formula φ, we use α�φ to denote the
restriction of α to the states satisfying φ, i.e., α�φ = {(s, t) ∈ α | s |= φ}. For all
j ≤ |P |, we define Φj = {

∧
p∈s p∧

∧
p∈P ′−s ¬p | P ′ ⊆ P , |P ′| = j, and s ∈ 2P

′}.
The elements of Φj are conjunctions of exactly j literals.

Two state-transition pairs (s, t) and (s′, t′) are called compatible if the fol-
lowing conditions hold for all p ∈ P : if p ∈ P+

(s,t), then t′ |= p; if p ∈ P−(s,t),

then t′ |= ¬p; if p ∈ P+
(s′,t′), then t |= p; and if p ∈ P−(s′,t′), then t |= ¬p. It

is clear from this definition that if two pairs (s, t) and (s′, t′) are incompatible,
there can be no single event e with t = s ⊗ e and t′ = s′ ⊗ e. Compati-
bility between (s, t) and (s′, t′) can equivalently be defined as the condition
((t− s)− t′) ∪ ((s− t) ∩ t′) ∪ ((t′ − s′)− t) ∪ ((s′ − t′) ∩ t) = ∅.

Theorem 8. Let Xj denote the set of universally applicable and deterministic
actions α satisfying |pre(α)|≤j. The set Xj is finitely identifiable by the learning

function Leffects
2 , defined in the following way:

Leffects
2 (E [n]) =

{〈φ ; post(P+
set(E[n])�φ, P

−
set(E[n])�φ)〉 | φ ∈ Φj and

all (s, t), (s′, t′) ∈ set(E [n])�φ are compatible}
if for all φ ∈ Φmin{|P |,2j+1} there is

(s, t) ∈ set(E [n]), s.t. s |= φ,

and for all m < n, Leffects
1 (E [m]) = ↑;

↑ otherwise.

29

Leffects
2 can be implemented using O(

(|P |
min{|P |,2j+1}

)
·2min{|P |,2j+1}+

(|P |
j

)
·2j ·|P |)

space. If Leffects
2 (E [n]) = α for an action model a then a has size O(

(|P |
j

)
·2j ·|P |).

Proof. Let α be as prescribed in the theorem and let E be a stream for α. Since
α is universally applicable there exists an n such that:

Leffects
2 (E [n]) = {〈φ ; post(P+

set(E[n])�φ, P
−
set(E[n])�φ)〉 | φ ∈ Φj and

all (s, t), (s′, t′) ∈ set(E [n])�φ are compatible},
and for all φ ∈ Φ2j+1 there is (s, t) ∈ set(E [n]), s.t. s |= φ.

We need to prove act(Leffects
2 (E [n])) = α.

For α ⊆ act(Leffects
2 (E [n])). Since |pre(α)| ≤ j, there must be a set P ′ ⊆ P

satisfying |P ′| = j and pre(α) ⊆ P ′. Then α is uniform in P − P ′. Assume

(s, t) ∈ α. We need to prove (s, t) ∈ act(Leffects
2 (E [n])). By uniformity of α in

P − P ′, there exists P+ and P−, such that for all s′ with s′ 	 s ⊆ P − P ′,
(s, (s− P−) ∪ P+) ∈ α.

Let φ =
∧
p∈s∩P ′ p ∧

∧
p∈P ′−s ¬p. Clearly, s |= φ. Note that for any s′ with

s′ |= φ, we have s′	s ⊆ P −P ′ and hence (s′, (s′−P−)∪P+) ∈ α. We then get
that any two pairs (s′, t′), (s′′, t′′) ∈ α�φ must be compatible, and hence that
any two pairs (s′, t′), (s′′, t′′) ∈ set(E [n])�φ are also compatible.

Since φ ∈ Φj , we then get that Leffects
2 (E [n])) contains the event eφ =

〈φ ; post(P+
set(E[n])�φ, P

−
set(E[n])�φ)〉. Since s |= φ and pre(eφ) = φ, we get

s |= pre(eφ), and hence (s, s⊗eφ) ∈ Leffects
2 (E [n]). To prove (s, t) ∈ Leffects

2 (E [n])
it therefore suffices to show that P+

set(E[n])�φ − s = P+ − s and P−set(E[n])�φ − s =

P−−s. We only prove P+
set(E[n])�φ−s = P+−s, the other case being analogous.

Assume first p ∈ P+−s. Since s |= φ and p /∈ s, either ¬p is a conjunct of φ or p
does not occur in φ. Since φ ∈ Φj , in both cases there exists a φ′ ∈ Φmin{|P |,2j+1}
such that φ′ |= φ ∧ ¬p. By choice of n there then exists (s′, t′) ∈ set(E [n]) with
s′ |= φ ∧ ¬p. Since set(E [n]) ⊆ α, we have (s′, t′) ∈ α, and since s′ |= φ we then
get t′ = (s′−P−)∪P+. Since p ∈ P+ this implies t′ |= p. We now have s′ |= φ,
s′ |= ¬p, t′ |= p and (s′, t′) ∈ set(E [n]). This implies p ∈ P+

set(E[n])�φ, as required.

Now suppose opposite, that p ∈ P+
set(E[n])�φ−s. Then by definition there must

exist (s′, t′) ∈ set(E [n])�φ such that s′ |= ¬p and t′ |= p. Since set(E [n]) ⊆ α,
we get (s′, t′) ∈ α, and since s′ |= φ, we get t′ = (s′ − P−) ∪ P+. Since s′ |= ¬p
and t′ |= p, necessarily p ∈ P+.

For act(Leffects
2 (E [n])) ⊆ α. Suppose, to achieve a contradiction, that it does

not hold. Then there must be a pair (s, t) ∈ act(Leffects
2 (E [n])) − α. Since

α is universally applicable, for some t′ we have (s, t′) ∈ α. Since (s, t) 6∈ α,
t′ 6= t. Hence there exists a p ∈ P with p ∈ t′ 	 t. We can assume t |= p
and t′ |= ¬p, the other case being symmetric. We either have s |= p or
s |= ¬p. We can assume s |= ¬p, again since the other case is symmet-

ric. Then p ∈ P+
(s,t). Since (s, t), (s, t′) ∈ act(Leffects

2 (E [n])) there must ex-

ist formulas φ, ψ ∈ Φj such that eφ = 〈φ ; post(P+
set(E[n])�φ, P

−
set(E[n])�φ)〉 and

30

eψ = 〈ψ ; post(P+
set(E[n])�ψ, P

−
set(E[n])�ψ)〉 are events of Leffects

2 (E [n]) and t = s⊗eφ
and t′ = s⊗ eψ.

Since φ, ψ ∈ Φj , there exists γ ∈ Φmin{|P |,2j+1} with γ |= φ ∧ ψ ∧ ¬p.
Hence by choice of n there exists (s′′, t′′) ∈ set(E [n]) with s′′ |= γ. Now

we have (s, t), (s′′, t′′) ∈ set(E [n])�φ and (s, t′), (s′′, t′′) ∈ set(E [n])�ψ. If t′′ |= p
then p ∈ P+

(s′′,t′′) and since t′ |= ¬p, the two observations (s, t′), (s′′, t′′) of

set(E [n])�ψ are incompatible, contradicting that eψ is an event of Leffects
2 (E [n]).

If t′′ |= ¬p then since p ∈ P+
(s,t) the two observations (s, t), (s′′, t′′) of set(E [n])�φ

are incompatible, contradicting that eφ is an event of Leffects
2 (E [n]).

We now turn to the complexity claims. The learning function can be imple-
mented by the following algorithm. For each φ ∈ Φmin{|P |,2j+1} the algorithm
stores a boolean bseenφ which is initially 0. If an observation (s, t) with s |= φ
is received, we assign bseenφ := 1. The learning function additionally for each
φ ∈ Φj keeps track of the following information. First, there is a boolean
bincludeφ which is initially 1, and which encodes whether the resulting action
model should include the event with precondition φ. Second, for each literal
l there is a boolean b+φ,l recording whether an observation (s, t) with s |= φ,
s |= ¬l and t |= l has been made. Third, there is a boolean b=φ,l recording
whether an observation (s, t) with s |= φ, s |= l and t |= l has been made. With
these booleans we can keep track of whether all observations (s, t), (s′, t′) with
s |= φ and s′ |= φ are compatible. If an observation (s, t) with s |= φ is made
that is incompatible with the earlier observations, we set bincludeφ = 0.

After each observation, it is checked whether all bseenφ = 1. If so, we return

the action model that for each φ ∈ Φj with bincludeφ = 1 contains the event

〈φ ; post(P+
φ , P

−
φ)〉 having P+

φ = {p ∈ P | b+φ,p = 1} and P−φ = {p ∈ P | b+φ,¬p =
1}. To store the booleans bseenφ we need as many bits as the size of Φmin{|P |,2j+1}.
The set Φmin{|P |,2j+1} contains conjunctions of min{|P |, 2j+ 1} literals from P .

There are
(|P |

min{|P |,2j+1}
)

ways to choose min{|P |, 2j + 1} distinct propositions

from P , and each proposition can then either occur positively or negatively. This
gives that the size of Φmin{|P |,2j+1} is

(|P |
min{|P |,2j+1}

)
· 2min{|P |,2j+1}. Addition-

ally, we are for each φ ∈ Φj storing a boolean bincludeφ , and for each combination

of φ ∈ Φj and literal l we are storing 2 additional booleans b+φ,l and b=φ,l. The

size of Φj is
(|P |
j

)
· 2j . The number of literals is O(|P |). Hence we need addi-

tionally O(
(|P |
j

)
· 2j · |P |) bits. This gives the result on the space consumption

of the algorithm. The produced action model has an event of length O(|P |) for

at most each φ ∈ Φj , so the size of this model is O(
(|P |
j

)
· 2j · |P |).

We note the following interesting special cases of the space complexity of
the produced action models. Unconditional actions have j = 0. For j = 0
we get O(

(|P |
j

)
· 2j · |P |) = O(|P |), which is exactly the result on the size of

the produced action model for unconditional actions we achieved in Theorem 5.
For conditional actions in general (with no restrictions on the preconditions) we

have j = |P |. Then we get O(
(|P |
j

)
· 2j · |P |) = O(2|P | · |P |), which is exactly

31

the result achieved in Theorem 7. For the special case of unary preconditions,
j = 1, we get O(

(|P |
j

)
· 2j · |P |) = O(|P |2).

5 Conclusions

In this paper we studied the problem of learnability of action models in dynamic
epistemic logic. We provided an extensional treatment of actions viewed as sets
of transitions between propositional states. This approach is especially useful
for our learnability framework: we can relate the observations of action execu-
tions to the concise representations of actions in dynamic epistemic logic. We
studied fully observable propositional action models with respect to conclusive
(finite identifiability) and inconclusive (identifiability in the limit) learnability.
Apart from the general learnability results, we introduced learning functions
which proceed via gradual restriction of action models. Here, by implementing
the update method (commonly used in dynamic epistemic logic, in a different
context), we demonstrated how the learning of action models can be seen as
transitioning from nondeterministic to deterministic actions.

Related work A similar qualitative approach to learning actions has been
addressed by [25] within the STRIPS planning formalism. The STRIPS setting
is more general than ours in that it uses atoms of first-order predicate logic
for pre- and postconditions. It is however less general in neglecting various
aspects of actions which we have successfully treated in this paper, e.g., negative
preconditions, negative postconditions, and conditional actions (actions with
conditional effects). We believe that our framework can be applied to generalise
the results of [25] to richer planning frameworks allowing such action types.
Even though some of the previous work uses the basic mechanisms of update
learning (SLAFS learning [23] and learning within the STRIPS formalism [25])
it rarely goes beyond basic update, as we do here with the effect learning.
There has been quite substantial amount of work in relating dynamic epistemic
logic and learning theory (see [15, 16] for overviews), where iterated update
and upgrade revision policies are treated as long term learning methods, where
learning is seen as convergence to certain types of knowledge (see [3, 5]). A
study of abstract properties of finite identifiability in a setting similar to ours,
including various efficiency considerations, can be found in [17].

Future work In this paper we laid the groundwork for our subsequent studies
of learnability of action models. We only considered fully observable actions
models, and hence did not use the full expressive power of the DEL-formalism,
which offers a principled way of describing actions in a logical setting, and
opens ways to various extensions. Those include: non-deterministic, partially
observable, and multi-agent action models.

Non-deterministic action models are more difficult to learn via update meth-
ods. It is so because an observed outcome of an execution of an action in a given
propositional state does not allow excluding the possibility that at a different

32

point in time the execution of the action in the same propositional state will
yield a different result. As described earlier, partially observable actions are
not learnable in the strict sense considered above, but we can still investigate
agents learning “as much as possible” given their limitations in observability.
The multi-agent case is particularly interesting due to the possibility of agents
with varied limitations on observability, and the possibility of communication
within the learning process. Furthermore, we here considered only what we
call reactive learning : the learner has no influence over which observations are
received. Another direction is that of proactive learning, where the learner gets
to choose which actions to execute. This is probably the most relevant type of
learning for a general learning-and-planning agent. In this context, we also plan
to focus on consecutive streams: streams corresponding to executing sequences
of actions rather than observing arbitrary state transitions. Our ultimate aim
is to relate learning and planning within the framework of DEL. Those two
cognitive capabilities are now investigated mostly in separation—our goal is to
bridge them.

References

[1] M. B. Andersen, T. Bolander, and M. H. Jensen. Conditional epistemic
planning. Lecture Notes in Artificial Intelligence, 7519:94–106, 2012. Pro-
ceedings of JELIA 2012.

[2] D. Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45(2):117–135, 1980.

[3] A. Baltag, N. Gierasimczuk, and S. Smets. Belief revision as a truth-
tracking process. In K. Apt, editor, TARK’11: Proceedings of the 13th
Conference on Theoretical Aspects of Rationality and Knowledge, Gronin-
gen, The Netherlands, July 12-14, 2011, pages 187–190. ACM, New York,
NY, USA, 2011.

[4] A. Baltag, N. Gierasimczuk, and S. Smets. Truth tracking by belief revision.
ILLC Prepublication Series PP-2014-20 (to appear in Studia Logica 2017),
2014.

[5] A. Baltag, N. Gierasimczuk, and S. Smets. On the solvability of inductive
problems: A study in epistemic topology. In R. Ramanujam, editor, Pro-
ceedings of the 15th conference on Theoretical Aspects of Rationality and
Knowledge (TARK), 2015. Also available as a technical report in ILLC
Prepublication Series PP-2015-13.

[6] A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements
and common knowledge and private suspicions. In I. Gilboa, editor, Pro-
ceedings of the 7th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK-98), pages 43–56. Morgan Kaufmann, 1998.

33

[7] C. Baral, G. Gelfond, E. Pontelli, and T. C. Son. An action language for
reasoning about beliefs in multi-agent domains. In Proceedings of the 14th
International Workshop on Non-Monotonic Reasoning, volume 4, 2012.

[8] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, UK, 2001.

[9] T. Bolander and M. B. Andersen. Epistemic planning for single- and multi-
agent systems. Journal of Applied Non-Classical Logics, 21:9–34, 2011.

[10] T. Bolander and N. Gierasimczuk. Learning action models: Qualitative
approach. In Logic, Rationality and Interaction, volume 9394 of Lecture
Notes in Computer Science. Springer, 2015.

[11] R. Fikes and N. Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2:189–203,
1971.

[12] M. Ghallab, D. S. Nau, and P. Traverso. Automated Planning: Theory and
Practice. Morgan Kaufmann, 2004.

[13] N. Gierasimczuk. Bridging learning theory and dynamic epistemic logic.
Synthese, 169(2):371–384, 2009.

[14] N. Gierasimczuk. Learning by erasing in dynamic epistemic logic. In A. H.
Dediu, A. M. Ionescu, and C. Martin-Vide, editors, LATA’09: Proceedings
of 3rd International Conference on Language and Automata Theory and
Applications, Tarragona, Spain, April 2-8, 2009, volume 5457 of Lecture
Notes in Computer Science, pages 362–373. Springer, The Netherlands,
2009.

[15] N. Gierasimczuk. Knowing One’s Limits. Logical Analysis of Inductive
Inference. PhD thesis, Universiteit van Amsterdam, The Netherlands, 2010.

[16] N. Gierasimczuk, D. de Jongh, and V. F. Hendricks. Logic and learning.
In A. Baltag and S. Smets, editors, Johan van Benthem on Logical and
Informational Dynamics. Springer, 2014.

[17] N. Gierasimczuk and D. de Jongh. On the complexity of conclusive update.
The Computer Journal, 56(3):365–377, 2013.

[18] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[19] K. T. Kelly. The learning power of belief revision. In TARK’98: Pro-
ceedings of the 7th Conference on Theoretical Aspects of Rationality and
Knowledge, pages 111–124, San Francisco, CA, USA, 1998. Morgan Kauf-
mann Publishers Inc.

34

[20] S. Lange and T. Zeugmann. Types of monotonic language learning and
their characterization. In COLT’92: Proceedings of the 5th Annual ACM
Conference on Computational Learning Theory, Pittsburgh, PA, USA, July
27-29, 1992, pages 377–390. ACM, New York, NY, USA, 1992.

[21] Y. Mukouchi. Characterization of finite identification. In K. Jantke, edi-
tor, AII’92: Proceedings of the International Workshop on Analogical and
Inductive Inference, Dagstuhl Castle, Germany, October 5-9, 1992, vol-
ume 642 of Lecture Notes in Computer Science, pages 260–267. Springer,
Berlin/Heidelberg, 1992.

[22] J. Plaza. Logics of public communications. Synthese, 158(2):165–179, 2007.

[23] D. Shahaf and E. Amir. Learning partially observable action schemas.
In Proceedings of the 21st National Conference on Artificial Intelligence -
Volume 1, AAAI’06, pages 913–919. AAAI Press, 2006.

[24] H. van Ditmarsch and B. Kooi. Semantic results for ontic and epistemic
change. In G. Bonanno, W. van der Hoek, and M. Wooldridge, editors,
Logic and the Foundation of Game and Decision Theory (LOFT 7), Texts
in Logic and Games 3, pages 87–117. Amsterdam University Press, 2008.

[25] T. J. Walsh and M. L. Littman. Efficient learning of action schemas and
web-service descriptions. In Proceedings of the 23rd National Conference on
Artificial Intelligence - Volume 2, AAAI’08, pages 714–719. AAAI Press,
2008.

35

