Rank and Select on Degenerate Strings

Philip Bille

Inge Li Gørtz
Tord Joakim Stordalen

Rank and Select on Degenerate Strings

$$
\left.\begin{array}{c}
X=\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}
\end{array} \begin{array}{l}
A \\
T
\end{array}\right\}\{C\}\left\{\begin{array}{l}
T \\
G
\end{array}\right\}
$$

Rank and Select on Degenerate Strings

$$
\left.\begin{array}{c}
X=\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}
\end{array} \begin{array}{l}
A \\
T
\end{array}\right\}\{C\}\left\{\begin{array}{l}
T \\
G
\end{array}\right\}
$$

Rank and Select on Degenerate Strings

$$
\left.\begin{array}{c}
X=\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}
\end{array} \begin{array}{l}
A \\
T
\end{array}\right\}\{C\}\left\{\begin{array}{l}
T \\
G
\end{array}\right\}
$$

- subset-rank($3, A$)

Rank and Select on Degenerate Strings

$$
\begin{gathered}
X=\begin{array}{c}
\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}
\end{array}\left\{\begin{array}{l}
A \\
T
\end{array}\right\}
\end{gathered}\left\{\begin{array}{l}
C \\
X_{1}
\end{array} \begin{array}{l}
X_{2} \quad
\end{array} \begin{array}{l}
T \\
G
\end{array}\right\}
$$

- $\operatorname{subset-rank}(3, A)=2$

Rank and Select on Degenerate Strings

$$
\begin{gathered}
X=\begin{array}{c}
\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}
\end{array}\left\{\begin{array}{l}
A \\
T
\end{array}\right\}
\end{gathered}\left\{\begin{array}{l}
C \\
X_{1}
\end{array} \begin{array}{l}
X_{2} \quad
\end{array} \begin{array}{l}
T \\
G
\end{array}\right\}
$$

- subset-rank $(3, A)=2$
- subset-select(2, C)

Rank and Select on Degenerate Strings

$$
\begin{gathered}
X=\begin{array}{c}
\left\{\begin{array}{c}
A \\
C \\
G
\end{array}\right\}
\end{array}\left\{\begin{array}{l}
A \\
T
\end{array}\right\}
\end{gathered}\left\{\begin{array}{l}
C \\
X_{1}
\end{array} \begin{array}{l}
X_{2} \quad
\end{array} \begin{array}{l}
T \\
G
\end{array}\right\}
$$

- subset-rank $(3, A)=2$
- subset-select $(2, C)=3$

Rank and Select on Degenerate Strings

$$
\left.\begin{array}{c}
X=\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}
\end{array} \frac{\left\{\begin{array}{l}
A \\
T
\end{array}\right\}}{} \begin{array}{c}
X_{1} \quad\left\{\begin{array}{l}
C
\end{array}\right\}
\end{array} \begin{array}{l}
X_{2} \\
G
\end{array}\right\}
$$

- $n=\#$ sets $=4$
- $n_{0}=\#$ empty sets $=0$
- $N=\#$ characters $=8$
- subset-rank $(i, c)=\#$ occurrences of c in X_{1}, \ldots, X_{i}.
- subset-select $(i, c)=$ position of ith occurrence of c.

Motivation

- Alanko, Biagi, Puglisi, Vuohtoniemi, 2023 - Subset Wavelet Trees $O(\log \sigma)$ time, $N \log \sigma+2 n_{0}+o\left(N \log \sigma+n_{0}\right)$ bits
- Alanko, Puglisi, Vuohtoniemi, 2023 - Small searchable k-spectra [...] Support k-mer queries using $2 k$ subset-rank queries; one-two orders of magnitude faster than previous best solution.
- A number of reductions to regular rank and select, from APV2023, the famous BOSS paper, etc.

Our Contributions

- Introduce N as a parameter and reanalyze existing reductions
- Prove a simple lower bound on space
- A new compact and fast data structure using SIMD

Reductions

Rank-select structure \mathcal{D}

- $\mathcal{D}_{b}(\ell, \sigma)$ bits
- $\mathcal{D}_{r}(\ell, \sigma)$ rank-time
- $\mathcal{D}_{s}(\ell, \sigma)$ select-time

Rank-select structure \mathcal{B}

- $\mathcal{B}_{b}\left(n, n_{0}\right)$ bits
- $\mathcal{B}_{r}\left(n, n_{0}\right) \operatorname{rank}(\cdot, 1)$-time
- $\mathcal{B}_{s}\left(n, n_{0}\right)$ select($\cdot, 0$)-time
\dagger : No empty sets in reduction (i)

Reduction (i)

$$
\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}\left\{\begin{array}{l}
A \\
T
\end{array}\right\} \quad\{C\}\left\{\begin{array}{l}
T \\
G
\end{array}\right\} \begin{array}{llllll}
S= & A C G & A T & C & T G & \\
R= & 100 & 10 & 1 & 10 & 1
\end{array}
$$

Reduction (i)

$$
\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}\left\{\begin{array}{l}
A \\
T
\end{array}\right\} \quad\{C\}\left\{\begin{array}{l}
T \\
G
\end{array}\right\} \begin{array}{llllll}
S= & A C G & A T & C & T G & \\
R= & 100 & 10 & 1 & 10 & 1
\end{array}
$$

- $|S|=N$ and $|R|=N+1$.

Reduction (i)

$$
\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}\left\{\begin{array}{l}
A \\
T
\end{array}\right\} \quad\{C\}\left\{\begin{array}{l}
T \\
G
\end{array}\right\} \begin{array}{llllll}
S= & A C G & A T & C & T G & \\
R= & 100 & 10 & 1 & 10 & 1
\end{array}
$$

- $|S|=N$ and $|R|=N+1$.
- Build \mathcal{D} over S and a constant-time rank-select bitvector over R.

Reduction (i)

$$
\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\} \quad\left\{\begin{array}{l}
A \\
T
\end{array}\right\} \quad\{C\}\left\{\begin{array}{l}
T \\
G
\end{array}\right\} \begin{array}{llllll}
S= & A C G & A T & C & T G & \\
R= & 100 & 10 & 1 & 10 & 1
\end{array}
$$

- $|S|=N$ and $|R|=N+1$.
- Build \mathcal{D} over S and a constant-time rank-select bitvector over R.
- subset-rank (i, c) :
- $k=\operatorname{select}(i+1,1)$ in R
- return $\operatorname{rank}(k-1, c)$ in S

Reduction (i)

$$
\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\} \quad\left\{\begin{array}{l}
A \\
T
\end{array}\right\} \quad\{C\}\left\{\begin{array}{l}
T \\
G
\end{array}\right\} \begin{array}{llllll}
S= & A C G & A T & C & T G & \\
R= & 100 & 10 & 1 & 10 & 1
\end{array}
$$

- $|S|=N$ and $|R|=N+1$.
- Build \mathcal{D} over S and a constant-time rank-select bitvector over R.
- subset-rank (i, c) :
- $k=\operatorname{select}(i+1,1)$ in R
- return $\operatorname{rank}(k-1, c)$ in S
- subset-select (i, c) :
- $k=\operatorname{select}(i, c)$ in S
- return $\operatorname{rank}(k, 1)$ in R

Reductions

Rank-select structure \mathcal{D}

- $\mathcal{D}_{b}(\ell, \sigma)$ bits
- $\mathcal{D}_{r}(\ell, \sigma)$ rank-time
- $\mathcal{D}_{s}(\ell, \sigma)$ select-time

Rank-select structure \mathcal{B}

- $\mathcal{B}_{b}\left(n, n_{0}\right)$ bits
- $\mathcal{B}_{r}\left(n, n_{0}\right) \operatorname{rank}(\cdot, 1)$-time
- $\mathcal{B}_{s}\left(n, n_{0}\right)$ select($\left.\cdot, 0\right)$-time

	Space	subset-rank	subset-select
i^{\dagger}	$\mathcal{D}_{b}(N, \sigma)+N+o(N)$	$\mathcal{D}_{r}(N, \sigma)+O(1)$	$\mathcal{D}_{s}(N, \sigma)+O(1)$
ii			
iii			

\dagger : No empty sets in reduction (i)

Reductions (ii) and (iii)

$$
\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}\left\{\begin{array}{l}
A \\
T
\end{array}\right\}\left\{\left\{\begin{array}{l}
T \\
G
\end{array}\right\} \begin{array}{lccccc}
S= & A C G & A T & !! & T G & \\
R= & 100 & 10 & 1 & 10 & 1
\end{array}\right.
$$

- Empty sets \rightarrow we cannot build R in the same way

Reductions (ii) and (iii)

$$
\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}\left\{\begin{array}{l}
A \\
T
\end{array}\right\}\left\{\left\{\begin{array}{l}
T \\
G
\end{array}\right\} \begin{array}{lccccc}
S= & A C G & A T & !! & T G & \\
R= & 100 & 10 & 1 & 10 & 1
\end{array}\right.
$$

- Empty sets \rightarrow we cannot build R in the same way
- Reduction (ii): Replace $\left\}\right.$ by $\{\epsilon\} \rightarrow N^{\prime}=N+n_{0}$ and $\sigma^{\prime}=\sigma+1$

Reductions (ii) and (iii)

$$
\left\{\begin{array}{l}
A \\
C \\
G
\end{array}\right\}\left\{\begin{array}{l}
A \\
T
\end{array}\right\}\left\{\left\{\begin{array}{l}
T \\
G
\end{array}\right\} \begin{array}{lccccc}
S= & A C G & A T & !! & T G & \\
R= & 100 & 10 & 1 & 10 & 1
\end{array}\right.
$$

- Empty sets \rightarrow we cannot build R in the same way
- Reduction (ii): Replace $\left\}\right.$ by $\{\epsilon\} \rightarrow N^{\prime}=N+n_{0}$ and $\sigma^{\prime}=\sigma+1$
- Reduction (iii):
- iLet E be the length- n bitstring where $E[i]=1$ iff $X_{i}=\emptyset$
- Let X^{\prime} be X with the empty sets removed
- Build (i) over X^{\prime} and \mathcal{B} over E
- For queries, filter out empty sets first, then use (i)

Reductions

Rank-select structure \mathcal{D}

- $\mathcal{D}_{b}(\ell, \sigma)$ bits
- $\mathcal{D}_{r}(\ell, \sigma)$ rank-time
- $\mathcal{D}_{s}(\ell, \sigma)$ select-time

Rank-select structure \mathcal{B}

- $\mathcal{B}_{b}\left(n, n_{0}\right)$ bits
- $\mathcal{B}_{r}\left(n, n_{0}\right) \operatorname{rank}(\cdot, 1)$-time
- $\mathcal{B}_{s}\left(n, n_{0}\right)$ select($\left.\cdot, 0\right)$-time

	Space	subset-rank	subset-select
i^{\dagger}	$\mathcal{D}_{b}(N, \sigma)+N+o(N)$	$\mathcal{D}_{r}(N, \sigma)+O(1)$	$\mathcal{D}_{s}(N, \sigma)+O(1)$

ii \quad same as (i) with $N^{\prime}=N+n_{0}$ and $\sigma^{\prime}=\sigma+1$
iii
(i) $+\mathcal{B}_{b}\left(n, n_{0}\right)$
$(i)+\mathcal{B}_{r}\left(n, n_{0}\right)$
(i) $+\mathcal{B}_{s}\left(n, n_{0}\right)$
${ }^{\dagger}$: No empty sets in reduction (i)

Plugging in

- Bitvector by Golynski, Munro, Rao, 2006
- $\ell \log \sigma+o(\ell \log \sigma)$ bits
- rank in $O(\log \log \sigma)$ time
- select in constant time

Plugging in

- Bitvector by Golynski, Munro, Rao, 2006
- $\ell \log \sigma+o(\ell \log \sigma)$ bits
- rank in $O(\log \log \sigma)$ time
- select in constant time
(i) $N \log \sigma+N+o(n \log \sigma)$ bits, subset-rank in $O(\log \log \sigma)$ time, subset-select in constant time.

Plugging in

- Bitvector by Golynski, Munro, Rao, 2006
- $\ell \log \sigma+o(\ell \log \sigma)$ bits
- rank in $O(\log \log \sigma)$ time
- select in constant time
(i) $N \log \sigma+N+o(n \log \sigma)$ bits, subset-rank in $O(\log \log \sigma)$ time, subset-select in constant time.
(ii) $\left(N+n_{0}\right) \log (\sigma+1)+N+n_{0}+o\left(\left(N+n_{0}\right) \log \sigma\right)$ bits, same time bound.

Plugging in

- Bitvector by Golynski, Munro, Rao, 2006
- $\ell \log \sigma+o(\ell \log \sigma)$ bits
- rank in $O(\log \log \sigma)$ time
- select in constant time
(i) $N \log \sigma+N+o(n \log \sigma)$ bits, subset-rank in $O(\log \log \sigma)$ time, subset-select in constant time.
(ii) $\left(N+n_{0}\right) \log (\sigma+1)+N+n_{0}+o\left(\left(N+n_{0}\right) \log \sigma\right)$ bits, same time bound.
(iii) $N \log \sigma+\mathcal{B}_{s}\left(n, n_{0}\right)$ bits, and an additional rank or select query in \mathcal{B}. In particular, if $n=o(N \log \sigma)$ we can use $n+o(n)$ extra bits and constant time per query to achieve the same results as (i).

Lower Bound and Succinctness

- Let sufficiently large N and $\sigma=\omega(\log N)$ be given
- Assume wlog. that $\log N$ and $N / \log N$ are integers.
- Consider the class X_{1}, \ldots, X_{n} where each X_{i} has size $\log N$ and $n=N / \log N$.
- There are $\binom{\sigma}{\log N}^{N / \log N}$ such strings

$$
\begin{aligned}
\log \binom{\sigma}{\log N}^{N / \log N} & =\frac{N}{\log N} \log \binom{\sigma}{\log N} \\
& \geq \frac{N}{\log N} \log \left(\frac{\sigma-\log N}{\log N}\right)^{\log N} \\
& =N \log \left(\frac{\sigma-\log N}{\log N}\right) \\
& =N \log \sigma-o(N \log \sigma)
\end{aligned}
$$

Empirical Results - subset-rank Queries

SIMD Implementation

- Standard idea from succinct data structures;
- Divide string into blocks
- Precompute the answer for rank queries up to each block ($\sigma=4$)
- Compute in-block answers as needed

SIMD Implementation

- Standard idea from succinct data structures;
- Divide string into blocks
- Precompute the answer for rank queries up to each block ($\sigma=4$)
- Compute in-block answers as needed
- With SIMD: larger blocks \rightarrow smaller data structures

SIMD Implementation

- Standard idea from succinct data structures;
- Divide string into blocks
- Precompute the answer for rank queries up to each block ($\sigma=4$)
- Compute in-block answers as needed
- With SIMD: larger blocks \rightarrow smaller data structures
- How we use SIMD to answer rank queries in a block?

Rank queries using SIMD

- Split the string into two strings; the high bits and the low bits

$$
\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
A & G & T
\end{array}
$$

- To perform rank(i,C), we could scan the two strings looking for a 0 in the hi bit and a 1 in the low bit.
- With SIMD, we can use the operation vpternlogq

vpternlogq

- Given three SIMD vectors and an 8-bit immediate value, computes any three-variable boolean function

vpternlogq

- Given three SIMD vectors and an 8-bit immediate value, computes any three-variable boolean function

vpternlogq

- Given three SIMD vectors and an 8-bit immediate value, computes any three-variable boolean function
 result!

vpternlogq

- Given three SIMD vectors and an 8-bit immediate value, computes any three-variable boolean function

$A=$	0	0	1	0	0		0	1	0							
$B=$	0	1	1	0	1	1	1	0	0	a	b	c	imm	c	A	$A \& C$
$C=$?	?	?	?	?	?		?	?	0	0	0	b_{0}	0	1	
										0	0	1	b_{1}	0	1	
$R=$										0	1	0	b_{2}	1	0	
	0	1	0	0	1		1	0	0	0	1	1	b_{3}	1	0	
										1	0	0	b_{4}	0	0	
										1	0	1	b_{5}	0	0	
Use vpopcntq (population count) to										1	1	0	b_{6}	0	0	
										1	1	1	b_{7}	0	0	

vpternlogq

- Given three SIMD vectors and an 8-bit immediate value, computes any three-variable boolean function

$A=$	0	0	1	0	0		0	1	0								
$B=$	0	1	1	0	1	1	1	0	0	a	b	c	c	imm	C	A	$A \& C$
		?			?					0	0	0	0	b_{0}	0	1	1
										0	0	1	1	b_{1}	0	1	1
$R=$										0	1		0	b_{2}	1	0	1
	0	1	0	0	1		1	0	0	0	1		1	b_{3}	1	0	1
										1	0	0	0	b_{4}	0	0	0
										1	0	1	1	b_{5}	0	0	0
Use vpopentq (population count) to										1	1	0	0	b_{6}	0	0	0
										1	1		1	b_{7}	0	0	0

Questions?

