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• n = #sets = 4
• n0 = #empty sets = 0
• N = #characters = 8
• subset-rank(i, c) = #occurrences of c in X1, . . . ,Xi.
• subset-select(i, c) = position of ith occurrence of c.
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Motivation

• Alanko, Biagi, Puglisi, Vuohtoniemi, 2023 - Subset Wavelet Trees
O(log σ) time, N log σ + 2n0 + o(N log σ + n0) bits

• Alanko, Puglisi, Vuohtoniemi, 2023 - Small searchable k-spectra [...]
Support k-mer queries using 2k subset-rank queries; one-two
orders of magnitude faster than previous best solution.

• A number of reductions to regular rank and select, from
APV2023, the famous BOSS paper, etc.

3



Our Contributions

• Introduce N as a parameter and reanalyze existing reductions

• Prove a simple lower bound on space

• A new compact and fast data structure using SIMD
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Reductions

Rank-select structure D
• Db(ℓ, σ) bits

• Dr(ℓ, σ) rank-time

• Ds(ℓ, σ) select-time

Rank-select structure B
• Bb(n,n0) bits

• Br(n,n0) rank(·, 1)-time
• Bs(n,n0) select(·, 0)-time

Space subset-rank subset-select

i†

ii

iii

† : No empty sets in reduction (i)

5



Reduction (i)


A
C
G


A
T


C


T
G

 S = ACG AT C TG
R = 100 10 1 10 1

• |S| = N and |R| = N + 1.
• Build D over S and a constant-time rank-select bitvector over R.
• subset-rank(i, c):

• k = select(i + 1,1) in R
• return rank(k − 1, c) in S

• subset-select(i, c):
• k = select(i, c) in S
• return rank(k, 1) in R
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Reductions (ii) and (iii)
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 S = ACG AT !! TG
R = 100 10 1 10 1

• Empty sets→ we cannot build R in the same way

• Reduction (ii): Replace {} by {ϵ} → N′ = N + n0 and σ′ = σ + 1
• Reduction (iii):

• iLet E be the length-n bitstring where E[i] = 1 iff Xi = ∅
• Let X′ be X with the empty sets removed
• Build (i) over X′ and B over E
• For queries, filter out empty sets first, then use (i)
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Reductions

Rank-select structure D
• Db(ℓ, σ) bits

• Dr(ℓ, σ) rank-time

• Ds(ℓ, σ) select-time

Rank-select structure B
• Bb(n,n0) bits

• Br(n,n0) rank(·, 1)-time
• Bs(n,n0) select(·, 0)-time

Space subset-rank subset-select

i† Db(N, σ) + N + o(N) Dr(N, σ) + O(1) Ds(N, σ) + O(1)

ii same as (i) with N′ = N + n0 and σ′ = σ + 1

iii (i) + Bb(n,n0) (i) + Br(n,n0) (i) + Bs(n,n0)

† : No empty sets in reduction (i)
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Plugging in

• Bitvector by Golynski, Munro, Rao, 2006
• ℓ log σ + o(ℓ log σ) bits
• rank in O(log log σ) time
• select in constant time

(i) N log σ + N + o(n log σ) bits, subset-rank in O(log log σ) time,
subset-select in constant time.

(ii) (N + n0) log(σ + 1) + N + n0 + o((N + n0) log σ) bits, same time
bound.

(iii) N log σ + Bs(n,n0) bits, and an additional rank or select query in
B. In particular, if n = o(N log σ) we can use n + o(n) extra bits
and constant time per query to achieve the same results as (i).
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Lower Bound and Succinctness

• Let sufficiently large N and σ = ω(logN) be given
• Assume wlog. that logN and N/ logN are integers.
• Consider the class X1, . . . ,Xn where each Xi has size logN and

n = N/ logN.
• There are

(
σ

log N
)N/ log N such strings

log

(
σ

logN

)N/ log N
=

N
logN log

(
σ

logN

)
≥ N

logN log

(
σ − logN
logN

)log N

= N log

(
σ − logN
logN

)
= N log σ − o(N log σ)

11



Empirical Results - subset-rank Queries
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SIMD Implementation

• Standard idea from succinct data structures;
• Divide string into blocks
• Precompute the answer for rank queries up to each block (σ = 4)
• Compute in-block answers as needed

• With SIMD: larger blocks→ smaller data structures

• How we use SIMD to answer rank queries in a block?
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Rank queries using SIMD

• Split the string into two strings; the high bits and the low bits

00
A

01
C
10
G
11
T

−→
0 0 1 1
0
A
1
C
0
G
1
T

• To perform rank(i,C), we could scan the two strings looking for a
0 in the hi bit and a 1 in the low bit.

• With SIMD, we can use the operation vpternlogq
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vpternlogq

• Given three SIMD vectors and an 8-bit immediate value,
computes any three-variable boolean function

A = 0 0 1 0 0 0 1 0
B = 0 1 1 0 1 1 0 0
C = ? ? ? ? ? ? ? ?

R = 0 1 0 0 1 1 0 0

Use vpopcntq (population count) to
count the number of matches in the
result!

a b c imm C A A & C
0 0 0 b0

0 1 1

0 0 1 b1

0 1 1

0 1 0 b2

1 0 1

0 1 1 b3

1 0 1

1 0 0 b4

0 0 0

1 0 1 b5

0 0 0

1 1 0 b6

0 0 0

1 1 1 b7

0 0 0
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