Sliding Window String Indexing in Streams

Philip Bille Inge Li Gørtz Johannes Fischer Max Rishøj Pedersen Tord Joakim Stordalen • Maintain an index over the w most recent characters of a stream

• At any point, given a pattern string *P*, find all occurrences in the window.

Problem Statement

- Both S and patterns P are streamed one character at a time.
- No interleaving:

 $S \longrightarrow P$ $P_1 \longrightarrow P_2 = P_3$

- \cdot We do not know the length of each pattern up front.
- The goal is to use the least amount of time *per character*.

Problem Statement

• The *timely* variant:

• The δ -delayed variant:

• Sliding Window Suffix Trees:

O(1) amortized, worst-case $\Omega(w).$ For constant-sized alphabets Brodnik & Jekovec 2018.

• Fully Dynamic Suffix Arrays: Polylogarithmic time per operation and more general Kempa & Kociumaka 2022.

• Online Suffix Tree Construction: $O(\log \log n + \log \log |\Sigma|)$ per character Kopelowitz 2012.

- Timely: O(w) space, $O(\log w)$ time per character whp
- Delayed: $O(w + \delta)$ space, $O(\log(w/\delta))$ time per character whp
- For $\delta = \epsilon w$ we get O(w) space and constant time whp

- Simple Solution
- Streaming Patterns
- With Delay
- High-probability Guarantees

Simple Solution

- \cdot We know the pattern (and its length) upfront
- \cdot The timely variant
- Expected running times

• T is the smallest tree larger than m = |P|

- T is the smallest tree larger than m = |P|
- · $O(m \log w)$

- T is the smallest tree larger than m = |P|
- $\cdot \ O(m\log w) + O(m\log w)$

- T is the smallest tree larger than m = |P|
- $\cdot \ O(m\log w) + O(m\log w)$

- T is the smallest tree larger than m = |P|
- $\cdot \ O(m\log w) + O(m\log w) + O(m)$

- T is the smallest tree larger than m = |P|
- $\cdot \ O(m\log w) + O(m\log w) + O(m)$

Simple Solution

- + Recurse on $[\alpha,j-1]$ and $[j+1,\beta]$
- RMQ in linear space, constant time; reporting in O(occ) time

• Log-structured merge!

• Each character is included in at most $\log w$ suffix trees

• Log-structured merge!

- Each character is included in at most $\log w$ suffix trees
- Expected linear time construction gives expected amortized $O(\log w)$ time per update

• Log-structured merge!

- Each character is included in at most $\log w$ suffix trees
- Expected linear time construction gives expected amortized $O(\log w)$ time per update
- Deamortize by keeping both trees and merging in the background

- We cannot use KMP since we do not know the pattern upfront
- We instead add suffix trees across the boundaries

- $\cdot\,$ Boundary trees do not work to the right of T
- We grow a suffix tree at query time!

 \cdot Run the algorithm for each of the $\log w$ choices of i

Introducing Delay

• The smallest tree has size $\Omega(\delta)$. There are $\approx \log w - \log \delta = \log(w/\delta)$ trees

Queries

Queries

- Short patterns: buffer queries and updates until we can afford to construct suffix tree in $O(\delta)$ time

Construction

+ Construct trees of size $\delta/2$

Construction

- Each character included in $O(\log(w/\delta))$ suffix trees
- Deamortized in the same way as before

High-probability Guarantees

- + Given a string of length n over alphabet Σ
- Expected O(n) time: pick a hash function $\Sigma \rightarrow [0, n^2] + radix \text{ sort}$
- With high probability: pick a hash function $\Sigma \rightarrow [0, n^d]$
- We have trees of many sizes, e.g., $\log w$. We allocate arrays of size w for small cases.

Questions?

Queries: Short Patterns

- Short patterns: $|P| \le \delta/4$
- \cdot Challenge: the uncovered suffix may be much larger than P
- Solution: buffer queries and updates until we can afford to do $\Omega(\delta)$ work
- Buffer of size δ . Add each update and each pattern to the buffer.
- Flush when there are at least $\delta/2$ characters in the buffer, deamortized over $\delta/4$ characters.

Flushing the Buffer

Flushing the Buffer

Flushing the Buffer

- Match in each (boundary) tree
- Build and match in suffix tree over uncovered suffix
- Use KMP across the boundary: $\mathit{O}(\delta)$ time
- Process updates
- Total: $O(\delta \log(w/\delta))$