
Rank and Select on Degenerate Strings

Philip Bille
Inge Li Gørtz
Tord Joakim Stordalen

Rank and Select on Degenerate Strings

X =

A
C
G

A
T

C

T
G

X1 X2 X3 X4

• subset-rank(3,A)

= 2

• subset-select(2, C) = 3

1

Rank and Select on Degenerate Strings

X =

A
C
G

A
T

C

T
G

X1 X2 X3 X4

• subset-rank(3,A)

= 2

• subset-select(2, C) = 3

1

Rank and Select on Degenerate Strings

X =

A
C
G

A
T

C

T
G

X1 X2 X3 X4

• subset-rank(3,A)

= 2

• subset-select(2, C) = 3

1

Rank and Select on Degenerate Strings

X =

A
C
G

A
T

C

T
G

X1 X2 X3 X4

• subset-rank(3,A) = 2

• subset-select(2, C)

= 3

1

Rank and Select on Degenerate Strings

X =

A
C
G

A
T

C

T
G

X1 X2 X3 X4

• subset-rank(3,A) = 2

• subset-select(2, C)

= 3

1

Rank and Select on Degenerate Strings

X =

A
C
G

A
T

C

T
G

X1 X2 X3 X4

• subset-rank(3,A) = 2

• subset-select(2, C) = 3

1

Rank and Select on Degenerate Strings

X =

A
C
G

A
T

C

T
G

X1 X2 X3 X4

• n = #sets = 4
• n0 = #empty sets = 0
• N = #characters = 8
• subset-rank(i, c) = #occurrences of c in X1, . . . ,Xi.
• subset-select(i, c) = position of ith occurrence of c.

2

Motivation

• Alanko, Biagi, Puglisi, Vuohtoniemi, 2023 - Subset Wavelet Trees
O(log σ) time, N log σ + 2n0 + o(N log σ + n0) bits

• Alanko, Puglisi, Vuohtoniemi, 2023 - Small searchable k-spectra [...]
Support k-mer queries using 2k subset-rank queries; one-two
orders of magnitude faster than previous best solution.

• A number of reductions to regular rank and select, from
APV2023, the famous BOSS paper, etc.

3

Our Contributions

• Introduce N as a parameter and reanalyze existing reductions

• Prove a simple lower bound on space

• A new compact and fast data structure using SIMD

4

Reductions

Rank-select structure D
• Db(ℓ, σ) bits

• Dr(ℓ, σ) rank-time

• Ds(ℓ, σ) select-time

Rank-select structure B
• Bb(n,n0) bits

• Br(n,n0) rank(·, 1)-time
• Bs(n,n0) select(·, 0)-time

Space subset-rank subset-select

i†

ii

iii

† : No empty sets in reduction (i)

5

Reduction (i)

A
C
G

A
T

C

T
G

 S = ACG AT C TG
R = 100 10 1 10 1

• |S| = N and |R| = N + 1.
• Build D over S and a constant-time rank-select bitvector over R.
• subset-rank(i, c):

• k = select(i + 1,1) in R
• return rank(k − 1, c) in S

• subset-select(i, c):
• k = select(i, c) in S
• return rank(k, 1) in R

6

Reduction (i)

A
C
G

A
T

C

T
G

 S = ACG AT C TG
R = 100 10 1 10 1

• |S| = N and |R| = N + 1.

• Build D over S and a constant-time rank-select bitvector over R.
• subset-rank(i, c):

• k = select(i + 1,1) in R
• return rank(k − 1, c) in S

• subset-select(i, c):
• k = select(i, c) in S
• return rank(k, 1) in R

6

Reduction (i)

A
C
G

A
T

C

T
G

 S = ACG AT C TG
R = 100 10 1 10 1

• |S| = N and |R| = N + 1.
• Build D over S and a constant-time rank-select bitvector over R.

• subset-rank(i, c):
• k = select(i + 1,1) in R
• return rank(k − 1, c) in S

• subset-select(i, c):
• k = select(i, c) in S
• return rank(k, 1) in R

6

Reduction (i)

A
C
G

A
T

C

T
G

 S = ACG AT C TG
R = 100 10 1 10 1

• |S| = N and |R| = N + 1.
• Build D over S and a constant-time rank-select bitvector over R.
• subset-rank(i, c):

• k = select(i + 1,1) in R
• return rank(k − 1, c) in S

• subset-select(i, c):
• k = select(i, c) in S
• return rank(k, 1) in R

6

Reduction (i)

A
C
G

A
T

C

T
G

 S = ACG AT C TG
R = 100 10 1 10 1

• |S| = N and |R| = N + 1.
• Build D over S and a constant-time rank-select bitvector over R.
• subset-rank(i, c):

• k = select(i + 1,1) in R
• return rank(k − 1, c) in S

• subset-select(i, c):
• k = select(i, c) in S
• return rank(k, 1) in R

6

Reductions

Rank-select structure D
• Db(ℓ, σ) bits

• Dr(ℓ, σ) rank-time

• Ds(ℓ, σ) select-time

Rank-select structure B
• Bb(n,n0) bits

• Br(n,n0) rank(·, 1)-time
• Bs(n,n0) select(·, 0)-time

Space subset-rank subset-select

i† Db(N, σ) + N + o(N) Dr(N, σ) + O(1) Ds(N, σ) + O(1)

ii

iii

† : No empty sets in reduction (i)

7

Reductions (ii) and (iii)

A
C
G

A
T

T
G

 S = ACG AT !! TG
R = 100 10 1 10 1

• Empty sets→ we cannot build R in the same way

• Reduction (ii): Replace {} by {ϵ} → N′ = N + n0 and σ′ = σ + 1
• Reduction (iii):

• iLet E be the length-n bitstring where E[i] = 1 iff Xi = ∅
• Let X′ be X with the empty sets removed
• Build (i) over X′ and B over E
• For queries, filter out empty sets first, then use (i)

8

Reductions (ii) and (iii)

A
C
G

A
T

T
G

 S = ACG AT !! TG
R = 100 10 1 10 1

• Empty sets→ we cannot build R in the same way
• Reduction (ii): Replace {} by {ϵ} → N′ = N + n0 and σ′ = σ + 1

• Reduction (iii):
• iLet E be the length-n bitstring where E[i] = 1 iff Xi = ∅
• Let X′ be X with the empty sets removed
• Build (i) over X′ and B over E
• For queries, filter out empty sets first, then use (i)

8

Reductions (ii) and (iii)

A
C
G

A
T

T
G

 S = ACG AT !! TG
R = 100 10 1 10 1

• Empty sets→ we cannot build R in the same way
• Reduction (ii): Replace {} by {ϵ} → N′ = N + n0 and σ′ = σ + 1
• Reduction (iii):

• iLet E be the length-n bitstring where E[i] = 1 iff Xi = ∅
• Let X′ be X with the empty sets removed
• Build (i) over X′ and B over E
• For queries, filter out empty sets first, then use (i)

8

Reductions

Rank-select structure D
• Db(ℓ, σ) bits

• Dr(ℓ, σ) rank-time

• Ds(ℓ, σ) select-time

Rank-select structure B
• Bb(n,n0) bits

• Br(n,n0) rank(·, 1)-time
• Bs(n,n0) select(·, 0)-time

Space subset-rank subset-select

i† Db(N, σ) + N + o(N) Dr(N, σ) + O(1) Ds(N, σ) + O(1)

ii same as (i) with N′ = N + n0 and σ′ = σ + 1

iii (i) + Bb(n,n0) (i) + Br(n,n0) (i) + Bs(n,n0)

† : No empty sets in reduction (i)

9

Plugging in

• Bitvector by Golynski, Munro, Rao, 2006
• ℓ log σ + o(ℓ log σ) bits
• rank in O(log log σ) time
• select in constant time

(i) N log σ + N + o(n log σ) bits, subset-rank in O(log log σ) time,
subset-select in constant time.

(ii) (N + n0) log(σ + 1) + N + n0 + o((N + n0) log σ) bits, same time
bound.

(iii) N log σ + Bs(n,n0) bits, and an additional rank or select query in
B. In particular, if n = o(N log σ) we can use n + o(n) extra bits
and constant time per query to achieve the same results as (i).

10

Plugging in

• Bitvector by Golynski, Munro, Rao, 2006
• ℓ log σ + o(ℓ log σ) bits
• rank in O(log log σ) time
• select in constant time

(i) N log σ + N + o(n log σ) bits, subset-rank in O(log log σ) time,
subset-select in constant time.

(ii) (N + n0) log(σ + 1) + N + n0 + o((N + n0) log σ) bits, same time
bound.

(iii) N log σ + Bs(n,n0) bits, and an additional rank or select query in
B. In particular, if n = o(N log σ) we can use n + o(n) extra bits
and constant time per query to achieve the same results as (i).

10

Plugging in

• Bitvector by Golynski, Munro, Rao, 2006
• ℓ log σ + o(ℓ log σ) bits
• rank in O(log log σ) time
• select in constant time

(i) N log σ + N + o(n log σ) bits, subset-rank in O(log log σ) time,
subset-select in constant time.

(ii) (N + n0) log(σ + 1) + N + n0 + o((N + n0) log σ) bits, same time
bound.

(iii) N log σ + Bs(n,n0) bits, and an additional rank or select query in
B. In particular, if n = o(N log σ) we can use n + o(n) extra bits
and constant time per query to achieve the same results as (i).

10

Plugging in

• Bitvector by Golynski, Munro, Rao, 2006
• ℓ log σ + o(ℓ log σ) bits
• rank in O(log log σ) time
• select in constant time

(i) N log σ + N + o(n log σ) bits, subset-rank in O(log log σ) time,
subset-select in constant time.

(ii) (N + n0) log(σ + 1) + N + n0 + o((N + n0) log σ) bits, same time
bound.

(iii) N log σ + Bs(n,n0) bits, and an additional rank or select query in
B. In particular, if n = o(N log σ) we can use n + o(n) extra bits
and constant time per query to achieve the same results as (i).

10

Lower Bound and Succinctness

• Let sufficiently large N and σ = ω(logN) be given
• Assume wlog. that logN and N/ logN are integers.
• Consider the class X1, . . . ,Xn where each Xi has size logN and

n = N/ logN.
• There are

(
σ

log N
)N/ log N such strings

log

(
σ

logN

)N/ log N
=

N
logN log

(
σ

logN

)
≥ N

logN log

(
σ − logN
logN

)log N

= N log

(
σ − logN
logN

)
= N log σ − o(N log σ)

11

Empirical Results - subset-rank Queries

0 2 3 4 5
Space (bits per symbol)

0

250

500

750

1000

1250

1500

1750

Ti
m

e (
ns

 p
er

 q
ue

ry
)

Thm1(iii)

SWT (rrr gen.)

SWT (scan)

SWT (rrr)

SWT (split)

Concat (rrr)

Concat(plain)

Split (ef)

Split (rrr)

Split (plain)
Matrix (rrr)

Matrix (ef)

DSD (rrr)

DSD (scan)

SIMD (4)
SIMD (8)

SIMD (16)

SIMD (32)

12

SIMD Implementation

• Standard idea from succinct data structures;
• Divide string into blocks
• Precompute the answer for rank queries up to each block (σ = 4)
• Compute in-block answers as needed

• With SIMD: larger blocks→ smaller data structures

• How we use SIMD to answer rank queries in a block?

13

SIMD Implementation

• Standard idea from succinct data structures;
• Divide string into blocks
• Precompute the answer for rank queries up to each block (σ = 4)
• Compute in-block answers as needed

• With SIMD: larger blocks→ smaller data structures

• How we use SIMD to answer rank queries in a block?

13

SIMD Implementation

• Standard idea from succinct data structures;
• Divide string into blocks
• Precompute the answer for rank queries up to each block (σ = 4)
• Compute in-block answers as needed

• With SIMD: larger blocks→ smaller data structures

• How we use SIMD to answer rank queries in a block?

13

Rank queries using SIMD

• Split the string into two strings; the high bits and the low bits

00
A

01
C
10
G
11
T

−→
0 0 1 1
0
A
1
C
0
G
1
T

• To perform rank(i,C), we could scan the two strings looking for a
0 in the hi bit and a 1 in the low bit.

• With SIMD, we can use the operation vpternlogq

14

vpternlogq

• Given three SIMD vectors and an 8-bit immediate value,
computes any three-variable boolean function

A = 0 0 1 0 0 0 1 0
B = 0 1 1 0 1 1 0 0
C = ? ? ? ? ? ? ? ?

R = 0 1 0 0 1 1 0 0

Use vpopcntq (population count) to
count the number of matches in the
result!

a b c imm C A A & C
0 0 0 b0

0 1 1

0 0 1 b1

0 1 1

0 1 0 b2

1 0 1

0 1 1 b3

1 0 1

1 0 0 b4

0 0 0

1 0 1 b5

0 0 0

1 1 0 b6

0 0 0

1 1 1 b7

0 0 0

15

vpternlogq

• Given three SIMD vectors and an 8-bit immediate value,
computes any three-variable boolean function

A = 0 0 1 0 0 0 1 0
B = 0 1 1 0 1 1 0 0
C = ? ? ? ? ? ? ? ?

R = 0 1 0 0 1 1 0 0

Use vpopcntq (population count) to
count the number of matches in the
result!

a b c imm C A A & C
0 0 0 b0 0

1 1

0 0 1 b1 0

1 1

0 1 0 b2 1

0 1

0 1 1 b3 1

0 1

1 0 0 b4 0

0 0

1 0 1 b5 0

0 0

1 1 0 b6 0

0 0

1 1 1 b7 0

0 0

15

vpternlogq

• Given three SIMD vectors and an 8-bit immediate value,
computes any three-variable boolean function

A = 0 0 1 0 0 0 1 0
B = 0 1 1 0 1 1 0 0
C = ? ? ? ? ? ? ? ?

R = 0 1 0 0 1 1 0 0

Use vpopcntq (population count) to
count the number of matches in the
result!

a b c imm C A A & C
0 0 0 b0 0

1 1

0 0 1 b1 0

1 1

0 1 0 b2 1

0 1

0 1 1 b3 1

0 1

1 0 0 b4 0

0 0

1 0 1 b5 0

0 0

1 1 0 b6 0

0 0

1 1 1 b7 0

0 0

15

vpternlogq

• Given three SIMD vectors and an 8-bit immediate value,
computes any three-variable boolean function

A = 0 0 1 0 0 0 1 0
B = 0 1 1 0 1 1 0 0
C = ? ? ? ? ? ? ? ?

R = 0 1 0 0 1 1 0 0

Use vpopcntq (population count) to
count the number of matches in the
result!

a b c imm C A A & C
0 0 0 b0 0 1

1

0 0 1 b1 0 1

1

0 1 0 b2 1 0

1

0 1 1 b3 1 0

1

1 0 0 b4 0 0

0

1 0 1 b5 0 0

0

1 1 0 b6 0 0

0

1 1 1 b7 0 0

0

15

vpternlogq

• Given three SIMD vectors and an 8-bit immediate value,
computes any three-variable boolean function

A = 0 0 1 0 0 0 1 0
B = 0 1 1 0 1 1 0 0
C = ? ? ? ? ? ? ? ?

R = 0 1 0 0 1 1 0 0

Use vpopcntq (population count) to
count the number of matches in the
result!

a b c imm C A A & C
0 0 0 b0 0 1 1
0 0 1 b1 0 1 1
0 1 0 b2 1 0 1
0 1 1 b3 1 0 1
1 0 0 b4 0 0 0
1 0 1 b5 0 0 0
1 1 0 b6 0 0 0
1 1 1 b7 0 0 0

15

Questions?

	Questions?

