Philip Bille Inge Li Gørtz Tord Joakim Stordalen

$$X = \begin{cases} A \\ C \\ G \end{cases} \begin{cases} A \\ T \end{cases} \begin{cases} A \\ T \end{cases} \begin{cases} C \\ C \end{cases} \begin{cases} T \\ G \end{cases}$$
$$X_1 \qquad X_2 \qquad X_3 \qquad X_4 \end{cases}$$

$$X = \begin{cases} A \\ C \\ G \end{cases} \begin{cases} A \\ T \end{cases} \begin{cases} A \\ T \end{cases} \begin{cases} C \\ C \end{cases} \begin{cases} T \\ G \end{cases}$$
$$X_1 \qquad X_2 \qquad X_3 \qquad X_4 \end{cases}$$

$$X = \begin{cases} A \\ C \\ G \end{cases} \begin{cases} A \\ T \end{cases} \begin{cases} A \\ T \end{cases} \begin{cases} C \\ C \end{cases} \begin{cases} T \\ G \end{cases}$$
$$X_1 \qquad X_2 \qquad X_3 \qquad X_4 \end{cases}$$

subset-rank(3,A)

$$X = \begin{cases} \mathbf{A} \\ \mathbf{C} \\ \mathbf{G} \end{cases} \begin{cases} \mathbf{A} \\ \mathbf{T} \end{cases} \begin{cases} \mathbf{C} \\ \mathbf{C} \end{cases} \begin{cases} \mathbf{C} \\ \mathbf{C} \end{cases} \begin{cases} \mathbf{T} \\ \mathbf{G} \end{cases}$$
$$X_1 \qquad X_2 \qquad X_3 \qquad X_4 \end{cases}$$

• subset-rank(3,*A*) = 2

$$X = \begin{cases} \mathbf{A} \\ \mathbf{C} \\ \mathbf{G} \end{cases} \begin{cases} \mathbf{A} \\ \mathbf{T} \end{cases} \begin{cases} \mathbf{A} \\ \mathbf{T} \end{cases} \begin{cases} \mathbf{C} \\ \mathbf{C} \end{cases} \begin{cases} \mathbf{T} \\ \mathbf{G} \end{cases}$$
$$X_1 \qquad X_2 \qquad X_3 \qquad X_4 \end{cases}$$

• subset-rank(3,*A*) = 2

• subset-select(2, *C*)

$$X = \begin{cases} \mathbf{A} \\ \mathbf{C} \\ \mathbf{G} \end{cases} \begin{cases} \mathbf{A} \\ \mathbf{T} \end{cases} \begin{cases} \mathbf{C} \\ \mathbf{C} \end{cases} \begin{cases} \mathbf{C} \\ \mathbf{C} \end{cases} \begin{cases} \mathbf{T} \\ \mathbf{G} \end{cases}$$
$$X_1 \qquad X_2 \qquad X_3 \qquad X_4 \end{cases}$$

• subset-rank(3,*A*) = 2

• subset-select(2, *C*) = 3

$$X = \begin{cases} A \\ C \\ G \end{cases} \begin{cases} A \\ T \end{cases} \begin{cases} A \\ T \end{cases} \begin{cases} C \\ C \end{cases} \begin{cases} T \\ G \end{cases}$$
$$X_1 \qquad X_2 \qquad X_3 \qquad X_4 \end{cases}$$

•
$$n = \# \text{sets} = 4$$

- $n_0 = \# \text{empty sets} = 0$
- N = #characters = 8
- subset-rank(i, c) = #occurrences of c in X_1, \ldots, X_i .
- subset-select(i, c) = position of ith occurrence of c.

- Alanko, Biagi, Puglisi, Vuohtoniemi, 2023 Subset Wavelet Trees $O(\log \sigma)$ time, $N\log \sigma + 2n_0 + o(N\log \sigma + n_0)$ bits
- Alanko, Puglisi, Vuohtoniemi, 2023 *Small searchable k-spectra* [...] Support *k*-mer queries using 2*k* subset-rank queries; one-two orders of magnitude faster than previous best solution.
- A number of reductions to regular rank and select, from APV2023, the famous BOSS paper, etc.

- Introduce N as a parameter and reanalyze existing reductions
- Prove a simple lower bound on space
- A new compact and fast data structure using SIMD

Reductions

Rank-select structure ${\cal D}$	
----------------------------------	--

- $\cdot \ \mathcal{D}_b(\ell,\sigma)$ bits
- $\mathcal{D}_r(\ell,\sigma)$ rank-time
- $\mathcal{D}_s(\ell, \sigma)$ select-time

Rank-select structure ${\mathcal B}$

- $\mathcal{B}_b(n, n_0)$ bits
- $\mathcal{B}_r(n, n_0)$ rank(•, 1)-time
- $\mathcal{B}_s(n, n_0)$ select(•, θ)-time

	Space	subset-rank	subset-select
i†			
ii			
iii			

†: No empty sets in reduction (i)

$$\begin{cases} A \\ C \\ G \end{cases} \quad \begin{cases} A \\ T \end{cases} \quad \begin{cases} C \\ T \end{cases} \quad \begin{cases} C \\ C \end{cases} \quad \begin{cases} T \\ G \end{cases} \quad S = ACG \quad AT \quad C \quad TG \\ R = 100 \quad 10 \quad 1 \quad 10 \quad 1 \end{cases}$$

$$\begin{cases} A \\ C \\ G \end{cases} \quad \begin{cases} A \\ T \end{cases} \quad \begin{cases} C \\ T \end{cases} \quad \begin{cases} C \\ C \end{cases} \quad \begin{cases} T \\ G \end{cases} \quad S = ACG \quad AT \quad C \quad TG \\ R = 100 \quad 10 \quad 1 \quad 10 \quad 1 \end{cases}$$

• |S| = N and |R| = N + 1.

$$\begin{cases} A \\ C \\ G \end{cases} \quad \begin{cases} A \\ T \end{cases} \quad \begin{cases} C \\ T \end{cases} \quad \begin{cases} C \\ C \end{cases} \quad \begin{cases} T \\ G \end{cases} \quad S = ACG AT C TG \\ R = 100 10 1 10 1 \end{cases}$$

•
$$|S| = N$$
 and $|R| = N + 1$.

• Build \mathcal{D} over S and a constant-time rank-select bitvector over R.

$$\begin{cases} A \\ C \\ G \end{cases} \quad \begin{cases} A \\ T \end{cases} \quad \begin{cases} C \\ T \end{cases} \quad \begin{cases} C \\ C \end{cases} \quad \begin{cases} T \\ G \end{cases} \quad S = ACG AT C TG \\ R = 100 10 1 10 1 \end{cases}$$

•
$$|S| = N$$
 and $|R| = N + 1$.

- Build \mathcal{D} over S and a constant-time rank-select bitvector over R.
- subset-rank(i, c):
 - k = select(i+1, 1) in R
 - return $\operatorname{rank}(k-1, c)$ in S

$$\begin{cases} A \\ C \\ G \end{cases} \quad \begin{cases} A \\ T \end{cases} \quad \begin{cases} C \\ T \end{cases} \quad \begin{cases} C \\ C \end{cases} \quad \begin{cases} T \\ G \end{cases} \quad S = ACG AT C TG \\ R = 100 10 1 10 1 \end{cases}$$

•
$$|S| = N$$
 and $|R| = N + 1$.

- Build \mathcal{D} over S and a constant-time rank-select bitvector over R.
- subset-rank(i, c):
 - k = select(i+1, 1) in R
 - return rank(k-1, c) in S
- subset-select(*i*, *c*):
 - · k = select(i, c) in S
 - return rank(k, 1) in R

Reductions

RdII	K-select structure D	Rank-select structure \mathcal{B}								
•	$\mathcal{D}_b(\ell,\sigma)$ bits	$\cdot {\mathcal B}_b(n,n_0)$ bits								
•	$\mathcal{D}_r(\ell,\sigma)$ rank-time	• $\mathcal{B}_r(n, n_0)$ rank(•, 1)-time								
•	$\mathcal{D}_s(\ell,\sigma)$ select-time	• $\mathcal{B}_s(n,n_0)$ select(•, θ)-time								
	Space	subset-rank	subset-select							
i†	Space $\mathcal{D}_b(N,\sigma) + N + o(N)$	subset-rank $\mathcal{D}_r(N,\sigma) + O(1)$	subset-select $\mathcal{D}_s(N,\sigma) + O(1)$							
i† ii	Space $\mathcal{D}_b(N,\sigma) + N + o(N)$	subset-rank $\mathcal{D}_r(N,\sigma) + O(1)$	subset-select $\mathcal{D}_s(N,\sigma) + O(1)$							

†: No empty sets in reduction (i)

Reductions (ii) and (iii)

$$\begin{cases} A \\ C \\ G \end{cases} \quad \begin{cases} A \\ T \end{cases} \quad \begin{cases} A \\ T \end{cases} \quad \begin{cases} A \\ C \end{cases} \quad \begin{cases} T \\ G \end{cases} \quad S = ACG \quad AT \quad !! \quad TG \\ R = 100 \quad 10 \quad 1 \quad 10 \quad 1 \end{cases}$$

• Empty sets \rightarrow we cannot build R in the same way

Reductions (ii) and (iii)

$$\begin{cases} A \\ C \\ G \end{cases} \quad \begin{cases} A \\ T \end{cases} \quad \begin{cases} A \\ T \end{cases} \quad \begin{cases} A \\ C \end{cases} \quad \begin{cases} T \\ G \end{cases} \quad S = ACG \quad AT \quad ! ! \quad TG \\ R = 100 \quad 10 \quad 1 \quad 10 \quad 1 \end{cases}$$

- Empty sets \rightarrow we cannot build R in the same way
- Reduction (ii): Replace {} by { ϵ } \rightarrow $N' = N + n_0$ and $\sigma' = \sigma + 1$

$\left\{ \begin{array}{c} A \\ C \\ G \end{array} \right\} \quad \left\{ \begin{array}{c} A \\ T \end{array} \right\} \quad \left\{ \begin{array}{c} \\ \end{array} \right\} \quad \left\{ \begin{array}{c} T \\ G \end{array} \right\} \quad S = ACG \quad AT \quad \stackrel{!}{!} TG \\ R = 100 \quad 10 \quad 1 \quad 10 \quad 1 \end{array} \right.$

- \cdot Empty sets \rightarrow we cannot build R in the same way
- Reduction (ii): Replace {} by { ϵ } \rightarrow $N' = N + n_0$ and $\sigma' = \sigma + 1$
- Reduction (iii):
 - iLet E be the length-n bitstring where E[i] = 1 iff $X_i = \emptyset$
 - Let X' be X with the empty sets removed
 - Build (i) over X' and $\mathcal B$ over E
 - For queries, filter out empty sets first, then use (i)

Reductions

Rani	k-select structure ${\cal D}$	Rank-select st	ructure ${\cal B}$
	${\mathcal D}_b(\ell,\sigma)$ bits	$\cdot \; \mathcal{B}_b(n,n_0) \; b$	its
•	$\mathcal{D}_r(\ell,\sigma)$ rank-time	$\cdot \ \mathcal{B}_r(n,n_0)$ ra	ank(·, 1)-time
•	$\mathcal{D}_s(\ell,\sigma)$ select-time	$\cdot \; \mathcal{B}_s(n,n_0)$ s	elect(·, <i>0</i>)-time
	Space	subset-rank	subset-select
	Space $\mathcal{D}_b(N,\sigma) + N + o(N)$	subset-rank $\mathcal{D}_r(N,\sigma) + O(1)$	subset-select $\mathcal{D}_s(N,\sigma) + O(1)$
i† ii	Space $\mathcal{D}_b(N,\sigma) + N + o(N)$ same as (i) with	subset-rank $\mathcal{D}_r(N,\sigma) + O(1)$ or $N' = N + n_0$ and	subset-select $\mathcal{D}_s(N,\sigma) + O(1)$ $\sigma' = \sigma + 1$

†: No empty sets in reduction (i)

- Bitvector by Golynski, Munro, Rao, 2006
 - $\ell \log \sigma + o(\ell \log \sigma)$ bits
 - rank in $O(\log \log \sigma)$ time
 - select in constant time

- Bitvector by Golynski, Munro, Rao, 2006
 - * $\ell \log \sigma + o(\ell \log \sigma)$ bits
 - rank in $O(\log \log \sigma)$ time
 - select in constant time
- (i) $N\log \sigma + N + o(n\log \sigma)$ bits, subset-rank in $O(\log \log \sigma)$ time, subset-select in constant time.

- Bitvector by Golynski, Munro, Rao, 2006
 - * $\ell \log \sigma + o(\ell \log \sigma)$ bits
 - rank in $O(\log \log \sigma)$ time
 - select in constant time
- (i) $N\log \sigma + N + o(n\log \sigma)$ bits, subset-rank in $O(\log \log \sigma)$ time, subset-select in constant time.
- (ii) $(N + n_0) \log(\sigma + 1) + N + n_0 + o((N + n_0) \log \sigma)$ bits, same time bound.

- Bitvector by Golynski, Munro, Rao, 2006
 - * $\ell \log \sigma + o(\ell \log \sigma)$ bits
 - rank in $O(\log \log \sigma)$ time
 - select in constant time
- (i) $N\log \sigma + N + o(n\log \sigma)$ bits, subset-rank in $O(\log \log \sigma)$ time, subset-select in constant time.
- (ii) $(N + n_0) \log(\sigma + 1) + N + n_0 + o((N + n_0) \log \sigma)$ bits, same time bound.
- (iii) $N\log \sigma + \mathcal{B}_s(n, n_0)$ bits, and an additional rank or select query in \mathcal{B} . In particular, if $n = o(N\log \sigma)$ we can use n + o(n) extra bits and constant time per query to achieve the same results as (i).

Lower Bound and Succinctness

- · Let sufficiently large N and $\sigma = \omega(\log N)$ be given
- Assume wlog. that $\log N$ and $N / \log N$ are integers.
- Consider the class X_1, \ldots, X_n where each X_i has size $\log N$ and $n = N / \log N$.
- There are $\binom{\sigma}{\log N}^{N/\log N}$ such strings

$$\log {\binom{\sigma}{\log N}}^{N/\log N} = \frac{N}{\log N} \log {\binom{\sigma}{\log N}}$$
$$\geq \frac{N}{\log N} \log \left(\frac{\sigma - \log N}{\log N}\right)^{\log N}$$
$$= N \log \left(\frac{\sigma - \log N}{\log N}\right)$$
$$= N \log \sigma - o(N \log \sigma)$$

Empirical Results - subset-rank Queries

12

- · Standard idea from succinct data structures;
 - Divide string into blocks
 - + Precompute the answer for rank queries up to each block ($\sigma=4$)
 - Compute in-block answers as needed

- · Standard idea from succinct data structures;
 - Divide string into blocks
 - Precompute the answer for rank queries up to each block ($\sigma=4)$
 - Compute in-block answers as needed
- + With SIMD: larger blocks \rightarrow smaller data structures

- · Standard idea from succinct data structures;
 - Divide string into blocks
 - + Precompute the answer for rank queries up to each block ($\sigma=4$)
 - Compute in-block answers as needed
- + With SIMD: larger blocks \rightarrow smaller data structures
- How we use SIMD to answer rank queries in a block?

- To perform rank(i,C), we could scan the two strings looking for a
 0 in the hi bit and a *1* in the low bit.
- With SIMD, we can use the operation *vpternlogq*

A =	0	0	1	0	0	0	1	0								
B =	0	1	1	0	1	1	0	0		b	С	imm	С	Α	A & C	
									0	0	0	b_0				
C = [?	?	?	?	?	?	?	?	0	0	1	b_1				
									0	1	0	b_2				
									0	1	1	b_3				
									1	0	0	b_4				
									1	0	1	b_5				
									1	1	0	b_6				
									1	1	1	b_7				

A =	0	0	1	0	0	0	1	0								
B =	0	1	1	0	1	1	0	0	a	b	с	imm	С	Α	A & C	
	2	2		2		2	2	-	0	0	0	b_0	0			
C = [:	:	:	:	:	:	:	?	0	0	1	b_1	0			
									0	1	0	b_2	1			
R =	0	1	0	0	1	1	0	0	0	1	1	b_3	1			
									1	0	0	b_4	0			
									1	0	1	b_5	0			
									1	1	0	b_6	0			
									1	1	1	b_7	0			

result!

A =	0	0	1	0	0	0	1	0							
B =	0	1	1	0	1	1	0	0	a	b	С	imm	С	Α	A & C
-				-			-		0	0	0	b_0	0		
C =	?	?	?	?	?	?	?	?	0	0	1	b_1	0		
									0	1	0	b_2	1		
R =	0	1	0	0	1	1	0	0	0	1	1	b_3	1		
									1	0	0	b_4	0		
									1	0	1	b_5	0		
Use	vpo	рсп	tq(рор	ulati	on	cour	nt) to	1	1	0	b_6	0		
cour	nt th	enι	imb	er o	f ma	atche	es ir	n the	1	1	1	b_7	0		

result!

A =	0	0	1	0	0	0	1	0							
B =	0	1	1	0	1	1	0	0	a	b	с	imm	С	Α	A & C
-		-	-		-			<u> </u>	0	0	0	b_0	0	1	
C =	?	?	?	?	?	?	?	?	0	0	1	b_1	0	1	
									0	1	0	b_2	1	0	
R =	0	1	0	0	1	1	0	0	0	1	1	b_3	1	0	
									1	0	0	b_4	0	0	
									1	0	1	b_5	0	0	
Use	vpo	рсп	tq(рор	ulati	on	cour	nt) to	1	1	0	b_6	0	0	
cour	nt the	e nu	imbe	er o	f ma	atche	es ir	n the	1	1	1	b_7	0	0	

result!

• Given three SIMD vectors and an 8-bit immediate value, computes *any* three-variable boolean function

A =	0	0	1	0	0	0	1	0							
B =	0	1	1	0	1	1	0	0	a	b	с	imm	С	Α	A & C
2			_					<u> </u>	0	0	0	b_0	0	1	1
C =	?	?	?	?	?	?	?	?	0	0	1	b_1	0	1	1
									0	1	0	b_2	1	0	1
R =	0	1	0	0	1	1	0	0	0	1	1	b_3	1	0	1
									1	0	0	b_4	0	0	0
									1	0	1	b_5	0	0	0
Use <i>vpopcntq</i> (population count) to										1	0	b_6	0	0	0
cour	nt th	e nu	imbe	er o	f ma	atche	the	1	1	1	b_7	0	0	0	

15

Questions?