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Abstract

This paper concerns formal theories for reasoning
about the knowledge and belief of agents. It has
seemed attractive to researchers in artificial intelli-
gence to formalise these propositional attitudes as
predicates of first-order predicate logic. This al-
lows the agents to express stronger introspective
beliefs and engage in stronger meta-reasoning than
in the classical modal operator approach. Results
by Montague[1963 and Thomasoh198d show,
however, that the predicate approach is prone to in-
consistency. More recent results by des Bigs

& Levesque[1989 and Morreau & Kraug1994
show that we can maintain the predicate approach if
we make suitable restrictions to our set of epistemic
axioms. Their results are proved by careful transla-
tions from corresponding modal formalisms. In the
present paper we show that their results fit nicely
into the framework of logic programming seman-
tics, in that we show their results to be corollar-
ies of well-known results in this field. This does
not only allow us to demonstrate a close connec-
tion between consistency problems in the syntactic
treatment of propositional attitudes and problems in
semantics for logic programs, but it also allows us
to strengthen the results of des Rikés & Levesque
[1989 and Morreau & Krau$1999.

Introduction

This formula has no counterpart in the classical modal op-
erator approach, since K; and K, were modal operators,

we would not be able to apply them directly to the variable
(modal operators only apply to well-formed formulas). Thus
the predicate approach gives us more expressive power and
the ability of agents to refer to the totality of their own and
others beliefs, which is important in meta-reasoning.

Unfortunately, the predicate approach easily becomes in-
consistent, since the added expressive power allows the
agents to express self-referential beliefs that in some cases
turn out to be paradoxical. This was proved by Montague
[1963 and Thomasofi198d. They prove that certain axiom
schemes describing natural properties of knowledge and be-
lief are inconsistent with formal arithmetic. Their results are
reviewed in Section 3. Des Ridies & Levesqué1984 and
Morreau & Kraug 1994 have shown there to be a way out of
these inconsistency results: to suitably restrict the set of sen-
tences that we instantiate our axiom schemes of knowledge
and belief with. These results are reviewed in Section 3 as
well.

In this paper we will show that the results of des Ries,
Levesque, Morreau and Kraus can be reduced to well-known
results in logic programming semantics. This is carried out
in Section 4. In Section 5 we give a strengthening of their
results, using again the connection to logic programming se-
mantics.

2 Terminology and Notation

We will be using theories of first-order predicate logic to for-
malise propositional attitudes of agents. To prove the consis-

The approach most often used in constructing formal theotency of these first-order theories, we use results from logic
ries for reasoning about multiagent systems is to formalis@rogramming semantics. Below we introduce the kinds of
the agents’ beliefs and knowledge through modal operalogic programs and first-order languages we will be consider-
tors. An alternative approach is to formalise these proposiing.

tional attitudes as predicates of a first-order predicate logi
This has several advantages, which have been widely di

22_.1 Logic Programs

cussed in the literatuf@®avies, 1990; Attardi and Simi, 1995; All logic programs considered in this paper will be proposi-
Carlucci Aiello et al, 1995; McCarthy, 1997; Grardt al,,
200d. Most importantly, it allows us to quantify over the aliteral is either a propositional letter or its negationp.
propositional objects of knowledge and belief as for instancéVe take the symbolg-ue andfalse to be among our propo-
in “agent 1 believes thaverythingknown by agent 2 is also sitional letters with the obvious intended interpretation. A
known by agent 1", formalised by

Bi("Vz(Ky(x) — Ki(2))7).

tional. Thus, amatom is simply a propositional letter, and

clauseis a formula of propositional logic on the form
H<—L1 /\Lg/\"'/\Ln



whereH is an atomp > 1 and allL; are literals. Aproposi-  ¢. The intended interpretation of a formuly"¢™) is that
tional program (or simply aprogram) is a (possibly infinite)  “¢ is known” or “p is believed”. We assume all first-order
set of clausesHerbrand models of programs are defined in languagesL to contain the language of Peano arithmetic.
the usual way. We require that all models assign the truthThroughout the paper, fgprmal arithmeticwe mean Robin-
value true to the propositional letterue and false tdfalse. son’s arithmetic, though any other standard formalisation of
Given a programP, comp(P) denotes its Clark comple- arithmetic could have been used in its place. We identify first-
tion. Since we work only with propositional programs, the order languages with their sets of sentences. Bysantence

Clark completion is particularly simple. Th&lark comple- in L we understand a closed formula, that is, a formula with-
tion of P is the following set of equivalences in infinitary outany occurrences of free variables. The set of ground terms
propositional logic: for each atom in P, of L is denotedlerms(L).

To avoid confusion between formulas of propositional pro-
grams and formulas of first-order languages we will use Latin
letters for the former and Greek letters for the latter.

e if A does not appear as head of any clausé jrthen
A < false € comp(P).

e otherwise we havel < \/,_; B; € comp(P), where
{A — B, | i€ I} is the set of clauses i with head 2.3 Regular Formulas and RPQ Formulas
A. We now define the sets of first-order sentences which we in-
Let P be a propositional program. Thiependency graph tendto prove that our axiom schen_1es of knowledge and belief
of P is the directed graph with signed edges defined as fol6@n consistently be instantiated with.
lows. The nodes of the graph are the atoms (propositiondDefinition 1. Let L be a first-order language. The setrefy-
letters) occurring inP excluding the special atomsue and  ular formulas of L is the least set satisfying:

false. There is a positive edge from to B, denoted by  (j Any atomic formula of. — {T'} is a regular formula.
(A, B,+), ifand only if there isa clausd — Ly A--- A L, N d lar f | . iable. th
in P such thatZ; = B for somel < i < n. If L; = —B (i) If ¢ andey are regular formulas and is a variable, then

then there is a negative edge frofito B, denoted 4, B, —). ¢ N, ~p and3zy are regular formulas.
We say thatd dependson B, denoted byd < B, ifthereisa (i) If ¢ is a regular formula ther¥’("¢™) is a regular for-
proper path fromd to B in the graph. We say that depends mula.

negativelyon B, denoted by <; B, if there is a path from gy definition differs slightly from the one given by Mor-

A'to B containing at least one negative edge. Aprogfale  yeay and Krau§1994. Instead of using a parametrised cod-
calledlocallly stratified if the relation<; in the dependency ing, they have an(n + 1)-place predicate symbd™ for
graph of P is well-founded. eachn, such that instead of writing’("p(z1,...,2,)7),

. wherex,,...,z, are the free variables af, they would

2.2 First-Order Languages be writing T"("¢ ™, z1,...,2,) Where™ 7 is then a stan-
We useL to range over languages of first-order predicatedard (non-parametrised)d@el coding. To simplify matters,
logic. We take the connectives of first-order logic to-he\  we have chosen to take care of the free variables by using
and3. When usingv, —, <> andV in formulas, these formu- a parametrised coding rather than by introducing infinitely
las are simply abbreviations of formulas containing orly\  many predicate symbols of different arities.

andd. We require all languagek to contain the one-place  As an example of a regular formula we have, for a suitable
predicate symbol§” andP. P will be used as a predicate choice ofL,
that picks out a set of (codes of) formulasiin 7" will, de- :
pending on the context, be used to express one of our syntac- 3zT("telephoneMike) = =),

tic attitudesbelief or knowledge By L — {T'} we denote the expressing that the agent knows Mike’s telephone number. If
languageL with the predicate symbdl’ removed. We will  we have more than one agent, we can of course introduce a
assume that all considered languages contain a parametrispredicate symbdl’; for each agent. In that case the follow-
coding. By aparametrised codingin L we understand an ing sentence also becomes regular:

injective map - from the formulas of_ into the terms ofL

satisfying: T, ("Vx(T,("departure-timétrain, z)7) —
(i) For any formulay in L, the term” o™ has the same free departure-timetrain, x)) ),
variables ag (but" ' is not itself a variable). expressing that agent 1 believes agent 2 to have correct beliefs

(i) For any formulap(z) in L and any term- which is free about the departure time of the train. As an example of a hon-
for  in (), "¢(7)is the term obtained by substitut- regular formula we have
ing 7 for all free occurrences af in "p(x) ™. Tused "V (utter(systema) — Teysten()) ),

(i) The coding iswell-founded that is, there is no infinite

sequence of formulagy, p1, @2 ... suchthat p;,17is
atermingy; forall i € N.

expressing that the user believes that the system only utters
what it believes to be the case. It is non-regular because
Tsystemis applied directly to a variable and not to the code of
We refer to [Feferman, 1984 for the construction of a aformula. To allow expressing beliefs such as this one, Mor-
parametrised coding. Feferman’s coding does not satisfy (iiieau and Krauk1999 extended the set of regular formulas to
but a simple variant of it will. "7 is called thecode of = a more inclusive class called the RPQ formulas.



Definition 2. LetL be a first-order language. The setRPQ  Theorem 5 (Morreau and Kraus [1994). Theorem 4 still
formulas of L is the least set satisfying: holds when we replace “regular sentences” with “RPQ sen-

(i) Any atomic formula of. — {T'} is an RPQ formula. tences”.

(i) If ¢ andy are RPQ formulas and is a variable, then
® A1, ¢ and 3z are RPQ formulas.

Theorem 4 is proved ifdes Riveres and Levesque, 1988
by a careful translation from a corresponding first-order
modal logic. Theorem 5 is proved [Morreau and Kraus,
(iii) If ¢ is an RPQ formula theff’("¢ ™) is an RPQ formula. 1994 by a similar translation from a corresponding second-
; ; i ; order modal logic. In the following section we give proofs
) ]Icg;pn:ls“?y formulain L, thendz (P(x) A ¢) is an RPQ of their results taking a completely different route. We show
. o . ) that the problems can be reduced to problems of consistency
This definition also differs from the one given by Morreau of particular logic programs.
and Kraug1999. It defines a slightly more inclusive set of  |nstead of working directly with the axiom schemes Al—

formulas, and at the same time it is simpler, since it avoidsag we will most of the time be working with théruth
Morreau and Kraus’ use of two distinct collections of vari- schemavhich is the following axiom scheme:

ables.
By regular sentencewe understand a closed regular for- T("pT) < .

mula, and bRPQ sentencea closed RPQ formula. This is often sufficient since, as the following lemma shows,

instances of axiom schemes A1-A6 are logical consequences

3 Review of Previous Results of corresponding instances of the truth scheme. To prove that
Consider the following axiom schemes in a first-order lan-the axiom schemes A1-A6 instantiated over a set of sentences
guageL: S are consistent, it thus suffices to prove the consistency of

the truth schema instantiated over that same set.
AL T("eM) — '
e - . Lemma 6. Let L be a first-order language, and Iétbe a set
A2. T("T("p) — ) of sentences it satisfying:
A3. T(Tp =) = (T("¢") = T (7))
Ad. T ("), if ¢ is atheorem in formal arithmetic.

if o andy are in S thenT("¢7), ~p andp A ¢ arein S.

-4 e A Let M be a model of. in whichT'("¢™) < ¢ holds for all
AS. T("p) = T("T (")) @ in S. Then all of A1-A6 hold ioM for all ¢, in S.

AB. “T ("o A=pT) . o .

) o ) Proof. That Al holds inM wheny is in S is a trivial con-
As already mentioned]'("¢™) is intended to denote either sequence of the fact th&t (") < ¢ holds in M. To
“¢ is known” or “p is believed”. Thus, for instance, the first see that A2 holds in\, we first note that ifp is in S then
axiom scheme expresses that everything known (believed) is (T("¢7) A —p) is in S as well, by assumption ofi. This
true. It seems reasonable to characterise knowledge by the agentence is an abbreviation "¢ ) — ¢, so we get that
iom schemes A1-A4 and belief by A2—A6. But the following the following instance of the truth schema holds\itt
theorem shows that this is not always possible.

r oAl a |
Theorem 3 (Montague[1963, Thomason[198Q). Let L TTCeT) =) < (T0eY) = ¢).
be a first-order language. Formal arithmetic extended withUsing this together with the fact that A1 holds.M, we get
any of the following sets of axiomsifeonsistent thatT ("T'("¢") — ) holds inM. Thatis, A2 holds inM.

(a) The axiom schemes of knowledge, A1—A4, instantiate@3—A6 are proved to hold i\ in a similar manner. [
over the sentences &f

(b) The axiom schemes of belief, A2—AB6, instantiated oveLr1 From LP Semantics to Consistent

the sentences df. Treatments of Knowledge and Belief

The inconsistency of (a) is Montague’s result, and the in-The results of this paper are based on the following lemma.

consistency of (b) is Thomason's result. A way out of these_emma 7 (Przymusinski[1987, Sato[1990). If a pro-
inconsistency results is to restrict the set of sentences that wtam P is locally stratified thercomp(P) has a Herbrand
instantiate A1-A6 with. This strategy gives us the following model.

positive results. Our formulation is taken froniSato, 1990 It should be

Theorem 4 (des Riveres and Levesqu¢198d). LetLbea noted that Sato is not considering infinite programs in his pa-

first-order language. Formal arithmetic extended with any ofper, but his proof carries over without modification to this

the following sets of axioms e®nsistent more general framework. This is because Sato is consider-

() The axiom schemes of knowledge, A1—-A4, instantiatelfd the set of ground instances of non-propositional programs
over the regular sentences bf rather than th_es_e programs th_e_mselves. The set of ground in-

_ ] _ ) stances of a finite non-propositional program is in general an

(b) The axiom schemes of belief, A2—A6, instantiated ovehfinite propositional program, that is, the kind of logic pro-

the regular sentences &f. gram we are considering in this paper.



Definition 8. Let L be a first-order language, and It be
a set of sentences ih. We define an infinite prografi;, s
as follows. For every sentengein L, the programP;, g
contains a propositional atom denotgg. The clauses of
Pr, ¢ are given by:

DPonw < Do N py, forall 9 € L.

D-p < "Dy, forall p € L.

PIzp(a) < Pyo(r), Torall 3zp(x) € Landr € Terms(L).
DT (o) < Pys forall p € S.

The relation between models of the progrdm s and
models of the first-order languadseis given by the following
lemma.

Lemma9. Let L and S be as above. léomp(P; ) has a
Herbrand modelM thenL has a Herbrand modeV/ satisfy-

ing:
(i) For every sentence in L,
MEp, & NEo
(i) NET( ") < ¢, foralyeS.

Proof. AssumeM is a model ofcomp(Py s). comp(Pr. )
is the following set of equivalences:

1)

Pony < Dy A Py, Torall g, € L. 2)
Dy < Dy, forallp € L. (3)
pﬂwg&(a;) > vTGTerms(L) Py(r)) for all E'l(p(l) c L. (4)
pT(rwﬂ) = Dy, for all (NS S. (5)

Let \V be the following Herbrand model df:
N ={peL|gpisanatomand = p,}.

(i) is proved by induction on the syntactic complexityafIf

© is an atom then (1) holds by definition &f. To prove (1)
for sentences of the form A ¢, ¢ and3zp(x) we simply
use (2), (3) and (4), respectively. For the case@fthe proof
is:

MEp&ME-p, o MEp, S
NEeeNE -y,

(p A, p,+) and{(p A, 1, +), for all p, 9 € L.
o (—p,p,—), forallp e L.

(Fra(z), a(t), +), for Jza(x) € Landr € Terms(L).
(T("¢™), @, +), forallp € R.

Edges of the first type are callededgesedges of the second
type are called--edgesedges of the third type are calléd
edgesand edges of the last tyfge-edges

We have to prove thaPy, r is locally stratified. Actually,
we will be proving something slightly stronger. We will prove
that the relation< in the dependency graph &%, r is well-
founded. That is, we will prove that there does not exist any
path of infinite length in the graph. Assume the opposite, that
is, assume the existence of an infinite path

Claim. o contains infinitely many’-edges.

Proof of claim. Assume the opposite. Then there will be
an infinite subpatly’ of o containing ndl'-edges. Thus all
edges o’ must beA-, —- or 3-edges. But note that for any
such edge, the start node will have higher syntactic complex-
ity than the end node. Thus, aloagthe syntactic complexity
will be strictly decreasing, which contradietsbeing infinite.
This proves the claim. O

With every formulap in L we now associate a natural num-
berd(y), called theT-degreeof . TheT-degree is defined
recursively by

e d(p) =1+d(¥),if o =T("") for somey.
e d(p) =0, if ¢ is any other atomic formula.
e d(p) = max{d(y)) | v isasubformulaof}, other-

wise.

The well-foundedness of the parametrised coding ensures that
d is well-defined. By the above claim, contains an infinite
number ofT'-edges. Letp be the end node of such an edge.
Theny is regular. Lets’ be the infinite subpath af having

 as its start node. Then every nodegmmust be a regular
formula (c.f. the definition of a regular formula). This implies
that every edge oa’ is

(i) either an-, —- or T-edge,

where the first equivalence is by (3) and the third is by induc- (ii) or of type (3za(x), a(7), +), wherea(x) does not con-

tion hypothesis. The two remaining cases are proved simi-

tain T'(z) as a subformula.

larly. Thus (i) holds. Furthermore, using (i) and (5), we getjiem (iji) follows from that fact that whem is a variable then

forall p € S:

NET(¢) e MEprrey & MEp, &N Eo,
and thus\V = T("¢™) < ¢, proving (ii). O
Lemma 10. Let L be a first-order language and Iét be the

set of regular sentences in L. The propositional progiam:
is locally stratified.

Proof. To simplify matters we will throughout this proof be
identifying every propositional letter, with the correspond-
ing first-order sentencgin L. It should always be clear from

T'(x) is not a regular formula, and therefore no formula hav-
ing T'(z) as a subformula can be regular either. Now note
that on any edge of type (i) or (ii), thE-degree of the end
node will be less than or equal to tliédegree of the start
node. Thus thd'-degree will be monotonically decreasing
alongos’ and must therefore be constant from some point. But
then from this point it can not contain affitedges, since the
T-degree of the end node of such an edge is always one less
than thel'-degree of the start node. This contradicts the claim
above. O

the context whethep is used to denote the first-order sen- Lemma 11. Let L be a first-order language and Iet be a
tence or the corresponding propositional letter. Thus, by thé€t of sentences ib. If Py s is locally stratified then any

identification, the nodes of the dependency grapRof are
all sentences it.. The edges are:

Herbrand model of.—{T'} can be expanded into a Herbrand
model ofL in whichT'("¢™) < ¢ holds for all in S.



Proof. Let M denote a Herbrand model &f— {T}. LetP 5 Strengthening the Results

be the prograr-IPL? extendedlwnh the following clauses: We now strengthen the results obtained above. We want to
P, — true, if pisanatominL — {T'} andM [= . define a set of formulas more inclusive than the RPQ formulas

p, — false, if o is an atom inl — {T} and M = —. that the truth schem&("¢™) < ¢ can safely be instantiated

. . : with. For this we need a couple of new definitions.
P ¢ is assumed to be locally stratified, and sineehas P

the same dependency graph Bs s, then P must be lo- Definitio_n 14. Let L be a first-order Ianguage an_d Ieftpe a
cally stratified as well. Thereforemp(P) has a Herbrand formulainL. The set of formulasccurring in ¢ is defined
modelM’, by Lemma 7. Finally, Lemma 9 gives us the exis- as the least set containingand satisfying:

tence of a Herbrand mod.e{ of L in which the equivalences e If 3is a subformula of a formula occuring in¢, then
T("¢™) < ¢ hold for all in S. To see that\" expandsMm 3 is occuring ing.

we just have to note that if is an atom inZ — {T'} then

!/

MEe=p, —trecP=MEp, =N Assumaey is a formula occurring inp. The occurrence is said
and to benegativeif i) occurs in a formulax where—« occurs in
M = = p, « false € P = M = —p, = N | —p, . Otherwise the occurrence is calledsitive An occurence
of ¢ in ¢ is said to beprotectedif i) occurs in a formulax
where3z (P(x) A «) occurs ing.

Theorem 12. Let L be a first-order language and 1&f be a Thus, for instancep occurs in formulas such &™) A

theory inL — {T'} containing formal arithmetic. IV has a —~ andT("=T (") A ¥7) but not in A("7) when A” #
Herbrand model ther/ extended with any of the following 7 ¢ has positive occurrence ifi("™) A — but negative

sets of axioms has a Herbrand model. occurrence ifl("=T ("o ™) A 7).

0 Ig]eug):'gg]é%hgg%r@j) < ¢ instantiated over the  pogniion 15, Let I be a first-order language. A formula
B 9 ) : ) ~ @in L is said to beweakly RPQif, for any variablez, the
(i) The axiom schemes of knowledge, A1-A4, |nstant|ate¢brmu|aT(x) only occurs positively or protected in

over th_e regular sentencespf ) _ Note that in an RPQ formula, every occurrencd ¢f) for

(i) The axiom schemes of belief, A2—-A6, instantiated ovegome variable: is protected, so every RPQ formula is also
the regular sentences &f weakly RPQ. Thus the set of RPQ formulas is a subset of

Proof. Assumel/ has a Herbrand mode\t. Let R denote  the set of_ weakly RPQ formulas. It is furthermore a proper

the set of regular sentences in By Lemma 10,P x is subset, since among the Wgakly RPQ formulas we _have e.g.

locally stratified. So by Lemma 12\{ can be expanded into =% (@boutlove(z) AT'(x)), which is not RPQ. The previously

a Herbrand modeN in which T("¢™) < ¢ holds for all obtained results can be extended to the weakly RPQ formulas.

regulary. This proves (i). (i) and (iii) then immediately Theorem 16. Let L be a first-order language and léf be

follow, using Lemma 6. U atheoryinL — {T'}. If U has a Herbrand model, thefl

fxtended with the axiom scheme

o If T'("a™) is occurring iny, thena is occurring ine.

where the last implications are by (i) in Lemma 9. O

Theorem 4 is an immediate consequence of Theorem 1
when takingU to be formal arithmetic. The machinery we T(TpT) <

have introduced can also be applied to prove Theorem 5. Itis

an immediate consequence of the following corollary to The4instantiated over the set of weakly RPQ sentences has a Her-
orem 12, brand model.

Corollary 13. Theorem 12 still holds when we replace “reg-
ular sentences” with “RPQ sentences”. Furthermore, the ex-Froof. Let 5 denote the set of weakly RPQ formulas. Us-

tension ofP in the Herbrand model constructed will be the N9 Lemma 11, it suffices to prove th s is locally strat-
set of codes of regular sentences. ified. As in the proof of Corollary 13, we can consider the

modified programy); s instead. To obtain a contradiction,
Proof. Let S denote the set of RPQ sentenced.ofModify ~ assume&); s is not locally stratified. Ther:; in the depen-

the programP;, s by removing every clause of the form dency graph of);, s is not well-founded, that is, there must
- exist an infinite pathr containing infinitely many negative
PIz(P(2)Ap(@) T PP(r)Ae(r)) edges. As in the proof of Lemma 10, we get thahust con-

wherer is not the code of any regular sentence. Call the newain infinitely manyZ-edges. Lety be the end node of such
program@y, s. It is easy to see thap,, s is locally strat- an edge. Theip is weakly RPQ. Let’ be the infinite sub-
ified, using the argument given in the proof of Lemma 10.path ofos having this node as its start node. Then every node
Lemma 11 still holds when we ugg;, s instead ofP, s, SO ono’ must be weakly RPQ. As noted in the proof of Lemma
any Herbrand model off can be expanded into a model of 10, if every edge on” is

LinwhichT("¢7) < ¢ holds for all RPQ sentences. This .. .
proves (i) in Theorem 12 with “regular sentences” replaced (i) either aA-, —- or T-edge,

by “RPQ sentences”. (ii) and (iii) then follows from Lemma (i) or of type (3za(z), o), +) wherea(z) does not con-
6. O tain T'(z) as a subformula,



thens’ can not be infinite. Thus, every node @hmust have
an occurrence df'(z) for some variabler. Since all nodes
are weakly RPQ, in each of the§&z) is either positive or
protected. But ifl'(x) occurs protected ip, there can be no
infinite path starting a. Thus, in every formula on ¢”,
T'(z) must occur positively (for some variablg. But this
implies that all edges in the path are positive, which contra
dicts our assumption. O

The above theorem also relates to a result by PEYBSH.
Perlis showed that a modified truth scheffi¢ ¢7) — ¢*
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