
Sliding Window String Indexing in Streams

Philip Bille
Inge Li Gørtz
Johannes Fischer
Max Rishøj Pedersen
Tord Joakim Stordalen

Problem Statement

• Maintain an index over the w most recent characters of a stream

• At any point, given a pattern string P, find all occurrences in the
window.

1

Problem Statement

• Both S and patterns P are streamed one character at a time.

• No interleaving:

P1 P2 P3

• We do not know the length of each pattern up front.

• The goal is to use the least amount of time per character.

2

Problem Statement

• The timely variant:

• The δ-delayed variant:

3

Previous Work

• Sliding Window Suffix Trees:
O(1) amortized, worst-case Ω(w). For constant-sized alphabets
Brodnik & Jekovec 2018.

• Fully Dynamic Suffix Arrays:
Polylogarithmic time per operation and more general
Kempa & Kociumaka 2022.

• Online Suffix Tree Construction:
O(log log n + log log |Σ |) per character
Kopelowitz 2012.

4

Our Results

• Timely: O(w) space, O(logw) time per character whp

• Delayed: O(w + δ) space, O(log(w/δ)) time per character whp

• For δ = ϵw we get O(w) space and constant time whp

5

Agenda

• Simple Solution

• Streaming Patterns

• With Delay

• High-probability Guarantees

6

Simple Solution

Simple Solution

• We know the pattern (and its length) upfront

• The timely variant

• Expected running times

7

Simple Solution

• We maintain at most logw suffix trees that cover the window.

• T is the smallest tree larger than m = |P |
• O(m logw)

8

Simple Solution

• We maintain at most logw suffix trees that cover the window.

• T is the smallest tree larger than m = |P |
• O(m logw)

8

Simple Solution

• We maintain at most logw suffix trees that cover the window.

• T is the smallest tree larger than m = |P |

• O(m logw)

8

Simple Solution

• We maintain at most logw suffix trees that cover the window.

• T is the smallest tree larger than m = |P |
• O(m logw)

8

Simple Solution

• We maintain at most logw suffix trees that cover the window.

• T is the smallest tree larger than m = |P |
• O(m logw) +O(m logw)

8

Simple Solution

• We maintain at most logw suffix trees that cover the window.

• T is the smallest tree larger than m = |P |
• O(m logw) +O(m logw)

8

Simple Solution

• We maintain at most logw suffix trees that cover the window.

• T is the smallest tree larger than m = |P |
• O(m logw) +O(m logw) +O(m)

8

Simple Solution

• We maintain at most logw suffix trees that cover the window.

• T is the smallest tree larger than m = |P |
• O(m logw) +O(m logw) +O(m)

8

Simple Solution

• Recurse on [α, j − 1] and [j + 1, β]

• RMQ in linear space, constant time; reporting in O(occ) time

9

Maintaining the Data Structure

• Log-structured merge!

a a t r e

23

21 20
22

t r e e

23

a b e sa na b

Update
22

r e e sa an nb

Update

a

20

a a a a tnnn

23

• Each character is included in at most logw suffix trees

• Expected linear time construction gives expected amortized
O(logw) time per update

• Deamortize by keeping both trees and merging in the
background

10

Maintaining the Data Structure

• Log-structured merge!

a a t r e

23

21 20
22

t r e e

23

a b e sa na b

Update
22

r e e sa an nb

Update

a

20

a a a a tnnn

23

• Each character is included in at most logw suffix trees

• Expected linear time construction gives expected amortized
O(logw) time per update

• Deamortize by keeping both trees and merging in the
background

10

Maintaining the Data Structure

• Log-structured merge!

a a t r e

23

21 20
22

t r e e

23

a b e sa na b

Update
22

r e e sa an nb

Update

a

20

a a a a tnnn

23

• Each character is included in at most logw suffix trees

• Expected linear time construction gives expected amortized
O(logw) time per update

• Deamortize by keeping both trees and merging in the
background

10

Streaming the Pattern

Streaming the Pattern

• We cannot use KMP since we do not know the pattern upfront

• We instead add suffix trees across the boundaries

11

Streaming the Pattern

• Boundary trees do not work to the right of T

• We grow a suffix tree at query time!

12

Streaming the Pattern

• Suppose that 2i ≤ |P| < 2i+1.

• Run the algorithm for each of the logw choices of i

13

Streaming the Pattern

• Suppose that 2i ≤ |P| < 2i+1.

• Run the algorithm for each of the logw choices of i

13

Streaming the Pattern

• Suppose that 2i ≤ |P| < 2i+1.

• Run the algorithm for each of the logw choices of i

13

Streaming the Pattern

• Suppose that 2i ≤ |P| < 2i+1.

• Run the algorithm for each of the logw choices of i

13

Streaming the Pattern

• Suppose that 2i ≤ |P| < 2i+1.

• Run the algorithm for each of the logw choices of i

13

Introducing Delay

Data Structure

• We leave a suffix of length O(δ) uncovered by suffix trees

• The smallest tree has size Ω(δ). There are
≈ logw − log δ = log(w/δ) trees

14

Queries

• Long patterns: |P | > δ/4. Queries remain the same! (no delay)

• Short patterns: buffer queries and updates until we can afford to
construct suffix tree in O(δ) time

15

Queries

• Long patterns: |P | > δ/4. Queries remain the same! (no delay)

• Short patterns: buffer queries and updates until we can afford to
construct suffix tree in O(δ) time

15

Construction

• Construct trees of size δ/2

• Each character included in O(log(w/δ)) suffix trees
• Deamortized in the same way as before

16

Construction

• Construct trees of size δ/2

• Each character included in O(log(w/δ)) suffix trees
• Deamortized in the same way as before

16

High-probability Guarantees

High-probability Guarantees

• Given a string of length n over alphabet Σ

• Expected O(n) time: pick a hash function Σ → [0,n2] + radix sort

• With high probability: pick a hash function Σ → [0,nd]

• We have trees of many sizes, e.g., logw. We allocate arrays of size
w for small cases.

17

Questions?

Queries: Short Patterns

• Short patterns: |P | ≤ δ/4

• Challenge: the uncovered suffix may be much larger than P

• Solution: buffer queries and updates until we can afford to do
Ω(δ) work

• Buffer of size δ. Add each update and each pattern to the buffer.

• Flush when there are at least δ/2 characters in the buffer,
deamortized over δ/4 characters.

18

Flushing the Buffer

• Match in each (boundary) tree
• Build and match in suffix tree over uncovered suffix
• Use KMP across the boundary: O(δ) time
• Process updates
• Total: O(δ log(w/δ))

19

Flushing the Buffer

• Match in each (boundary) tree
• Build and match in suffix tree over uncovered suffix
• Use KMP across the boundary: O(δ) time
• Process updates
• Total: O(δ log(w/δ))

19

Flushing the Buffer

• Match in each (boundary) tree
• Build and match in suffix tree over uncovered suffix
• Use KMP across the boundary: O(δ) time
• Process updates
• Total: O(δ log(w/δ))

19

	Simple Solution
	Streaming the Pattern
	Introducing Delay
	High-probability Guarantees
	Questions?

