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Abstract. In this paper we show how to formalise false-belief tasks like
the Sally-Anne task and the second-order chocolate task in Dynamic
Epistemic Logic (DEL). False-belief tasks are used to test the strength
of the Theory of Mind (ToM) of humans, that is, a human’s ability to
attribute mental states to other agents. Having a ToM is known to be
essential to human social intelligence, and hence likely to be essential to
social intelligence of artificial agents as well. It is therefore important to
find ways of implementing a ToM in artificial agents, and to show that
such agents can then solve false-belief tasks. In this paper, the approach
is to use DEL as a formal framework for representing ToM, and use
reasoning in DEL to solve false-belief tasks. In addition to formalising
several false-belief tasks in DEL, the paper introduces some extensions of
DEL itself: edge-conditioned event models and observability propositions.
These extensions are introduced to provide better formalisations of the
false-belief tasks, but expected to have independent future interest.

1 Introduction

Social intelligence is the ability to understand others and the social context effec-
tively and thus to interact with other agents successfully. Research has suggested
that Theory of Mind (ToM) may play an important role in explaining social in-
telligence. ToM is the ability to to attribute mental states—beliefs, intentions,
etc.—to oneself and others and to understand that others might have mental
states that are different from one’s own [23]. The strength of a human child’s
ToM is often tested with a false-belief task such as the Sally-Anne task [29].

Example 1 (The Sally-Anne task). The Sally-Anne task is illustrated in Figure 7
in the appendix. It is based on a story with two agents, Sally and Anne, that
has the following 5 steps, corresponding to the 5 pictures in Figure 7:

0. Sally and Anne are in a room. Sally is holding a marble. There is a basket
and a box in the room.

1. Sally puts the marble into the basket.

2. Sally leaves the room.

3. Anne transfers the marble to the box.

4. Sally comes back.



When used as a cognitive test for children, the child is told or shown the story
in the figure. At the end, the child is asked “where does Sally believe the marble
to be?” Passing the test means answering “in the basket”, since Sally didn’t see
Anne transfer the marble from the basket to the box, and hence Sally has the
false belief that it is still in the basket. If the child answers “in the box”, where
in fact the marble is, the child has failed the test. Children under the age of
4, and autistic children in general, are generally unable to pass the Sally-Anne
test [29, 9].

To create AI agents with social intelligence, it seems relevant to consider the
possibility of equipping such agents with a ToM, and to test them using false-
belief tasks. The idea here is that for an AI agent, e.g. a robot, to be considered
truly ‘socially intelligent’, it should at least be able to pass these false-belief
tasks. Hence it becomes important to find ways of formalising ToM and false-
belief tasks in a way that will allow computers to do the required reasoning.

The goal of the present paper is to present one such possible formalisation,
using the framework of Dynamic Epistemic Logic (DEL). We will now explain
why DEL is a fairly natural choice here. First of all, we need a formalism that
can represent the beliefs of other agents, e.g. the beliefs of Sally, Sally’s beliefs
about Anne, etc. This naturally leads one to consider an epistemic logic (or,
more precisely, a doxastic logic, but we will here still refer to it as epistemic).
Basic epistemic logic is however only sufficient to model static state of affairs,
like “at this particular instant, Sally believes the marble to be in the basket.”
In the false-belief tasks we also need to be able to model the dynamics: how the
beliefs of the involved agents change as actions occur, e.g. when Anne secretely
transfers the marble. This is where DEL comes into the picture: it has a natural
way to deal with static states of beliefs (the epistemic models of DEL), a natural
way to describe actions with epistemic and/or world changing effects (the event
models of DEL), and a simple way of calculating the result of executing an action
in a state (the product update of DEL).

Below we will first, in Section 2, briefly present the qualities we aim for in
our false-belief task formalisations. Next, in Section 3, we introduce the required
parts of DEL, and then apply it to formalise the Sally-Anne task in Section 4.
The formalisation turns out not to be entirely satisfactory, and hence we will, in
Section 5, introduce an extension of DEL that gives more appropriate formali-
sations. The improved formalisations are in Section 6.

2 Robustness and faithfulness

Above we claim that DEL is a fairly natural choice for the formalisation of
false-belief tasks. This of course doesn’t imply that it is the only natural choice.
Indeed, there are several existing formalisations of false-belief tasks in the liter-
ature, using different formal frameworks. Figure 8 of the appendix gives a brief
overview of the full formalisations and implemented systems we know of. The
Sally-Anne task is usually referred to as a first-order false-belief task since it only



involves first-order belief attribution: the child has to attribute beliefs to Sally,
but not, say, to Sally’s beliefs about Anne’s beliefs (which would be second-order
belief attribution). Most of the existing formalisations can only deal with first-
order or at most second-order false-belief tasks. We wish to be more general,
and at the same time have formalisations that stay as close as possible to the
informal versions of the tasks, and so propose the following two criteria:

Robustness. The formalism should not only be able to deal with one or two
selected false-belief tasks, but with as many as possible, with no strict limit on
the order of belief attribution.

Faithfulness. Each action of the false-belief story should correspond to an action
in the formalism in a natural way, and it should be fairly straightforward, not
requiring ingenuity, to find out what that action of the formalism is.

One can distinguish approaches to formalising false-belief tasks that seek to:
1) provide formal models of human reasoning; 2) provide the basis for a reasoning
engine of autonomous agents. These two are of course not always disjoint aims,
as discussed by Rineke Verbrugge [27]. In this paper, however, we are exclusively
concerned with the second aim. We will hence not be concerned with whether
our formalisation has any correspondence with the cognitive processes of humans
solving false-belief tasks.

3 Dynamic epistemic logic

In this section we will introduce the required basics of dynamic epistemic logic
(DEL). The less technically inclined, or interested, reader can browse very quickly
through the definitions and instead focus on the examples that illustrate the
workings of the formalism in relation to the Sally-Anne task. Basic familiarity
with epistemic logic, but not necessarily DEL, is expected. All definitions in this
section are well-known and standard in DEL. The particular variant presented
here is adopted from van Ditmarsch and Kooi [17].

Epistemic Models

Throughout this article, P is an infinite, countable set of atomic propositions
(propositional symbols), and A is a non-empty finite set of agents. We will most
often use lower case letters p, q, r, . . . for atomic propositions and capital letters
A,B,C, . . . for agents. Variables ranging over agents will be denoted i, j, k, . . . .
The epistemic language L(P,A) is generated by the following BNF:

φ ::= p | ¬φ | φ ∧ φ | Biφ

where p ∈ P and i ∈ A. The intended interpretation of a formula Biφ is “agent i
believes φ”. The formula φ∨ψ is an abbreviations of ¬(¬φ∧¬ψ), and we define
> as an abbreviation for p ∨ ¬p and ⊥ as an abbreviation for p ∧ ¬p for some
arbitrarily chosen p ∈ P . The semantics of L(P,A) is defined through epistemic
models.
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Fig. 1. Two states and an action.

Definition 1 (Epistemic models and states). An epistemic model of L(P,A)
is M = (W,R, V ), where

– W , the domain, is a set of worlds;
– R : A → 2W×W assigns an accessibility relation R(i) to each agent i ∈ A;
– V : P → 2W assigns a set of worlds to each atomic proposition.

The relation R(i) is usually abbreviated Ri, and we write wRiv when (w, v) ∈ Ri.
For w ∈ W , the pair (M, w) is called a state of L(P,A), and w is referred to
as the actual world.

The truth conditions (that is, the definition of (M, w) |= φ for models M,
worlds w and formulas φ ∈ L(P,A)) are standard and provided in Figure 9 of
the appendix.

Example 2. We will now illustrate the notion of a state relative to the Sally-Anne
task of Example 1. The example states are (M, w0) and (M′, w′0) of Figure 1.
Here we have two atomic propositions, x and t, where x is intended to mean
“the marble is in the box”, and t means “the marble is in the basket”. We use
the agent symbols S and A for Sally and Anne, respectively.

In (M, w0) and (M′, w′0), and states in general, each world is marked by its
name followed by a list of the atomic propositions true at that world (which may
be empty if none holds true). Sometimes we will drop names on worlds and just
label them by the list of true propositions. Edges are labelled with the name of
the relevant accessibility relations (agents). We use the symbol to mark the
actual world.

Consider (M, w0). The actual world is w0, that is, the marble is in the basket
(t holds). The loop at w0 for S and A means that Sally and Anne consider the
actual world w0 possible, and the absence of other edges means that they only
consider w0 possible. Hence we have e.g. (M, w0) |= BSt∧BAt∧BSBAt∧BABSt:
both Sally and Anne believe the marble to be in the basket, and they both believe
each other to have this belief. The state (M, w0) corresponds to the situation
before Anne has transferred the marble to the box.

Consider now (M′, w′0). This corresponds to the situation after Anne has
transferred the marble in Sally’s absence. The actual world now satisfies x. In the
actual world, w0, Anne only considers w0 possible (signified by the loop labelled
A at w0): she knows the marble to be in the box. However, Sally doesn’t have
such a loop at w0, rather she has an edge going to w1 where t holds. This means
that in the actual world Sally only considers it possible that the actual world is



in fact w1. Hence she has a false belief that the marble is in the basket (a false
belief that t holds). Formally, (M′, w′0) |= BSt.

We have now seen how we can use states to model the beliefs of Sally and Anne
before and after the marble is moved. But we also need a way to model the act
of moving the marble. This is done using DEL event models, presented next.

Event Models

DEL introduces the concept of event model (or action model) for modeling the
changes to states brought about by the execution of actions [6, 5]. We here use
a variant that includes postconditions [16, 10, 11], which means that actions can
have both epistemic effects (changing the beliefs of agents) and ontic effects
(changing the physical facts of the world).

Definition 2 (Event models and actions). An event model of L(P,A) is
E = (E,Q, pre, post), where

– E, the domain, is a finite non-empty set of events;
– Q : A → 2E×E assigns an accessibility relation Q(i) to each agent i ∈ A;
– pre : E → L(P,A) assigns to each event a precondition, which can be any

formula in L(P,A).
– post : E → L(P,A) assigns to each event a postcondition. Postconditions

are conjunctions of propositional literals, i.e., conjunctions of atomic propo-
sitions and their negations (including > and ⊥).

The relation Q(i) is generally abbreviated Qi. For e ∈ E, (E , e) is called an
action of L(P,A), and e is referred to as the actual event.

Example 3. Consider the action (E , e0) of Figure 1. Labeling events by the pair
〈φ1, φ2〉 means that the event has precondition φ1 and postcondition φ2. Hence
the actual event, e0, corresponds to the action of making t false and x true,
that is, it is the act of transferring the marble from the basket to the box. The
event e1 has trivial pre- and post-conditions meaning that it is a ‘skip’ action
representing that nothing happens. Looking at the edges of the action, we see
that Anne only considers it possible that the marble is transferred (the loop at
e0), whereas Sally only considers it possible that nothing happens (she only has
en edge from the actual event to the ‘skip’ event e1). Hence the model encodes
an action where the marble is actually transferred from the basket to the box,
Anne is aware of this, but Sally thinks that nothing happens. It hence encodes
step 3 of the Sally-Anne task, cf. Example 1.

Product Update

Assume given a state (M, w0) and an action (E , e0). The product update yields
a new state (M, w0)⊗ (E , e0) representing the situation after the action (E , e0)
has been executed in the state (M, w0).



Definition 3 (Product update). Let (M, w0) be a state and (E , e0) an action,
where M = (W,R, V ) and E = (E,Q, pre), and where M, w0 |= pre(e0). The
product update of (M, w0) with (E , e0) is defined as the state (M, w0)⊗(E , e0) =
((W ′, R′, V ′), (w0, e0)), where

– W ′ = {(w, e) ∈W × E | M, w |= pre(e)}
– R′i = {((w, e), (v, f)) ∈W ′ ×W ′ | wRiv and eQif}
– (w, e) ∈ V ′(p) iff post(e) |= p or (M, w |= p and post(e) 6|= ¬p).

Example 4. Referring again to Figure 1, we can calculate the product update
(M, w0) ⊗ (E , e0). Intuitively, the calculation works like this. For each event in
E , we first find the worlds inM that satisfies the precondition of the event. Each
such matching world-event pair will become a world in the resulting model. Since
both e0 and e1 have the trivial precondition >, both have their precondition
satisfied in the world w0. This gives us two matching world-event pairs (w0, e0)
and (w0, e1) that will become the worlds of the new model. Now we have to
use the postconditions of the events in order to figure out what the labels of
these new worlds will be. In (w0, e0) we have paired w0 with e0. This means
that we should take the existing label of w0 and then update it according to the
postcondition of e0. The label of w0 is t and the postcondition of e0 is ¬t∧x. The
postcondition ¬t ∧ x will force t to become false and x to become true, so the
label of (w0, e0) will be x. The label of (w0, e1) is the same as of w0, since e0 has
the trivial postcondition >. So the updated model (M, w0) ⊗ (E , e0) will have
the two worlds (w0, e0) : x and (w0, e1) : t. Now we only need to find the edges
connecting these two worlds. There will be an A-loop at (w0, e0), since there is
both an A-loop at w0 in M and an A-loop at e0 in E . Similarly there will be
an {S,A}-loop at (w0, e1). Finally, we need to check the edges between (w0, e0)
and (w0, e1). Since there is an S-loop at w0 and an S-edge from e0 to e1, we get
an S-edge from (w0, e0) to (w0, e1). In total, the product update becomes:

(M, w0)⊗ (E , e0) =
(w0, e0) : x

A

(w0, e1) : t

S,A

S

Note that the resulting model is isomorphic to (M′, w′0) of Figure 1. Since
(M, w0) represents the situation before Anne transfers the marble, and (M′, w′0)
represents the situation afterwards (cf. Example 2), (E , e0) correctly captures the
action of transferring the marble in Sally’s absence.

4 Formalising the Sally-Anne task in DEL

We now have all the necessary ingredients for our first formalisation of the Sally-
Anne task. Consider again the 5 steps of the Sally-Anne story presented in
Example 1. The first step, step 0, describes the initial state, whereas the rest,
1–4, describes a sequence of actions. We will now show how to represent step 0
as a state and steps 1–4 as actions. We use the same symbols as in the previous
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Fig. 3. The DEL-formalisation of the Sally-Anne task

examples, except we add a new atomic proposition p meaning “Sally is present
in the room with Anne”. The following 5 step list, corresponding to the list of
Example 1, shows the relevant states and actions:

0. Sally is in the room, holding the marble: state s1 of Figure 2.
1. Sally puts the marble into the basket: action a1 of Figure 2.
2. Sally leaves the room: action a2 of Figure 2.
3. Anne transfers the marble to the box: action a3 of Figure 2.
4. Sally re-enters: action a4 of Figure 2.

Figure 3 calculates the result of executing the action sequence a1, . . . , a4 in s1,
that is, si+1 = si⊗ ai for all i = 1, . . . , 4, and hence s5 = s1⊗ a1⊗ · · · ⊗ a4. The
first two actions, a1 and a2, are very simple. As seen from Figure 3, executing a1
in the initial state s1 simply adds the proposition t to the actual world (in s2),
signifying that now the marble is in the basket. Executing a2 in the resulting state
s2 amounts to deleting p from the actual world: in s3 Sally is no longer present



in the room. The action a3, the most complex one, has already been discussed
in Example 3, and in Example 4 we carefully checked that s4 = s3 ⊗ a3. The
final action, a4, simply adds p to every world of the model, corresponding to the
fact the Sally returns to the room, and this is observed by both agents.

What is important is now of course to check what holds in s5, the model
resulting from executing a1, . . . , a4 in s1. From Figure 3 we can see that s5 |=
¬t ∧ BSt, that is, Sally mistakenly believes the marble to be in the basket.
Assume an agent presented with steps 0–4 of the original informal story is able
to formalise the steps as s1, a1, . . . , a4, and is afterwards asked “where does
Sally believe the marble to be”. Then that agent can first calculate the final
state s5 = s1 ⊗ a1 ⊗ · · · ⊗ a4 and conclude that s5 |= BSt holds. From this the
agent can answer “in the basket”, hence passing the Sally-Anne test!

5 Extending the DEL formalism

So far so good, or at least it seems that way. But a closer look shows that there
are two problems with the DEL-formalisation that need to be addressed. The
first is: where do the event models come from? How is an agent supposed to get
from the informal steps of the story to the formalisations s1, a1, . . . , a4? It seems
to require ingenuity to come up with the right event models to formalise the
informal action descriptions, in particular action a3. Hence the proposed solution
doesn’t yet really satisfy the faithfulness criterion presented in Section 2.

The second problem with the formalisation can be illustrated by considering a
shortened version of the Sally-Anne task where Sally doesn’t leave the room, that
is, it only includes the steps 0, 1 and 3 of Example 1. These steps ought to have
the same formalisations as before, that is, s1, a1 and a3, respectively. Hence the
situation after the shortened Sally-Anne story should correspond to s1⊗a1⊗a3.
However, consulting Figure 3 it can be checked that s1 ⊗ a1 ⊗ a3 = s5 (since
a2 only makes p false, and a4 makes it true again). Hence, an agent presented
with the shortened Sally-Anne story would conclude that s1 ⊗ a1 ⊗ a3 |= BSt,
implying that Sally ends up believing the marble to be in the basket. This is
clearly not correct, since in this version she never left the room!

In the following we will propose an improved formalisation that solves both
of these problems. We start out by analysing the source of the second problem,
which is in the formalisation of a3 (see Figure 2). As explained in Example 3, a3
“encodes an action where the marble is actually transferred from the basket to
the box, Anne is aware of this, but Sally thinks that nothing happens”. All this
is clearly not part of step 3 of the story, which simply states “Sally transfers the
marble to the box”. The problem with a3 is that it is hardcoded into the event
model who observes the action taking place. In most real-life cases, who observes
an action depends on the state in which the action is applied. This is also the
case in the Sally-Anne story: whether Sally observes the marble being moved
depends on whether she is in the room. So the edges of the event model for
action a3 ought to depend on whether Sally is present, that is, whether p holds
or not. This leads us to a more general type of event model like aedge3 of Figure 4.
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Here A← > (A gets >) at the loop of e0 means that A unconditionally has an
edge here: Anne unconditionally observes the event e0. The other label S ← p
at the loop of e0 means that there is an edge here for agent S if p is true: Sally
observes the event e0 if she is present in the room. Similarly, the label S ← ¬p
on the edge from e0 to e1 means that if Sally is not in the room (¬p) then she
thinks that nothing (e1) happens. This is a new type of event model, called an
edge-conditioned event model, to be defined formally in the next subsection.

With edge-conditioned event models we can solve the second problem men-
tioned above. We now have an event model that will behave correctly both if
applied in a state where Sally is present (p holds) and in a state where Sally is

not present (p doesn’t hold). If aedge3 is applied in a state where p holds, from
e0 Sally will only consider e0 possible (have a loop at e0), but if p doesn’t hold,
from e0 she will only consider e1 possible (have an edge from e0 to e1). Hence, if
p holds she observes the event e0, otherwise she doesn’t. Using edge-conditioned
event models also brings us a step closer to satisfying the first criterion of faith-
fulness. In almost all existing false-belief tasks, all ontic actions have the same
structure as aedge3 , and we can hence define a generic event model for all such
ontic actions (which we will do in Section 5). However, it is still not quite sat-
isfactory to use ad hoc symbols like p to state that a certain agent is present.
This leads us to our next new idea.

In addition to the propositional symbols P , we add to the language a new
set of propositional symbols i^j (i sees j) for each pair of agents i 6= j. The
intended meaning of i^j is that agent i observes the actions of agent j. Using
such symbols we can replace the event model aedge3 by aobs3 , see Figure 4. The
meaning of the label S ← S^A at the loop of e0 is that agent S observes the
event e0 if S currently sees A (S^A is the case). We will now define these new
technical constructs formally, and afterwards apply them to give an improved
formalisation of the Sally-Anne task.

Edge-conditioned event models

Definition 4 (Edge-conditioned event models). An edge-conditioned event
model of L(P,A) is E = (E,Q, pre, post), where E, pre and post are defined as
for standard event models (Definition 2), and Q : A → (E × E → L(P,A))
assigns to each agent i a mapping Q(i) from pairs of events into formulas of



L(P,A). The mapping Q(i) is generally abbreviated Qi. For e ∈ E, (E , e) is
called an edge-conditioned action of L(P,A).

For standard event models (Definition 2), eQif means that event f is accessible
from event e by agent i, and we draw an edge from e to f labelled i in the graph
of the event model. In edge-conditioned event models, accessibility has become
conditioned by a formula: Qi(e, f) = φ means that f is accessible from e by i
under condition φ. When Qi(e, f) = φ, we draw an edge from e to f labelled
i← φ in the graph of the event model (except when Qi(e, f) = ⊥). We already

saw an example of such an edge-conditioned event model: aedge3 of Figure 4. Note
that edge-conditioned event models naturally generalise standard event models:
Any standard event model E = (E,Q, pre, post) can be equivalently represented
as an edge-conditioned event model E ′ = (E,Q′, pre, post) by simply letting
Q′i(e, f) = > for all (e, f) ∈ Qi and Q′i(e, f) = ⊥ otherwise. We also have to
generalise the notion of product update:

Definition 5 (Edge-conditioned product update). Let a state (M, w0) and
an edge-conditioned action (E , e0) be given, where M = (W,R, V ) and E =
(E,Q, pre), and where M, w0 |= pre(e0). The product update of (M, w0) with
(E , e0) is defined as the state (M, w0)⊗ (E , e0) = ((W ′, R′, V ′), (w0, e0)), where
W ′ and V ′ are defined as in the standard product update (Definition 3) and
R′i = {((w, e), (v, f)) ∈W ′ ×W ′ | wRiv and M, w |= Qi(e, f)}.

The only difference to the standard product update is that the R′i relations have
become parametrised by the Qi(e, f) formulas. There is an i-edge from a world-
event pair (w, e) to a world-event pair (v, f) iff there is an i-edge from w to v in
the epistemic model, and the condition Qi(e, f) for having an edge from e to f
in the event model is true in w.

It can be shown that any edge-conditioned event model induces a standard
event model in a canonical way, but the induced standard event model might be
exponentially bigger. In technical terms, it can be shown that edge-conditioned
event models are exponentially more succinct than standard event models (we
will prove this and other interesting properties of edge-conditioned event models
in a future paper). In particular, our generic event models for ontic actions and
observability change (to be presented in Section 5) are going to consist of 2
events each, whereas the same actions using only standard event models would
contain 2n−1 + 1 events, where n is the number of agents!

Observability propositions

We now define a new language Lobs(P,A) extending L(P,A) by the addition
of observability propositions on the form i^j: φ ::= p | i^j | ¬φ | φ ∧ φ | Biφ,
where p ∈ P , i, j ∈ A and i 6= j. As noted above, the intended meaning of
i^j is that “agent i observes all actions performed by agent j”. The reason
we do not include the reflexive propositions i^i is that we will assume that all
agents always observe their own actions, so i^i is implicitly always true. This
assumption can of course be relaxed, but we will not consider that here. In



the expression i^j we call i the observer and j the observed. Given a formula
φ, we use π1(φ) to denote the set of agents occurring as observers in φ, that is,
π1(φ) = {i | i^j is a subformula of φ for some j}. For instance we have π1(i^j∧
¬k^l) = {i, k} (note that k is in the set even though the formula k^l occurs
negated).

The idea of introducing observability propositions in the context of DEL was
first introduced in [15]. They, however, only use a simpler type of proposition
hi with the intended meaning “agent i observes all actions” (agent i is in a
state of paying attention to everything that happens). Here we need something
more fine-grained, in particular for our later formalisation of the chocolate task
(Section 6) where we need to be able to represent that an agent i is observing
the actions of an agent j without j observing the actions of i.

Ontic actions and observability change

The previous definitions of edge-conditioned event models and product update
extend to the language Lobs(P,A) in the obvious way (after all, we only added
some additional atomic propositions). We can now finally define two generic
types of edge-conditioned actions that are sufficient to formalise a number of
different false-belief tasks of varying order. The first action type is an ontic
action do(i, φ): agent i makes φ true. Step 1 of the Sally-Anne task is for in-
stance going to be formalised by do(S, t): Sally makes t true. The second is
an observability changing action oc(φ) for changing who observes who. For in-
stance step 2 of the Sally-Anne task where Sally leaves the room is going to
be formalised by oc(¬S^A ∧ ¬A^S): Sally stops observing Anne (¬S^A), and
Anne stops observing Sally (¬A^S).

Definition 6. We define the following edge-conditioned actions on Lobs(P,A).

– do(i, φ): for each agent i and each conjunction of propositional literals φ,
this is the ontic action shown at the top of Figure 5.

– oc(φ): for each conjunction of observability literals (observability propositions
and their negations), this is the observability changing action shown at the
bottom of Figure 5.

These new actions need a little explanation. Consider first do(i, φ). As mentioned,
this is an action where agent i makes φ true (since the actual event e0 has
postcondition φ). From the label at the loop of e0 we can see that the agents
who observe the action taking place, and hence come to believe φ, are: 1) agent
i itself (since we have i← >); 2) any other agent who is observing agent i (since
we have j ∈ A\{i} : j ← j^i). The agents who are not observing i will think that
nothing happens (the label j ∈ A \ {i} : j ← ¬j^i on the edge to e1). This also
explains the title of the paper, “Seeing is believing”: If agent j sees agent i, j^i,
then j comes to believe any formula φ that i brings about. The action oc(φ) is
a bit more complicated, but follows the same principle (note that the two event
models only differ in their edge labels). Looking at the labels of the loop at e0,
we can see that the agents observing the observability change are: 1) any agent



do(i, φ)

e0 : 〈>, φ〉

i← >
j ∈ A\{i} : j ← j^i

e1 : 〈>,>〉

j ∈ A : j ← >

j ∈ A\{i} : j ← ¬j^i

oc(φ)

e0 : 〈>, φ〉

j ∈ π1(φ) : j ← >
j 6∈ π1(φ) : j ←

∨
k∈π1(φ)

j^k

e1 : 〈>,>〉

j ∈ A : j ← >

j 6∈ π1(φ) : j ←
∧
k∈π1(φ)

¬j^k

Fig. 5. The edge-conditioned actions do(i, φ) and oc(φ).

whose observer status is affected by the action (since we have j ∈ π1(φ) : j ← >);
2) any other agent who is observing at least one of the aforementioned agents
(since we have j 6∈ π1(φ) : j ←

∨
k∈π1(φ)

j^k). This means that if i is currently
observing j, and j either starts or stops to observe k, then i will also observe
this change. One could imagine intricate situations where this wouldn’t hold,
but for our purposes it is sufficient. The event model oc(φ) is a generalisation of
the event models +S and −S introduced in [15].

A few final remarks before turning to present our improved formalisations
of false-belief tasks. In standard DEL there is no explicit notion of agency, that
is, an action simply happens without any need to say who did it. But in our do
action we need to include the agent performing it as a parameter, since what
will be observed by the other agents depends on it. To save space, we have
chosen not to include an announcement action in our framework, even though
this would be very simple: simply take the event model for do(i, φ) and put φ in
the precondition instead of the postcondition of e0.

6 New formalisations of false-belief tasks

Example 5 (Formalising the Sally-Anne task). Given the generic actions from
the previous section, it is now quite straightforward to provide a new formalisa-
tion of the Sally-Anne task using these actions:

0. Sally is in the room with Anne, holding the marble: state s1 =

S^A,A^S

S,A



1. Sally puts the marble into the basket: a1 = do(S, t).
2. Sally leaves the room: a2 = oc(¬S^A ∧ ¬A^S).
3. Anne transfers the marble to the box: a3 = do(A,¬t ∧ x).
4. Sally re-enters: a4 = oc(S^A ∧A^S).

Note that we no longer use the atomic proposition p, as we now have a more
generic way to deal with observability through our observability propositions.
Similar to the previous formalisation in Section 4, it can now be checked that
s1⊗a1⊗· · ·⊗a4 |= BSt, hence again the formalisation gives the right answer to
the Sally-Anne test. We should also note that now we have s1⊗ a1⊗ a3 |= BSx,
so if Sally doesn’t leave the room, she will not get a false belief. Thus we have
successfully solved the problem of the shortened Sally-Anne task that was dis-
cussed in the beginning of Section 5. We will not show the detailed calculations,
as we will save that for the next example, which formalises a more complex
false-belief task.

Example 6 (Formalising the second-order chocolate task). We now consider a
compact version of the second-order chocolate task presented in [18, 4]. It is
illustrated in Figure 10 in the appendix. It has the following steps:

0. John and Mary are in a room. There is a chocolate bar in the room.
1. John puts the chocolate into the drawer.
2. John leaves the room.
3. John starts peeking into the room through the window, without Mary seeing.
4. Mary transfers the chocolate to the box.

The child taking the test is now asked “where does Mary believe that John be-
lieves the chocolate to be?” It is a second-order task since this question concerns
second-order belief attribution (Mary’s beliefs about John’s beliefs). The correct
answer is “in the drawer”, since Mary is not aware that John was peeking while
she moved the chocolate. It is immediate that step 1 and 4 above are ontic ac-
tions, and steps 2 and 3 are observability changing actions. Let us use atomic
propositions d for the “the chocolate is in the drawer” and x for “the chocolate
is in the box.” We use agent symbols J for John and M for Mary. Step 1, “John
puts the chocolate into the drawer”, must then be the ontic action do(J, d). Step
2, “John leaves the room”, must be the observability change oc(¬J^M∧¬M^J)
(John stops observing Mary and Mary stops observing John). Step 3 is again an
observability change, but this time it is simply oc(J^M): John starts observing
Mary. Finally, step 4 is the ontic action do(M,¬d ∧ x). Figure 6 calculates the
result of executing the action sequence of steps 1–4 in the initial state described
by step 0. The actions in the figure show the applied instances of do(i, φ) and
oc(φ) calculated from Figure 5. Some of the states and actions contain grey
nodes. These are nodes that are not accessible from the initial world/event, and
can hence be ignored (by bisimulation contraction, to be technically precise).

Before going into the detailed calculations of Figure 6, let us have a look at the
resulting model s5. This is the model in which it should be checked where Mary
believes John believes the chocolate to be. Clearly we have s5 |= BMBJd, so the



J^M,M^J

J,M

s1

J^M,M^J, d

J,M

s2

〈>, d〉

J ← >
M ←M^J

〈>,>〉

J ← >
M ← >

M ← ¬M^J

d

J,M

s3

〈>,¬J^M ∧ ¬M^J〉

J ← >
M ← >

〈>,>〉

J ← >
M ← >

〈>, J^M〉

J ← >
M ←M^J

〈>,>〉

J ← >
M ← >

M ← ¬M^J

w0 :J^M,d

J

w1 :d

J,M

M

s4

(w0, e0) :J^M,x

J

(w1, e0) :x

M

(w1, e1) :d

J,M

(w0, e1) :J^M,d

J

M J

s5

e0 : 〈>,¬d ∧ x〉

M ← >
J ← J^M

e1 : 〈>,>〉

J ← >
M ← >

J ← ¬J^M

do(J, d) oc(¬J^M ∧ ¬M^J)

oc(J^M) do(M,¬d ∧ x)

1. John puts chocolate
in drawer 2. John leaves room

3. John peeks through
window 4. Mary moves chocolate

Fig. 6. The DEL-formalisation of the second-order chocolate task

agent’s answer will be “in the drawer”, hence passing the false-belief test. But s5
can do more than just answer this question, in fact it is a full description of the
final situation, including all beliefs to arbitrary order. Concerning observability,
we can for instance see that s5 |= J^M ∧BM¬J^M ∧BJBM¬J^M : John sees
Mary, Mary believes he doesn’t, and John knows this. We can also imagine a
third-order version of the task, where the question is “Where does John believe
that Mary believes that John believes the chocolate to be”, and by consulting
s5 we immediately get the answer “in the drawer”: s5 |= BJBMBJd.

The most interesting part of the calculation in Figure 6 is the last step,
s5 = s4 ⊗ do(M,¬d ∧ x), so we will explain this in more detail. Calculating the
product s4 ⊗ do(M,¬d ∧ x) follows the same strategy as in Example 4. First
we find the matching world-event pairs which, in this case, is all four world-
event combinations (w0, e0), (w0, e1), (w1, e0) and (w1, e1), since both e0 and e1
have trivial preconditions (see Figure 6 where do(M,¬d ∧ x) is the event model



of step 4). In the world-event pairs containing e0, the postcondition of e0 is
enforced, that is, d is made false and x true. The other world-event pairs simply
inherit their label from the first element of the pair. Hence the four worlds of the
resulting model s5 are (w0, e0) :J^M,x; (w0, e1) :J^M ; d, (w1, e0) :x; (w1, e1) :d.
Now for the interesting part, the edges. At (w0, e0) we get a J-loop, since there
is J-loop at w0 and the condition for having a J-loop at e0 is J^M , which is
satisfied in w0. This should be contrasted with the situation at (w1, e0): Here we
also have a J-loop at the world of the pair, w1, but now the condition J^M for
having a J-loop at the event of the pair is not satisfied in the world of the pair. At
(w1, e0) we hence only get an M -loop (since both w1 and e0 unconditionally have
such a loop). We leave the calculation of the rest of the edges to the (enthusiastic)
reader.

Note that to get from s4 to s5 we only have to apply an instance of a generic
edge-conditioned action with 2 events. This situation is much better than what
can be achieved with standard event models. In Proposition 1 in the appendix we
prove that there is no standard event model a with 2 events such that s5 = s4⊗a.
This implies that the smallest standard event model that can produce s5 from
s4 is this:

〈>,¬d ∧ x〉

J

〈>,¬d ∧ x〉

M

〈>,>〉

J,M

M J

The problem with this event model is that it is already a ‘second-order model’
that fully encodes the structure of the model s5 we wish to obtain. Hence if we
had to formalise the second-order chocolate task using standard event models,
we would have to formalise the step “Mary moves the chocolate” as this event
model that already fully encodes the final structure achieved at the end of the
story. This would certainly be very far from achieving the faithfulness criterion
introduced in Section 2. So indeed the edge-conditioned event models make a
real difference to the formalisation of false-belief tasks.

7 Conclusion, related work and future work

In this paper we have shown how to formalise two false-belief tasks—a first- and
a second-order one—in an extension of dynamic epistemic logic. In the end, we
were able to express the formalisations rather compactly:

– Sally-Anne task: do(S, t), oc(¬S^A∧¬A^S), do(A,¬t∧x), oc(S^A∧A^S).
– Chocolate task: do(J, d), oc(¬J^M ∧ ¬M^J), oc(J^M), do(M,¬d ∧ x).

We started out expressing two overall criteria for our formalisations of false-belief
tasks: robustness and faithfulness. To be robust, the formalism should be able to
formalise false-belief tasks of arbitrary order. We claim to have such robustness
in our current formalism, put proving it formally is future work. Nevertheless,
we have been able to show that we could go from a formalisation of a first-order
false-belief task to a second-order one at no extra cost, which as discussed above



is not the case in standard DEL (and not in most other frameworks either). To
have faithfulness, we required that it should be relatively straightforward to get
from the informal action descriptions of the false-belief task to the corresponding
formalised actions. We believe we have taken a big step closer towards achieving
this. If the (semi-)informal description says “agent i makes φ true” it is our action
do(i, φ). If the informal description says, e.g., “now agent i starts observing j
without agent j noticing” it is oc(i^j). The formalisation step can of course still
not be fully automated, but we are much closer than if we just had to build all
the relevant event models from scratch, which was where this paper started.

There is of course also a limit to the types of false-belief tasks that can be
dealt with using only do and oc. In particular, a lot of the existing false-belief
tasks involve untruthful announcements such as the ‘ice-cream task’ [22], the
‘birthday puppy task’ [26] and the ‘clown-in-the-park task’ [28]. These can not
be dealt with in the current framework. To be able to deal with untruthful
announcements and the revision of false beliefs, we need another type of model
called plausibility models [7]. We plan to show how these models can be used to
formalise the aforementioned false-belief tasks in a future paper.

In our approach, observability amounts to ‘who sees who’, that is, it is a
relation between agents. Other approaches to modelling observability can be
found in e.g. [14, 20, 8, 15]. In these approaches, observability is instead con-
nected either to propositions [14, 20], particular actions [8] or all actions [15].
The paper [24] uses a similar approach to observability as we do, but in a more
complex 2-dimensional dynamic epistemic logic. In the papers [14, 8], observabil-
ity is encoded using axioms instead of being encoded into the states as we do.
For us, it is very important to encode observability directly into the states to be
able to deal with higher-order observability (‘you don’t see me seeing you’).

Even though edge-conditioned event models is an original idea of this paper,
they are close in spirit to the generalized arrow updates of [21]. However, arrow
updates are rather an alternative to event models, whereas our edge-conditioned
event models is a straightforward generalisation of event models. Furthermore,
arrow updates are purely epistemic (without postconditions), and would hence
not be able to represent the ontic actions of the false-belief tasks.

Solving false-belief tasks using DEL as we do in this paper is part of a larger
research effort in epistemic planning : combining automated planning with DEL
to integrate higher-order social cognition into intelligent planning agents [11, 1].
Combining the ideas of [11, 1] with the ideas of this paper will allow us to devise
algorithms not only for analysing false beliefs (as is done in the false-belief tasks),
but also for synthesising them. It could e.g. be that Anne plans to deceive Sally
by asking her to go outside and then she moves the marble meanwhile. This is a
case of epistemic planning where the goal is to achieve a state where Sally does
not know the location of the marble.
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Appendix

Proposition 1. Let (M, w0) and (M′, w0) be the following two models:

w0 :J^M,d

J

w1 :d

J,M

M

(M, w0)

w′
0 :J^M,x

J

w′
1 :x

M

w′
2 :d

J,M

M J

(M′, w′0)

There exists no standard event model E with only 2 events e0 and e1 such that
(M, w0)⊗ (E , e0) contains (M′, w′0) as a submodel.

Proof. Assume the opposite. Then since (M′, w′0) is a submodel of (M, w0) ⊗
(E , e0), all of the worlds w′0, w′1 and w′2 of (M′, w′0) must be among the pairs
(w0, e0), (w0, e1), (w1, e0) and (w1, e1) of (M, w0)⊗(E , e0). First we can conclude
that w′0 = (w0, e0), since the actual worlds and events have to match. Since w0

has the label J^M,d whereas w′0 has the label J^M,x, e0 must be an event with
a postcondition including ¬d and x as conjuncts. Since w′2 doesn’t satisfy x, w′2
can then not be of the form (·, e0) (that is, it is not (w, e0) for any w). Therefore
w′2 must be of the form (·, e1). Since w′2 doesn’t satisfy x, e1 must then be an
event that doesn’t have x as a (positively occurring) conjunct in its postcondition.
Since w′1 satisfies x but none of w0 or w1 satisfies it, we can conclude that w′1 can
not be on the form (·, e1). Hence, we must have w′1 = (w0, e0) or w′1 = (w1, e0),
but since w′0 = (w0, e0) and w′0 6= w′1 we can conclude w′1 = (w1, e0).

We have now concluded w′0 = (w0, e0) and w′1 = (w1, e0). Since there is a J-
loop at w′0 and w′0 = (w0, e0), e0 must then also have a J-loop (cf. the definition
of product update). Similarly, since there is an M -loop at w′1 and w′1 = (w1, e0),
e0 must also have an M -loop. We can conclude that e0 contains a J,M -loop.
Now since w1 contains a J,M -loop, we get that w′1 = (w1, e0) must also contain
a J,M -loop. But looking at the world w′1 of (M′, w′0) we see it only has an
M -loop, and hence we have a contradiction, completing the proof.

The proof given is slightly intricate, but the intuition is rather clear: w′0 and
w′1 must necessarily be updates with the same event (e0), but there is no way a
standard such event can produce a J-loop at w′0 and an M -loop at w′1 without
having both a J-loop and an M -loop itself. But if it has, then when updating
w1 with this event we get a J,M -loop either at w′0 or w′1. The reason that it
works with edge-conditioned event models is of course that they allow us to let
the edges of events depend on the world they are applied in, so in this case it is
not a problem to have a single event e0 which produces one type of loop in one
world and another type of loop in another.



Fig. 7. An illustration of the Sally-Anne false belief task adapted from [19].



system/reference year formalism/platform h-o reas. other features

CRIBB [28] 2000 Prolog ≤ 2 goal recognition, plan
recognition

Edd Hifeng [2] 2008 event calculus ≤ 1 Second Life avatar

Leonardo [13] 2011 C5 agent architecture ≤ 1 goal recognition,
learning

[25] 2011 extension of PDL,
implementation in 2APL

≤ 1 goal recognition

ACT-R agent [4] 2013 ACT-R cognitive
architecture

∞ learning

[12] 2013 hybrid logic ∞ temporal reasoning

Fig. 8. Existing full formalisations/implementations of false-belief tasks, ordered
chronologically. The numbers in the ‘h-o reas.’ column refer to the highest level of
belief attribution the formalism/system allows (∞ if there is no upper bound).

(M, w) |= p iff w ∈ V (p)
(M, w) |= ¬φ iff M, w 6|= φ
(M, w) |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
(M, w) |= Biφ iff for all v ∈W , if wRiv then M, v |= φ

Fig. 9. Truth conditions for the epistemic language where M = (W,R, V ) is an epis-
temic model, i ∈ A, w ∈W and φ, ψ ∈ L(P,A).

Fig. 10. Illustrations c© Avik Kumar Maitra, with kind permission of the authors of
[4, 3].


